
Samuel Burer · Jon Lee

Solving Maximum-Entropy Sampling Problems

Using Factored Masks

February 28, 2005; revised October 18, 2005

Abstract. We present a practical approach to Anstreicher and Lee’s masked spectral bound
for maximum-entropy sampling, and we describe favorable results that we have obtained with
a Branch-&-Bound algorithm based on our approach. By representing masks in factored form,
we are able to easily satisfy a semidefiniteness constraint. Moreover, this representation allows
us to restrict the rank of the mask as a means for attempting to practically incorporate second-
order information.

Introduction

Let n be a natural number, and let N := {1, 2, . . . , n}. Let C be an order-n
symmetric positive definite matrix. Let s be an integer between 0 and n. For
subsets S and T of N , let C[S, T] denote the submatrix of C having rows indexed
by S and columns indexed by T . The maximum-entropy sampling problem is to
calculate

z(C, s) := max {ln det C[S, S] : S ⊂ N, |S| = s} .

This fundamental problem in the design of experiments was introduced in [19]
and first used in a monitoring design context in [8] (also see [10,17,18,21]).

From the perspective of algorithmic optimization, the problem has been stud-
ied extensively; see [1–3,11–13,16] and the surveys [14,15]. Exact algorithms are
based on the Branch-&-Bound framework. Crucial to such an approach is a good
upper bound on z(C, s). Previous upper bounds are based on either eigenvalues
or nonlinear programming relaxations.

In §1, we describe the masked spectral bound of [3]. In §2, we describe two
first-order rank-restricted algorithms for quickly obtaining a good mask. In §3,
we compare our methods with one another and with the affine-scaling algorithm
of [3]. We also examine the issue of how to choose the rank. In §4, we describe
our Branch-&-Bound implementation and results. Finally, in §5, we mention
possibilities for incorporating second-order information, and in §6, we discuss
some future directions.

Notation: For a square symmetric matrix A, A � 0 (resp., A ≻ 0) means
that A is positive semidefinite (resp., definite). We use e to denote a vector with

Samuel Burer: Department of Management Sciences, University of Iowa, e-mail:
samuel-burer@uiowa.edu. Supported in part by NSF Grant CCR-0203426.

Jon Lee: Department of Mathematical Sciences, T.J. Watson Research Center, IBM, e-mail:
jonlee@us.ibm.com.

2 Burer and Lee

all components equal to 1. For a square matrix A, diag(A) denotes the vector
of diagonal entries from A. For a vector x, Diag(x) denotes the square matrix
having diagonal x and off-diagonal entries of zero. For a vector x, x−1/2 denotes
the entrywise reciprocal square roots. For n×n matrices A and B, A◦B denotes
Hadamard (i.e., elementwise) product, while A •B := trace(AB′). For a matrix
A, Ai· denotes the i-th row.

1. The masked spectral bound

Anstreicher and Lee introduced the masked spectral (upper) bound (see [3]) for
z(C, s). A mask is any symmetric, positive semidefinite matrix having ones on
the diagonal, i.e., any X � 0 having diag(X) = e. We define the associated
masked spectral bound as

ξC,s(X) :=
∑s

l=1 ln (λl (C ◦ X)) ,

where ◦ represents the Hadamard product of matrices and eigenvalues λ1, . . . , λn

are in nonincreasing order. Validity of the masked spectral bound is based on:
(i) Oppenheim’s inequality, i.e., det A ≤ det A◦B/

∏n
j=1 Bjj , where A � 0 and

B ≻ 0; and (ii) the eigenvalue inequalities λl(A) ≥ λl(B), where A � 0, and B
is a principal submatrix of A.

The masked spectral bound is a generalization of the spectral partition bound
of [11] (take X to be block diagonal, with blocks of 1’s), which itself is a gener-
alization of both the eigenvalue bound of [12] (take X = ee′) and the diagonal
bound of [11] (take X = I). The spectral partition bound can produce much
better bounds than the eigenvalue and diagonal bounds, but there is no known
practical methodology for efficiently choosing a near-optimal partition of N ,
which describes the block structure of the mask (see [11]). Some success has
been reported using the following method for calculating the so-called “one-
big partition” of N (see [11] and [3]): (i) let S be a heuristic solution of the
maximum-entropy sampling problem; (ii) the associated one-big partition of N
has one block S and the elements of N \ S as singletons.

The motivation for working with the masked spectral bound is to try to use
methods of continuous optimization to get the strength of the combinatorial
bounds (i.e., the spectral partition bounds and its specializations) but more
efficiently. Specifically, we try to find a mask yielding a good bound. Finding an
optimal mask is a problem of minimizing a nondifferentiable nonconvex function
subject to a semidefiniteness constraint. That sounds daunting, except for the
following inter-related points: (i) for our purposes, we do not need a global
minimum; (ii) in our experience the nondifferentiability is not so serious; (iii)
in our experience, local solutions obtained from different starting points are not
wildly different in value; and (iv) by suitably initializing the search for a mask,
we can do at least as well as fixed masks.

An important point is that function, gradient and Hessian evaluations for ξ
are expensive. All of these are based on a single (expensive) eigensystem calcula-
tion. Function evaluations require eigenvalues, gradients require the eigenvectors

Factored Masks 3

as well, and Hessians further require some non-negligible arithmetic. Considering
that we are embedding these calculations in Branch-&-Bound, with the goal for
each subproblem of trying to push its upper bound below the value of a global
lower bound, we cannot afford to spend much time minimizing. So we need to
find a way to descend quickly in just a few steps.

In [3], Anstreicher and Lee proposed a method for minimizing ξ which was
based on ideas coming from the affine scaling algorithm for linear programming.
They considered different algorithmic variants, such as short- and long-step ap-
proaches, and they demonstrated the ability to achieve good bounds (relative
to the one-big, eigenvalue, and diagonal bounds), even in the face of the non-
convexity and nondifferentiability of ξ. They did not, however, consider efficient
evaluation of the bound or use of the bound in a complete Branch-&-Bound
algorithm.

2. Rank-restricted masks

Our idea is to work with rank-restricted masks in factored form. That is, we
consider masks of the form X := V V ′, where V is n × k and 1 ≤ k ≤ n.
As we try to find a mask yielding a low bound ξ, we can hope to make more
rapid progress owing to two factors: (i) the semidefiniteness restriction is handled
implicitly by the factored form; and (ii) by choosing smaller k, we work with
many fewer variables (kn rather than n(n − 1)/2), which may lead to faster
convergence of a steepest-descent type method and also opens up second-order
methods as a realistic possibility. As it turns out in our experiments, (i) proves
to be more beneficial than (ii).

We note that the restriction to low-rank PSD matrices has been used suc-
cessfully in other contexts [4–6]. In fact, the first algorithm that we describe
borrows its key ideas from [4].

Our usage of rank-restricted masks will be based on three functions. The first
normalizes the rows of V , i.e.,

h(V) := Diag
(

[diag (V V ′)]
−1/2

)

V ;

the second takes a normalized V̄ and calculates the corresponding masked spec-
tral bound, i.e.,

g(V̄) := ξC,s(V̄ V̄ ′);

and the third is the composite function f(V) := g(h(V)). Note that h is only
well-defined if all rows of V are nonzero.

We propose a steepest-descent type algorithm for minimizing f(V), and for
this, we consider the gradient of f . Let ul(C ◦ V̄ V̄ ′) be an eigenvector, of unit
Euclidean norm, associated with λl(C ◦ V̄ V̄ ′). Let U be the n× s matrix having
columns ul (l = 1, . . . , s), and let Σ be the order-s square diagonal matrix with
Σll = λl (l = 1, . . . , s). Then, as long as λs > λs+1, we have that the gradient of
f at V is the matrix

∇f(V) = D∇g(V̄) −
(

∇g(V̄)V ′ ◦ D3
)

V ;

4 Burer and Lee

where

d = [diag (V V ′)]
−1/2

,

D = Diag(d),

V̄ = h(V),

∇g(V̄) = 2
(

C ◦ UΣ−1U ′
)

V̄ .

This can be derived using standard results concerning symmetric functions of
eigenvalues (see [20], for example). Note that we must define ul properly when
λl = λl+1 for any l = 1, . . . , s − 1; in such situations, we just take care that
the associated {ul} form an orthonormal basis for each of the eigenspaces cor-
responding to distinct eigenvalues.

Our steepest-descent algorithm (Algorithm 1) is described in Figure 1. Due to

0. Initialize V , tmax, kmax and 0 < β < 1. Set t = 0.
1. Let k := 0 and t := t + 1. If t > tmax then STOP.
2. Let W := V − βk∇f(V).
3. If f(WW ′) < f(V V ′) or k = kmax, then let V := W and GOTO 1. Otherwise, let k := k+1

and GOTO 2.

Fig. 1. Basic Descent Algorithm

the possible non-differentiability of f , an important ingredient of the algorithm
is the acceptance of a non-improving step if descent is not detected after a
certain number (kmax) of trials. Values such as kmax := 2 and β := 1/3 are
practical. (Anstreicher and Lee [3] used a similar back-tracking approach for
their affine-scaling algorithm. In particular, they also used parameters kmax := 2
and β := 1/3.) In what follows, we will describe the results of our experiments
with various values for tmax and various choices of the initial V . For example, in
the Branch-&-Bound results of §4, we will take tmax ≤ 5.

Several alternatives to Algorithm 1 can be considered. For example, we can
define W := h(V −βk∇f(V)) in Step 2, which normalizes the algorithm’s iterates
and simplifies the gradient formulas because d = e. Another possibility is to move
in the direction −∇g(V̄), i.e., to change Step 2 to read W := V − βk∇g(V̄).
This is valid because, in fact, −∇g(V̄) is a descent direction for f at V :

Theorem 1. Suppose that f is differentiable at V , and define V̄ := h(V). Then
−∇g(V̄) is a descent direction for f at V .

Factored Masks 5

Proof. Define M := ∇g(V̄), and let θi be the angle between Mi· and Vi·. Then

∇f(V) • ∇g(V̄) = [DM − (MV ′ ◦ D3)V] • M

= DM • M − (MV ′ ◦ D3)V • M

=

n
∑

i=1

di‖Mi·‖
2 −

n
∑

i=1

d3
i (Vi·M

′

i·)
2

=
n

∑

i=1

(

di‖Mi·‖
2 − di‖Mi·‖

2 cos2 θi

)

=

n
∑

i=1

di‖Mi·‖
2
(

1 − cos2 θi

)

≥ 0.

A final possibility is to combine both of these alternatives to define W :=
h(V −βk∇g(V̄). We have experimented with this last alternative, which we refer
to as Algorithm 2. It is given in Figure 2. (The notation V̄ and W̄ emphasizes
that all iterates have unit-norm rows.)

0. Initialize V̄ with unit-length rows, tmax, kmax and 0 < β < 1. Set t = 0.
1. Let k := 0 and t := t + 1. If t > tmax then STOP.
2. Let W̄ := h(V̄ − βk∇g(V̄)).
3. If f(W̄W̄ ′) < f(V̄ V̄ ′) or k = kmax, then let V̄ := W̄ and GOTO 1. Otherwise, let k := k+1

and GOTO 2.

Fig. 2. Alternative Descent Algorithm

In the next section, we will present evidence to illustrate that the two al-
gorithms above perform quite well, even though they are somewhat simplistic
approaches to the minimization of the non-convex, non-differentiable function ξ.
Overall, we believe that the non-differentiability of ξ is actually not so bad that
it precludes the use of simple gradient-based descent methods.

3. Experiments with rank-restricted masks

In this section, we detail our experience with Algorithms 1 and 2. A few prelimi-
nary remarks are in order. First, the data for our experiments, which has n = 63
and was also used in [3], comes from an environmental monitoring application
(see [10]).

Second, we will often compare bounds on the original and complementary
problems. This terminology refers to the fact that, using the identity

ln det C[S, S] = ln det C + ln det C−1[N \ S,N \ S], (1)

any bound for the complementary problem of choosing a maximum entropy set
of n− s points with respect to the covariance matrix C−1 translates to a bound

6 Burer and Lee

for the original problem (see [1,2]). In practice, the same class of bound (e.g.,
the one-big bound) can yield very different values when calculated with respect
to the original and complementary problems.

Finally, a primary basis for comparison will be the (absolute) gap between
a calculated bound and the entropy value of a heuristic solution. This measure,
which is invariant under matrix scaling, has been used in all of the computational
experiments reported in previous work on bounds.

The heuristic solution used to calculate the gap is obtained via a routine
introduced in [12], which consists of two stages: the greedy construction of a
candidate S with |S| = s and a straightforward pairwise-interchange (“2-opt”)
local improvement of S. More specifically, the greedy scheme is as follows, where
H(S) := ln detC[S, S] is the entropy function: initialize S = ∅, and then, for
j = 1, 2, . . . , s, choose k ∈ N \ S so as to maximize H(S ∪ {k}) and adjoin k to
S. Then beginning from the output set S of the greedy method described above,
repeating while possible, choose k ∈ N \S and l ∈ S so that H(S ∪ {k} \ {l}) >
H(S), and replace S with S ∪ {k} \ {l}.

In fact, this routine can also be applied to the complementary problem via
(1) to obtain a second heuristic solution for the original problem. In [12], it
has been observed that this second solution is typically of better quality when
s > n/2, and so we adopt the following scheme: if s ≤ n/2, then we calculate
the heuristic solution via the original problem; otherwise, we calculate it via the
complementary problem.

This same scheme for calculating a heuristic solution will also be used in §4
to generate an initial global lower bound for use in Branch-&-Bound. Also, we
did not attempt to improve this heuristic or construct better alternatives since
the main goal of this paper was to evaluate the relative quality of various upper
bounds.

3.1. Comparison of Algorithms 1 and 2

We first compare Algorithm 1 with Algorithm 2. Because both algorithms require
roughly the same amount of work per iteration, we have found that the running
times of the algorithms do not differ significantly. Accordingly, we are primarily
interested in comparing convergence properties. (For the interested reader, all
runs depicted in Figure 3 below took less than 5 seconds.)

Although Algorithms 1 and 2 can exhibit different convergence rates or pat-
terns on different instances of the maximum-entropy sampling problem with
different values of k, we found that, on any specific instance, Algorithm 2 typi-
cally converged more quickly and reliably than Algorithm 1. Figure 3 depicts a
typical outcome. We ran both algorithms from the same, random starting point
(entries uniformly in [−1, 1]) for 100 iterations with (n, s, k) = (63, 31, 63) on
both the original and complementary problems. The curves indicate convergence
by depicting entropy gap versus iteration number.

As Figure 3 demonstrates, Algorithm 2 converges more quickly than Algo-
rithm 1 and also achieves better gaps. This is intriguing behavior in light of the

Factored Masks 7

Fig. 3. Comparison of the gaps produced by Algorithm 1 and Algorithm 2 when each is run for
100 iterations from the same, random starting point on both the original and complementary
problems. Relevant parameters are (n, s, k) = (63, 31, 63). The top two curves represent the
original problem; the bottom two curves represent the complementary problem.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

Iteration

G
ap

 (
en

tr
o

p
y)

Algorithm 1
Algorithm 2

fact that Algorithm 1 employs the steepest descent direction for f , while Algo-
rithm 2 uses a kind of projected search path. One hypothesis as to why we see
this behavior with Algorithm 2 is as follows: its search path may be perturbing
us away from points where ξ is not differentiable (e.g., Lee and Overton (unpub-
lished) have observed nondifferentiability at true local minimizers obtained by
the gradient-sampling algorithm (see [7])).

Another comparison of Algorithms 1 and 2, which supports a similar conclu-
sion as Figure 3, will be given in §3.3.1. Nonetheless, we will advocate the use of
Algorithm 1 in §4. Specific reasons for doing so will be explained in that section.

3.2. Comparison with affine scaling

We next compare Algorithm 1 with the affine scaling algorithm of Anstreicher
and Lee [3], which we refer to as Algorithm AS. In order to obtain as fair a
comparison as possible, we obtained their code, which was written in Matlab, and

8 Burer and Lee

constructed our own Matlab code for Algorithm 1. All tests for both algorithms
were initialized with the same starting point as described in [3] (i.e., a positive
definite perturbation of a fixed mask). In particular, since Algorithm AS is an
interior-point method, we took k = n for Algorithm 1 in all comparisons between
the two methods.

Our comparisons are based on the following three criteria, each of which has
two possible realizations (for an overall total of eight comparisons):

(a) initial V — a full-rank perturbation of either the eigenvalue or one-big mask;
(b) tmax — either 5 or 100;
(c) problem type — either original or complementary problem.

In each of the eight comparisons, we ran the algorithms for all s between 3 and
60, inclusive.

The purpose of comparing on the basis of tmax is to observe performance early
and late in the algorithm. Early performance (e.g., tmax = 5) gives an indication
of how the algorithms would perform in a Branch-&-Bound algorithm, where we
can only afford to do a few steps to obtain a bound at each node in the tree. On
the other hand, late performance (e.g., tmax = 100) gives an indication of the
overall performance and robustness of the algorithms.

Over all eight comparisons, we found similar behavior, namely that Algorithm
1 did at least as well as — and often significantly better than — Algorithm AS.
Accordingly, in the interest of space, we provide two representative comparisons
of the eight total in Figures 4 and 5.

One difference between Algorithm 1 and Algorithm AS, which we observed
but is not immediately evident from Firgure 5, is the ability of Algorithm 1
to achieve lower gaps than Algorithm AS — even when Algorithm AS is al-
lowed to run for a large number of iterations (for example, 1000 iterations). Said
differently, Algorithm AS seems to stall at higher gaps than Algorithm 1.

Another important criterion for comparison is running time. For both Algo-
rithm AS and Algorithm 1, the work per iteration is dominated by the eigen-
value and eigenvector calculations associated with the function ξ. Recall also
that both algorithms use the same line search back-tracking technique. As such,
the running times for the two methods (for a fixed number of iterations) are
quite comparable and so are not a source of differentiation. (For example, each
individual run represented in Figure 5 took less than 5 seconds.)

Overall, our experiments lead us to favor Algorithm 1 over Algorithm AS. In
particular, we will use Algorithm 1 exclusively for our Branch-&-Bound experi-
ments in §4.

3.3. Choosing the rank

An important parametrization issue concerns how the rank k affects the masked
spectral bound. In particular, if we can achieve nearly the same bound by running
Algorithm 1 with a smaller k, we could hope that this would lead to decreased
computational requirements. Of course, practically speaking, we need to know

Factored Masks 9

Fig. 4. Comparison of the gaps produced by Algorithm 1 and Algorithm AS after 5 steps
when initialized near the eigenvalue mask on the complementary problem, for s = 3, . . . , 60.
The gap given by the eigenvalue mask is also shown for reference.

0

1

2

3

4

5

6

7

8

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

s

G
ap

 (
en

tr
o

p
y)

Eig
Algorithm AS
Algorithm 1

precisely which rank to choose and how much computational savings can be
expected.

Unfortunately, we have found it difficult to provide any guidelines on which
rank to choose. Moreover, the computational savings that we have been able
to achieve from reducing the rank are insignificant due to the fact that the
eigensystems calculations associated with the function ξ dominate the running
of Algorithm 1. (The eigensystems were calculated using Matlab’s eig command,
which in turn calls standard LAPACK subroutines.) We illustrate these points
by means of some example runs.

For each k between 2 and 63, we ran Algorithm 1 twice with s = 31, once on
the original problem and once on the complementary problem. For both runs,
we initialized V randomly (entries uniformly in [−1, 1]) and took tmax = 1000,
that is, we did 1000 iterations. The purpose of so many iterations was to give
Algorithm 1 sufficient opportunity to reduce the bound as far as possible. As
before, our basis of comparison was the entropy gap. Figure 6 depicts the results.

From Figure 6, it appears that the optimal rank (that is, the smallest rank
that yields the best possible bound) for the original problem is approximately
k = 30. On the other hand, for the complementary problem, the optimal rank
appears to be around k = 5. This example illustrates the difficulty in choosing
the optimal rank a priori .

For the original problem, the average running time over all k = 2, . . . , 63 was
10.8 seconds with a standard deviation of 0.3 seconds; for the complementary

10 Burer and Lee

Fig. 5. Comparison of the gaps produced by Algorithm 1 and Algorithm AS after 100 steps
when initialized near the one-big mask on the original problem, for s = 3, . . . , 60. The gap
given by the spectral partition mask is also shown for reference.

0

1

2

3

4

5

6

7

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

s

G
ap

 (
en

tr
o

p
y)

One-Big
Algorithm AS
Algorithm 1

problem, the numbers were 24.7 and 1.4, respectively. So, the timings showed
little variability with respect to the rank k. As mentioned above, this is due to
the dominance of the eigensystem calculations.

Overall, a conclusion of our experiments is that, when running Algorithm 1,
it is reasonable to take k = n since the resulting running time will not be signif-
icantly more than with smaller k. (In particular, we did not search further for
different strategies of choosing k.) On the other hand, our experiments support
the choice of lower k to get comparable bounds — if a way can be found to
exploit the lower rank for better convergence and/or running times.

3.3.1. Another comparison of Algorithms 1 and 2 The above experiments give
us an additional opportunity to compare Algorithm 1 with Algorithm 2. In Fig-
ure 7, we replicate the experiments of Figure 6 except this time with Algorithm
2. Notice that, overall, Algorithm 2 converges more reliably than Algorithm 1 for
varying ranks. It is also clear that Algorithm 2 achieves slightly better gaps. This
evidence provides additional support for the earlier conclusion that Algorithm 2
is more robust than Algorithm 1.

4. Incorporating in Branch-&-Bound

The Branch-&-Bound approach to maximum-entropy sampling was first de-
scribed in [12]. Branching is done on single elements of N — either forcing

Factored Masks 11

Fig. 6. Gaps produced by Algorithm 1 after 1000 steps when initialized randomly on the
original and complementary problems, for ranks k = 2, . . . , 63.

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Rank

G
ap

 (
en

tr
o

p
y)

Orig
Comp

a single element into the set S or barring a single element from S. Thus, at any
node in the Branch-&-Bound tree, the corresponding subproblem is determined
by forcing a particular set F of f elements into S and barring a particular set
U of u elements from S. It remains then to optimize

max {ln det C[S, S] : S ⊂ N \ U, F ⊂ S, |S| = s} .

By the Schur complement theorem, this problem is in turn equivalent to choosing
a set T of s−f elements from the set N\(U∪F), so as to maximize the conditional
entropy ln detCF,U [T, T] (plus the constant ln detC[F, F]), where

CF,U := C[N\(F∪U), N\(F∪U)]−C[N\(F∪U), F](C[F, F])−1C[F,N\(F∪U)].

In other words, the task at each node is to determine z(CF,U , s−f)+ln detC[F, F],
which is itself an instance of the maximum-entropy sampling problem. Hence,
any bound developed for the maximum-entropy sampling problem may be used
throughout the Branch-&-Bound tree.

We adapted the Branch-&-Bound implementation of [1,2], which was written
in the C programming language and uses LAPACK eigensystem calculations. We
kept all default options, including the decision rules for selecting the next node in
the tree for branching (the node with the largest upper bound) and for selecting
the specific index to branch on (the largest index not already in F or U). One
enhancement that we did make, however, was the calculation of an initial global

12 Burer and Lee

Fig. 7. Gaps produced by Algorithm 2 after 1000 steps when initialized randomly on the
original and complementary problems, for ranks k = 2, . . . , 63.

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Rank

G
ap

 (
en

tr
o

p
y)

Orig
Comp

lower bound via a heuristic solution of the maximum-entropy sampling problem,
which has been discussed in §3.

Our goal was to determine whether optimizing the masked spectral bound
at each node of the tree is a useful bounding strategy. We compare with the fol-
lowing bounding strategy (for simplicity, orig and comp refer to bounds coming
from the original and complementary problems, respectively):

Fixed bounding strategy. For a fixed type of masked spectral bound (i.e.,
eigenvalue, diagonal, or one-big), compute orig and/or comp according
to the following steps:
1. If orig < comp for the parent, then calculate orig ; otherwise, comp.
2. If the calculated bound does not fathom, then also calculate the re-

maining bound.

Note that, for the eigenvalue bound, orig = comp, so the above steps simplify.
One consequence of the default bounding strategy is that, high in the tree

where fathoming is less likely to occur, it is likely that both orig and comp
will be unnecessarily calculated at each node. We found this drawback to be
outweighed by the benefit of incorporating both orig and comp. In particular,
the single-minded strategies of just computing either orig or comp throughout
the tree did not work as well.

In developing our strategy for optimizing the masked spectral bound, we felt
that calculating bounds for both the original and complementary problems at
each node would be too expensive. On the other hand, we knew it would be

Factored Masks 13

highly beneficial to compute the better of the two. After some experimentation,
we arrived at a compromise that was based on the following: we often noticed
that different subproblems with the same number of elements fixed in and out
of S (i.e., the same f and u) behaved similarly in terms of which bound, orig
or comp, was stronger. (Though we are unable to provide a full explanation for
this behavior, we believe it is not surprising that certain bounds behave similarly
when, say, a few elements of N are fixed or when many elements are fixed.) So
throughout the Branch-&-Bound calculations, we kept track of all pairs (f, u).
The first time that a subproblem with a particular (f, u) was encountered, we
calculated both orig and comp and took note of which was stronger. Afterwards,
every time the same (f, u) was observed, we would calculate orig or comp ac-
cording to our first experience.

Our overall strategy for optimizing the masked spectral bound at each node
is as follows:

Optimization bounding strategy. Determine whether to compute orig and/
or comp (as described above). Then, for each bound to be calculated, do
the following:
1. Run Algorithm 1 with tmax = 2, terminating immediately if fathoming

occurs.
2. Using the points generated by Algorithm 1 so far (three points, includ-

ing the starting point), use quadratic interpolation to judge whether
fathoming will occur in the next three iterations.

3. If so, then set tmax = 5 and continue Algorithm 1, terminating imme-
diately if fathoming occurs; otherwise, stop.

We note that the use of quadratic interpolation is a simple, reasonably effective
way to judge how quickly the objective function is descending.

A couple of other details concerning the optimization bounding strategy are
worth mentioning. First, in accordance with our discussion in §3, we take full
rank, i.e., k = s− f , in Algorithm 1 at each node of the tree. Second, instead of
initializing V at each node randomly, we attempted to simulate the warm starting
of a child node by its parent. We did this by keeping a single, shared-memory
copy of V , which was initialized randomly and made available to all nodes in
the tree. A subproblem of size s − f corresponding to the matrix CF,U (defined
above) was then initialized from the submatrix V [N \ (U ∪F), N \ (U ∪F)], and
its final iterate was stored back into the same entries of V . Although heuristic,
we found this warm-start approach to be much better than our original strategy
of initializing each node randomly. (The root node was initialized with V having
entries uniform in [−1, 1].)

Even though the above strategy uses Algorithm 1, it could also be based on
Algorithm 2. In Branch-&-Bound, however, we advocate the use of Algorithm 1,
even though §3 suggests the superiority of Algorithm 2. Our decision is based on
experiments, which showed that the performance of Algorithm 2 in Branch-&-
Bound was worse in almost all cases. (One exception having (n, s) = (63, 31) is
given in the next paragraph.) Although the underlying reasons for this behavior
are not entirely clear to us, we did notice certain characteristics of the Branch-&-

14 Burer and Lee

Bound runs, which indicated that Algorithm 2 was doing more work on average
than Algorithm 1 (apparently without significant improvement in bounds). For
example, Algorithm 2 required about 2.5 trial stepsizes per linesearch on average,
while Algorithm 1 required about 1.05.

During early experiments with Branch-&-Bound, it became clear to us that
none of the bounding strategies that we have proposed would be able to solve the
hardest instances (e.g., s = 31 for the data with n = 63) in a reasonably short
period of time (say, a few hours). In this sense, we cannot claim that optimizing
the masked spectral bound is the “silver bullet” for solving extremely large and
difficult instances. (It is worth mentioning that we were able to find and prove
optimality for the (n, s) = (63, 31) problem in 84 hours using Algorithm 1—
and 65 hours using Algorithm 2—on a Pentium 4 2.4 GHz running Linux. This
problem is out of reach using a fixed mask, and in fact, this is the first time that
this instance has been solved using a strategy based completely on eigenvalue-
based bounds.)

Nevertheless, it was also clear that the various bounding strategies behaved
very differently. In order to highlight these differences while maintaining a rea-
sonable testing environment, we settled upon the following testing scheme. For
a particular instance of the maximum-entropy sampling problem, we ran each
of the four bounding strategies — the three fixed bounding strategies and the
optimized bounding strategy — for at most 3600 seconds. We then calculate the
gap between the global upper bound (i.e., the largest upper bound of all nodes
remaining in the tree) and the global lower bound (i.e., the entropy of the best
feasible solution found so far).

Since we limit the Branch-&-Bound calculations to 3600 seconds, we stress
that the computational results shown in Figures 8 and 9 below should be inter-
preted simply as an indication that our approach is more effective in reducing
the gaps when compared with other bounding strategies based on masks. This is
not to say that it is the most effective among all bounding strategies or that all
problems considered here will be solved to optimality with modest increases in
time. For example, a completely different class of bounds based on nonlinear pro-
gramming techniques have been shown in [2] to be quite effective on the n = 63
instances, for example solving the s = 31 instance in 3300 seconds (when the
computer clock speed of 125 MHz in [2] is normalized to our clock speed of 2.4
GHz). For the n = 124 instances shown in Figure 9, it should also be mentioned
that no known bounding technique has been able to solve the hardest of these
instances.

Figure 8 gives Branch-&-Bound results for the data with n = 63 introduced
in §3. The results for each of the four bounding strategies are graphed for s =
10, . . . , 50. From this figure, we can see that the optimization bound strategy did
uniformly better than the fixed bound strategies based on the eigenvalue and
diagonal masks. Furthermore, compared to the one-big spectral partition bound,
our method performed better in the ranges s = 14, . . . , 19 and s = 30, . . . , 44.

In Figure 9, we give similar results for a data set with n = 124, which was
first used in [16]. Again, we see that optimizing the masked spectral bound is
quite competitive with the other bounding strategies.

Factored Masks 15

Fig. 8. Branch-&-Bound results with n =63 after 3600 seconds for the four bounding strate-
gies. Gap refers to the difference between global upper and lower bounds at termination.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 15 20 25 30 35 40 45 50

s

G
ap

 (
en

tr
o

p
y)

Eigenvalue
Diagonal
One-Big
Algorithm 1

5. Exploiting second-order information

As mentioned at the beginning of §2, one of our initial motivations for con-
sidering rank-restricted masks was the opportunity for reducing the dimension
of the problem so that second-derivative knowledge of ξ could be incorporated
efficiently.

In particular, we were interested in developing a variant of Algorithm 1 with
search directions produced by a modified Newton’s method with exact Hessians.
We did successfully implement just such a method and tested it with small rank,
e.g., k ≈ 5, but unfortunately, it did not outperform the steepest-descent version
of Algorithm 1. Downsides to the method included the time required to form the
Hessian and to factor the modified Hessian as well as the reduced bound quality
caused by taking k small. In addition, the strong nonconvexity displayed by ξ
resulted in search directions that were not much better than steepest descent.

We also tried other approaches for incorporating second-order information,
including BFGS and limited-memory BFGS search directions. Here again, how-
ever, our attempts at improving steepest descent were unsuccessful. An added
complication was a more stringent strong-Wolfe linesearch (see [9], for exam-
ple) required by BFGS-type directions. (Since the first version of this paper
appeared, recent results obtained by Overton (private communication) suggest
that the strong-Wolfe linesearch should not be used when applied within BFGS
for the optimization of nondifferentiable functions.)

16 Burer and Lee

Fig. 9. Branch-&-Bound results with n =124 after 3600 seconds for the four bounding strate-
gies. Gap refers to the difference between global upper and lower bounds at termination.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

30 50 70 90 110

s

G
ap

 (
en

tr
o

p
y)

Eigenvalue
Diagonal
One-Big
Algorithm 1

We include our experiences here in order to provide a complete picture of our
efforts and a starting point for additional research. We also include below the
exact Hessian formulae for ξ since these have not appeared before in the literature
and since we are hopeful that they will be of use to others. The formulae were
developed from [20].

In the results below, all eigenvectors are taken to have unit length. Note that,
as in the development of the gradient of f(V), we must define ul properly when
λl = λl+1.

We first examine the Hessian of ξC,s(X). For simplicity, and with an eye
toward implementation, we consider the symmetric variable X to be encoded
as a column vector of dimension n(n + 1)/2, where the lower-triangular part of
X is stored in column-major format. In the theorem below, the vectors σkl are
indexed by the entries of X in the same fashion.

Proposition 1. Suppose X � 0, and let {(λk, uk)}n
k=1 be the eigenvalues and

eigenvectors of C ◦ X. Suppose also that λs(C ◦ X) > λs+1(C ◦ X). Then ξ is
analytic at X with Hessian

∇2ξC,s(X) =

s
∑

k=1

s
∑

l=1

(

−
1

λkλl

)

σklσ
′

kl + 2

s
∑

k=1

n
∑

l=s+1

(

1

λk

1

λk − λl

)

σklσ
′

kl,

Factored Masks 17

where, for each (k, l),

[σkl]ij =

{

[C ◦ ulu
′

k]ij + [C ◦ ulu
′

k]ji if i > j

[C ◦ ulu
′

k]ij if i = j.

We next examine the Hessian of f(V). It is helpful here as well to consider
V to be encoded as a column vector in column-major format.

Proposition 2. Suppose each row of V is nonzero, and define

d := [diag(V V ′)]
−1/2

,

V̄ := h(V),

X := V̄ V̄ ′.

Let {(λk, uk)}n
k=1 be the eigenvalues and eigenvectors of C ◦ X, and define

H :=
s

∑

k=1

λ−1
k uku′

k.

Suppose also that λs(C◦X) > λs+1(C◦X). Then f is analytic at V with Hessian

∇2f(V) =
s

∑

k=1

s
∑

l=1

(

−
1

λkλl

)

σklσ
′

kl+2
s

∑

k=1

n
∑

l=s+1

(

1

λk

1

λk − λl

)

σklσ
′

kl+M+N+P,

where, for all (k, l) [and defining J := C ◦ (ulu
′

k + uku′

l) and x̄ := V̄·p locally],

[σkl]ip = [d ◦ (Jx̄ − x̄ ◦ (J ◦ X) e)]i

and where, for all (ip, jq) [and defining x̄ := V̄·p and ȳ := V̄·q locally],

M(ip)(jq) = 2
[

dd′ ◦
(

(e′peq)ee
′ − (x̄ ◦ ȳ) e′ − e (x̄ ◦ ȳ)

′

+ x̄ȳ′ ◦ X
)

◦ H
]

ij
,

N(ip)(jq) =

{

2
[

d2 ◦ (3 x̄ ◦ ȳ ◦ (X ◦ H)e − x̄ ◦ Hȳ − ȳ ◦ Hx̄)
]

i
if i = j

0 otherwise,

and

P(ip)(jq) =

{

−2
[

d2 ◦ (X ◦ H)e
]

i
if (i, j) = (p, q)

0 otherwise.

18 Burer and Lee

6. Further directions

One possible extension would be to combine our low-rank approach with gradient-
sampling ideas (see [7]) when nondifferentiability becomes an issue at a mask
that nearly fathoms, though it may well be that the time would be just as well
spent on further children.

We feel that exploiting second-order information, particularly when working
with low-rank masks, is still an interesting avenue of research. On some smaller
instances (e.g., n ≈ 50) of Branch-&-Bound with Algorithm 1, we noticed that
taking low rank produced overall faster running times than taking full rank.
At this time, we are unable to reconcile this behavior with our observations
concerning rank in §3, but it would be interesting if one could determine effective
strategies for using small rank — and then effectively incorporate second-order
information as well.

Acknowledgements. The authors are grateful to Kurt Anstreicher for introducing them to one
another and for providing many insightful comments on the paper. Michael Overton provided
invaluable input as well.

References

1. Kurt M. Anstreicher, Marcia Fampa, Jon Lee, and Joy Williams, Continuous relaxations
for constrained maximum-entropy sampling, Integer programming and combinatorial opti-
mization (Vancouver, BC, 1996), Lecture Notes in Computer Science, vol. 1084, Springer,
Berlin, 1996, pp. 234–248.

2. , Using continuous nonlinear relaxations to solve constrained maximum-entropy
sampling problems, Mathematical Programming, Series A 85 (1999), no. 2, 221–240.

3. Kurt M. Anstreicher and Jon Lee, A masked spectral bound for maximum-entropy sam-
pling, mODa 7—Advances in Model-Oriented Design and Analysis, Contributions to Sta-
tistics, Physica-Verlag, Heidelberg, 2004, pp. 1–10.

4. Samuel Burer and Renato D. C. Monteiro, A projected gradient algorithm for solving the
Maxcut SDP relaxation, Optimization Methods and Software 15 (2001), 175–200.

5. , A nonlinear programming algorithm for solving semidefinite programs via low-
rank factorization, Mathematical Programming, Series B 95 (2003), no. 2, 329–357.

6. Samuel Burer, Renato D. C. Monteiro, and Yin Zhang, Rank-two relaxation heuristics for
max-cut and other binary quadratic programs, SIAM Journal on Optimization 12 (2001),
no. 2, 503–521.

7. James V. Burke, Adrian S. Lewis, and Michael L. Overton, A robust gradient sampling
algorithm for nonsmooth, nonconvex optimization, SIAM Journal on Optimization (to
appear) (2003).

8. William F. Caselton and James V. Zidek, Optimal monitoring networks, Statistics and
Probability Letters 2 (1984), 129–178.

9. R. Fletcher, Practical methods of optimization, second ed., John Wiley & Sons, New York,
1987.

10. Peter Guttorp, Nhu D. Le, Paul D. Sampson, and James V. Zidek, Using entropy in
the redesign of an environmental monitoring network, Tech. Report 116, Department of
Statistics, University of British Columbia, 1992.

11. Alan Hoffman, Jon Lee, and Joy Williams, New upper bounds for maximum-entropy sam-
pling, MODA 6 — Advances in model-oriented design and analysis (Anthony C. Atkinson,
Peter Hackl, and Werner G. Müller, eds.), Springer, 2001, pp. 143–153.

12. Chun-Wa Ko, Jon Lee, and Maurice Queyranne, An exact algorithm for maximum entropy
sampling, Operations Research 43 (1995), no. 4, 684–691.

13. Jon Lee, Constrained maximum-entropy sampling, Operations Research 46 (1998), no. 5,
655–664.

Factored Masks 19

14. , Semidefinite programming in experimental design, Handbook of Semidefinite Pro-
gramming (Romesh Saigal Henry Wolkowicz and Lieven Vandenberghe, eds.), Interna-
tional Series in Operations Research and Managemant Science, vol. 27, Kluwer, Boston,
2000, pp. 528–532.

15. , Maximum-entropy sampling, Encyclopedia of Environmetrics (Abdel H. El-
Shaarawi and Walter W. Piegorsch, eds.), vol. 3, Wiley, 2001, pp. 1229–1234.

16. Jon Lee and Joy Williams, A linear integer programming bound for maximum-entropy
sampling, Mathematical Programming, Series B 94 (2003), no. 2-3, 247–256.

17. Werner G. Müller, Collecting spatial data, revised ed., Contributions to Statistics, Physica-
Verlag, Heidelberg, 2001, Optimum design of experiments for random fields.

18. Paola Sebastiani and Henry P. Wynn, Maximum entropy sampling and optimal Bayesian
experimental design, Journal of the Royal Statistical Society, Series B (Statistical Method-
ology) 62 (2000), no. 1, 145–157.

19. Michael C. Shewry and Henry P. Wynn, Maximum entropy sampling, Journal of Applied
Statistics 46 (1987), 165–170.

20. Nam-Kiu Tsing, Michael K. H. Fan, and Erik I. Verriest, On analyticity of functions
involving eigenvalues, Linear Algebra and its Application 207 (1994), 159–180.

21. Shiying Wu and James V. Zidek, An entropy based review of selected NADP/NTN network
sites for 1983-86, Atmospheric Environment 26A (1992), 2089–2103.

