
Mathematical Programming manuscript No.
(will be inserted by the editor)

Brian Borchers · Joseph Young

How Far Can We Go With Primal–Dual

Interior Point Methods for SDP?

Received: date / Accepted: date

Abstract Primal–dual interior point methods and the HKM method in particular

have been implemented in a number of software packages for semidefinite pro-

Brian Borchers

Department of Mathematics

New Mexico Tech

801 Leroy Place

Socorro, NM 87801

Tel.: 505-835-5813

Fax: 505-835-5366

E-mail: borchers@nmt.edu

Joseph Young

Department of Combinatorics & Optimization

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario, Canada

N2L 3G1



2 Brian Borchers, Joseph Young

gramming. These methods have performed well in practice on small to medium

sized SDP’s. However, primal–dual codes have had some trouble in solving larger

problems because of the method’s storage requirements. In this paper we analyze

the storage requirements of the HKM method and describe a 64-bit parallel im-

plementation of the method that has been used to solve some large scale problems

that have not previously been solved by primal–dual methods.

Keywords Semidefinite Programming· Interior Point Methods

1 Introduction

A variety of methods for solving semidefinite programming problems have been

implemented, including primal-dual interior point methods [5,16,15,17–19], dual

interior point methods [3], and augmented Lagrangian methods [7,8,13].

Of these widely used software packages, CSDP, SeDuMi, SDPA, and SDPT3

all implement primal–dual interior point methods. CSDP uses the HKM direction

with a predictor–corrector scheme in an infeasible interior point algorithm[5]. Se-

DuMi uses the NT search direction with a predictor–corrector scheme and uses

the self dual embedding technique[16]. Version 6.0 of SDPA uses the HKM di-

rection within an infeasible interior point algorithm. SDPT3 uses either the HKM

or NT direction with a predictor–corrector scheme in an infeasible interior point

algorithm[18].

The main differences between the codes are in the search directions used and

in whether an infeasible interior point method or the self dual embedding is used.

Although these choices can have a significant effect on the speed and accuracy

of the solutions obtained, they have little effect on the storage requirements of



How Far Can We Go With Primal–Dual Interior Point Methods for SDP? 3

the algorithms. Since storage limitations are often more important than CPU time

limitations in solving large SDP’s by primal–dual interior point methods, we will

focus primarily on storage issues. Although the discussion in this paper is based

on the implementation of the HKM method in CSDP, the results on the asymptotic

storage requirements are applicable to all of the codes listed above.

The algorithms used by all of the primal–dual codes require the creation and

Cholesky factorization of a large, dense, Schur complement matrix. This matrix is

of sizem by m wherem is the number of linear equality constraints. The primal–

dual codes have been developed and used mostly on desktop PC’s, which until

recently have been limited to 32 bit addressing. A computer with 32 bit addressing

can address only 4 gigabytes of RAM. Since a 22,000 by 22,000 matrix of double

precision floating point numbers requires 3.9 gigabytes of RAM, it has not been

possible to use these codes to solve larger problems.

There are two general approaches to overcoming this limitation. The first is

to use a computer with 64 bit addressing and more than 4 gigabytes of RAM. To

our knowledge, this paper is the first to present computational results for a 64 bit

implementation of a primal–dual method for SDP.

Another approach to dealing with the storage limitation is to distribute the

Schur complement matrix over several computers within a cluster. This approach

has been used in a parallel version of SDPA[20]. It has also been used in the dual

interior point code PDSDP[2]. One problem with this approach is that other data

structures used by the algorithm may also become too large to handle with 32

bit addressing. For example, neither SDPARA nor PDSDP can solve some of the



4 Brian Borchers, Joseph Young

larger problems that have been solved by the version of CSDP described in this

paper.

2 Analysis

In this paper we consider semidefinite programming problems of the form

max tr(CX)

A(X) = a

X � 0

(1)

where

A(X) =



tr (A1X)

tr (A2X)

. . .

tr (AmX)


. (2)

HereX � 0 means thatX is positive semidefinite. All of the matricesAi , X, andC

are assumed to be of sizen by n and symmetric. In practice, theX andZ matrices

often have block diagonal structure with diagonal blocks of sizen1, n2, . . ., nk.

The dual of this SDP is

min aTy

AT(y)−C = Z

Z � 0

(3)

where

AT(y) =
m

∑
i=1

yiAi . (4)

The available software packages for semidefinite programming all solve slight

variations of this primal–dual pair. For example, the primal–dual pair used in

SDPA interchanges the primal and dual problems[19].



How Far Can We Go With Primal–Dual Interior Point Methods for SDP? 5

In analyzing the computational complexity of primal–dual methods, we will

focus on the time per iteration of the algorithms. In practice, the number of iter-

ations required grows very slowly with the size of the problem, and variations in

problem structure seem to be more significant than problem size in determining

the number of iterations required.

The algorithms used by the various primal–dual codes all involve the con-

struction and Cholesky factorization of a symmetric and positive definite Schur

complement matrix of sizem by m in each iteration of the algorithm.

For the HKM method, the Schur complement matrix,O, is given by

O =
[
A(Z−1A1X),A(Z−1A2X, . . . ,A(Z−1AmX)

]
. (5)

For denseX, Z, andA j , themproductsZ−1A jX can be computed inO(mn3) time.

GivenZ−1A jX, computingA(Z−1A jX) requiresO(mn2) time. Thus in the worst

case, for fully dense constraint matrices, the construction of the Schur complement

matrix takesO(mn3 +m2n2) time.

In practice the constraint matrices are often extremely sparse. This sparsity can

be exploited in the construction of the Schur complement matrix [11]. For sparse

constraint matrices withO(1) entries,Z−1A jX can be computed inO(n2) time.

Computing allm productsZ−1A jX takesO(mn2) time. Once the products have

been computed, theA() operations can be computed inO(m2) additional time.

The resulting Schur complement matrix is typically fully dense. Computing

the Cholesky factorization of the dense Schur complement matrix takesO(m3)

time.

In addition to the construction and factorization of the Schur complement ma-

trix, the algorithms also require a number of operations on theX andZ matri-



6 Brian Borchers, Joseph Young

ces, such as matrix multiplications, Cholesky factorization, and computation of

eigenvalues. These operations requireO(n3) time. When the matrices have block

diagonal structure, this becomesO(n3
1 + . . .+n3

k).

The overall computational complexity of iterations of the primal-dual algo-

rithm is dominated by different operations depending on the particular structure

of the problem. For many problems,m>> n, and constraint matrices are sparse. In

this case, theO(m3) operation of factoring the Schur complement matrix becomes

dominant. On the other hand, whenn is large compared tom, and the problem does

not have many small blocks, theO(n3) time for operations on theX andZ matrix

can be dominant. In other cases, whenm andn are similar in size, and particu-

larly when there are dense constraints, the construction of the Schur complement

matrix can become the bottleneck.

Storage requirements are at least as important as the computational complex-

ity. In practice, the size of the largest problems that can be solved often depends

more on available storage than on available CPU time. In the worst case, storage

for problem data includingC, a, and the constraint matrices can requireO(mn2)

storage. However, in practice most constraints are sparse, withO(1) entries per

constraint, so that the constraint matrices takeO(m) storage. TheC matrix, which

often is dense, requiresO(n2) storage in the worst case.

The Schur complement matrix is typically fully dense for SDP problems and

requiresO(m2) storage. This is in contrast to primal–dual methods for linear pro-

gramming, where the Schur complement matrix is typically quite sparse. TheX

matrix is typically fully dense and requiresO(n2
1 + . . . + n2

k) storage. The dual

matrix Z may be either sparse or dense, and requiresO(n2
1 + . . .n2

k) storage in



How Far Can We Go With Primal–Dual Interior Point Methods for SDP? 7

the worst case. There are typically several block diagonal work matrices used by

the algorithm. For example, the storage requirements for CSDP include a total

11 matrices of size and block diagonal structure ofX. The approximate storage

requirements, ignoring lower order terms, for CSDP are

Storage (Bytes)= 8(m2 +11(n2
1 + . . .+n2

k)). (6)

The results on computational complexity and storage requirements summa-

rized in this section shed useful light on the question of how far we can go with

primal–dual interior point methods for SDP. In the typical case of sparse constraint

matrices, withm>> n, running time will grow asO(m3), and storage required will

grow asO(m2). This growth is relatively tame, so that as computers become more

powerful, we should be able to make progress in solving larger problems.

3 A Parallel Version of CSDP

In this section, we describe a 64-bit parallel version of CSDP that has been devel-

oped to solve large SDP instances. This code is based on CSDP 4.9, with minor

modifications. The code is written in ANSI C with additional OpenMP directives

for parallel processing [9]. We also assume that parallelized implementations of

BLAS and LAPACK are available [4,1]. The code is available under both the GNU

Public License (GPL) and the Common Public License (CPL). Hans Mittelmann

at Arizona State University has also made the code available through NEOS [10].

CSDP makes extensive use of routines from the BLAS and LAPACK libraries

to implement matrix multiplication, Cholesky factorization, and other linear al-

gebra operations. Since most vendors already provide highly optimized parallel



8 Brian Borchers, Joseph Young

implementations of these libraries, there was no need for us to reimplement the

linear algebra libraries.

Outside of the BLAS and LAPACK routines, the major computationally inten-

sive part of the code involves the creation of the Schur complement matrix. The

serial routine for the creation of the Schur complement matrix from CSDP 4.9 was

rewritten in parallel form using OpenMP directives.

The software was developed and tested on both a four processor Sunfire V480

server at Arizona State University and on an IBM p690 system with 1.3 GHz

processors at the National Center for Supercomputer Applications (NCSA). The

results reported here are based on computations performed at NCSA.

Since for most problems the “hot spot” in which the code spends most of its

time is the Cholesky factorization of the Schur complement matrix, we began by

performing tests on the parallel efficiency of the LAPACK routine DPOTRF which

computes the Cholesky factorization of a matrix. Table 1 shows the wall clock

times and parallel efficiencies for matrices of sizen = 5,000 up ton = 15,000

and from one to sixteen processors. The parallel efficiencies are quite high for

four processors, but drop off rapidly for eight or sixteen processors, especially on

the smaller problems.

A collection of test problems was selected from the DIMACS library of mixed

semidefinite-quadratic-linear programs, the SDPLIB collection of semidefinite pro-

gramming problems, and from problems that have been solved in other papers [2,

6,12,14,20].

Table 2 shows wall clock times and parallel efficiencies for the solution of

some of the test problems using one to sixteen processors. In this table, m is the



How Far Can We Go With Primal–Dual Interior Point Methods for SDP? 9

1 2 4 8 16

5000 15.6 7.7 4.2 3.4 1.7

10000 118.6 65.5 30.8 22.8 10.7

15000 427.3 210.6 106.2 64.8 31.9

1 2 4 8 16

5000 100% 101% 93% 57% 57%

10000 100% 91% 96% 65% 69%

15000 100% 101% 101% 82% 84%

Table 1 Wall clock times (in seconds) and parallel efficiencies for DPOTRF on matrices of size

n = 5,000 up ton = 15,000, with one to sixteen processors.

number of constraints, and nmax is the size of the largest block in theX matrix.

Because of round–off errors, there are sometimes differences in the number of

iterations required by the algorithm. For example, on problem CH4, most runs

required 34 iterations, but with four processors, only 32 iterations were required.

This results in an anomalous parallel efficiency of over 100%. Results for the

smallest problem, maxG60, are also somewhat anomalous in that the parallel ef-

ficiencies are much lower than for the other problems. Because this problem was

relatively small, and because this problem hasm= n, some of the operations in

the code that had not been parallelized became bottlenecks. Overall, the parallel

efficiencies are quite good up to four processors but drop off somewhat for eight

and sixteen processors.

Table 3 shows the results obtained using four processors on a somewhat larger

collection of test problems. Here the number of constraints,m, varies from 7000

up to 56321, while the size of the largest block inX varies from 174 up to 8113.

The wall clock time is reported in minutes and seconds. For each solution, the



10 Brian Borchers, Joseph Young

Problem m nmax 1 2 4 8 16

CH4 24503 324 1609:36 787:29 434:40 185:24 122:38

fap09 15225 174 836:46 445:37 224:40 126:20 83:12

hamming8 3 4 16129 256 148:21 82:45 52:26 24:33 16:14

hamming10 2 23041 1024 671:02 318:30 201:47 93:41 63:21

maxG60 7000 7000 529:58 339:26 233:13 167:18 124:47

theta82 23872 400 640:24 282:33 174:46 94:42 57:40

Problem m nmax 1 2 4 8 16

CH4 24503 324 100% 98% 108% 92% 82%

fap09 15225 174 100% 94% 93% 83% 63%

hamming8 3 4 16129 256 100% 90% 71% 76% 57%

hamming10 2 23041 1024 100% 105% 83% 90% 66%

maxG60 7000 7000 100% 78% 57% 40% 27%

theta82 23872 400 100% 113% 92% 85% 69%

Table 2 Wall clock times (in minutes and seconds) and parallel efficiencies for the solution of

selected SDP problems.

largest of the six DIMACS errors is reported[14]. Finally the storage required, in

gigabytes, as reported by the operating system, is given for each solution.

For the fap and hamming families,m is significantly larger thann, and the

constraint matrices are sparse, so that we would expect the running time to grow

asO(m3). This relationship is roughly correct for the fap09 and fap12 problems.

However, between hamming8 3 4 and the other hamming problems, the running

time grows somewhat slower thanm3. This is perhaps due to greater parallel effi-

ciencies for the larger problems.

The DIMACS error measures show that all of these problems were solved to

high accuracy.



How Far Can We Go With Primal–Dual Interior Point Methods for SDP? 11

Problem m nmax Time Error Storage

CH4.1A1.STO6G.noncore.pqg 24503 324 434:40 2.3e-09 4.5G

fap09 15225 174 224:40 5.8e-09 1.8G

fap12 26462 369 944:25 1.2e-08 5.3G

hamming8 3 4 16129 256 52:26 7.2e-08 2.0G

hamming9 5 6 53761 512 1385:51 3.1e-07 21.7G

hamming10 2 23041 1024 806:20 9.8e-08 4.1G

hamming11 2 56321 2048 2083:46 7.1e-09 24.2G

ice 2.0 8113 8113 624:43 9.8e-09 7.9G

LiF.1Sigma.STO6G.pqg 15313 256 92:19 1.1e-09 1.8G

maxG60 7000 7000 233:13 1.2e-09 5.9G

p auss2 9115 9115 1933:06 8.0e-08 9.9G

theta62 13390 300 34:57 1.6e-09 1.4G

theta82 23872 400 660:32 1.6e-09 4.3G

Table 3 Results with four processors.

4 Conclusions

Analysis of the complexity of the primal–dual interior point methods for SDP

show that the storage required should grow quadratically inm andn, while for

problems with sparse constraints, the growth in running time should be cubic inm

andn.

We have described a 64 bit code running in parallel on shared memory sys-

tem that has been used to solve semidefinite programming problems with over

50,000 constraints. This code obtained parallel efficiencies of 57% to 100% with

four processors and 27% to 82% with 16 processors. As 64 bit processing, paral-



12 Brian Borchers, Joseph Young

lel processors, and systems with large memory become common, the solution of

SDP’s of this size by primal–dual codes will become easier.

However, for the foreseeable future, primal–dual codes, even running on su-

percomputers, will not be able to solve much larger SDP’s with many hundreds of

thousands of constraints. Thus there is a continued need for research into methods

for SDP that do not require theO(m2) storage used by the primal–dual methods.

Acknowledgements This work was partially supported by the National Computational Science

Alliance under grant DMS040023 and utilized the IBM p690 system at NCSA. Hans Mittelmann

at Arizona State University was also very helpful in allowing us to use the Sunfire server.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Croz, J.D.,

Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ guide

(third ed.). Society for Industrial and Applied Mathematics, Philadelphia (1999)

2. Benson, S.J.: Parallel computing on semidefinite programs. Tech. Rep. ANL/MCS–P939–

0302, Argonne National Laboratory (2003)

3. Benson, S.J., Ye, Y.: DSDP3: Dual–scaling algorithm for semidefinite programming. Tech.

Rep. ANL/MCS–P851-1000, Argonne National Laboratory (2001)

4. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heoux, M.,

Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An up-

dated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical

Software28(2), 135–151 (2002)

5. Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods &

Software11-2(1-4), 613 – 623 (1999)

6. Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optimiza-

tion Methods & Software11-2(1-4), 683 – 690 (1999)



How Far Can We Go With Primal–Dual Interior Point Methods for SDP? 13

7. Burer, S., Choi, C.: Computational enhancements in low–rank semidefinite programming

(2004). University of Iowa

8. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite

programs via low-rank factorization. Mathematical Programming95(2), 329 – 357 (2003)

9. Chandra, R., Dagum, L., Kohr, D., Maydan, D., andf R. Menon, J.M.: Parallel Programming

in OpenMP. Morgan Kaufmann, New York (2000)

10. Czyzyk, J., Mesnier, M.P., Mor, J.J.: The NEOS server. IEEE Comput. Sci. Eng.5(3), 68–75

(1998)

11. Fujisawa, K., Kojima, M., K.Nakata: Exploiting sparsity in primal–dual interior–point

methods for semidefinite programming. Mathematical Programming79, 235–253 (1997)

12. Keuchel, J., Schnorr, C., Schellewald, C., Cremers, D.: Binary partitioning, perceptual

grouping, and restoration with semidefinite programming. IEEE Transactions on Pattern

Analysis and Machine Intelligence25(11), 1364 – 1379 (2003)

13. Kocvara, M., Stingl, M.: Pennon: A code for convex nonlinear and semidefinite program-

ming. Optimization Methods & Software18(3), 317 – 333 (2003)

14. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Mathematical

Programming95(2), 407 – 430 (2003)

15. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.

Optimization Methods & Software11-2(1-4), 625 – 653 (1999)

16. Sturm, J.F.: Implementation of interior point methods for mixed semidefinite and second

order cone optimization problems. Optimization Methods & Software17(6), 1105 – 1154

(2002)

17. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3 - a MATLAB software package for semidef-

inite programming, version 1.3. Optimization Methods & Software11-2(1-4), 545 – 581

(1999)

18. Tutuncu, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using

SDPT3. Mathematical Programming95(2), 189 – 217 (2003)

19. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0

(semidefinite programming algorithm 6.0). Optimization Methods & Software18(4), 491

– 505 (2003)



14 Brian Borchers, Joseph Young

20. Yamashita, M., Fujisawa, K., Kojima, M.: SDPARA: Semidefinite programming algorithm

parallel version. Parallel Computing29, 1053–1067 (2003)


