Sensitivity Analysis

• Discuss mainly the standard inequality case:

$$\max \qquad z = \sum_{j=1}^{n} c_{j} x_{j} \qquad \max \qquad z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$s.t. \qquad \sum_{j=1}^{n} a_{i,j} x_{j} \le b_{i}, \quad i = 1, ..., m$$

$$x_{j} \ge 0, \quad j = 1, ..., n \qquad x_{j} \ge 0, \quad j = 1, ..., n + m$$

- Maximize Profit given limited resources
 - · each constraint associated to a resource
- Alternate interpretations of shadow price and reduced cost
- Sensitivity Analysis using GAMS output

Shadow Price

<u>Def</u>: **Shadow Price** of constraint (resource) *i*

The <u>shadow price</u> of resource <u>i</u> is the amount that the **optimal** objective value will change with an additional unit of that resource

Other interpretations:

- Opportunity cost of using one unit of that resource (e.g. adding new activity)
- Marginal worth of an additional unit of that resource
- Market price of that resource (Duality)

Also know as:

Dual Variable

Shadow Price

<u>Thm</u>: Suppose optimal solution of a Std Ineq or Eq LP is nondegenerate (i.e. all basic variable strictly positive)

If the RHS of the i^{th} constraint is changed from b_i to b_i + ϵ (ϵ sufficiently small), then the i^{th} dual variable, y_i , is the shadow price of that constraint/resource.

Shadow Price/Dual Variable & Reduced Cost

In CO350, the formula for reduced cost is:

$$\overline{c}_{j} = c_{j} - A_{j}^{T} \mathbf{y},$$

Can we find the shadow price from the final tableau?

- In <u>standard inequality form</u>:
 - If s_i is the slack variable of row i, then the shadow price for row i is negative of the reduced cost of s_i

New Activity

GTC is thinking about making hammers

- Each hammer requires 2lb of steel, 1 hour of molding and 0.4 hours of assembly
- Price of hammers are \$100 per thousand hammers

Without solving a new LP, can you tell if GTC should bother making hammers?

$$\begin{array}{lll} \max 130x_1 + 100x_2 \\ s.t. & 1.5x_1 + x_2 & \leq 27 \text{ (steel)} \\ & x_1 + x_2 & \leq 21 \text{ (molding)} \\ & 0.3x_1 + 0.5x_2 \leq 9 \text{ (assembly)} \\ & x_1, & x_2 & \geq 0 \end{array}$$

Final Tableau:

Basic variables	Current values	x_{I}	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
Z	2460	0	0	60	40	0
x_I	12	1	0	2	- 2	0
x_2	9	0	1	-2	3	0
S ₃	0.9	0	0	0.4	-0.9	1

Pricing Out an Activity

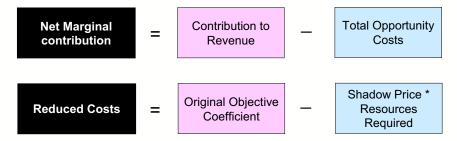
We need to find the reduced cost for hammers, given the current optimal solution:

- ⇒ i.e. find marginal contribution of hammers to objective value (revenue)
- Revenue: 1K unit of hammers gives us \$100 in revenue
- <u>Cost:</u> Opportunity cost of diverting resources away from current optimal "production mix" to make hammers
 - Think of shadow prices as opportunity cost of using that resources (i.e., effect on opt value when RHS increases by -1)

Find Total Opportunity Cost:

Resource	Required to make hammer	Opportunity Cost	Total
Steel			
Molding			
Assembly			

Pricing Out an Activity



Pricing Out an Activity

So producing 1K units of hammers will decreasing objective value by \$-60, so GTC does <u>not</u> want to make hammers

We didn't need to solve a new LP

How can we re-price hammers so that it would become attractive to produce hammers?

Shadow Prices (Opportunity Costs) can be used to determine prices of new products

Pricing Out an Activity

If the Price of hammers were \$200, what would we do next?

- Reduced Cost =
- Would it be attractive to produce hammers?

Changes in LP Data

Suppose the price of wrenches or pliers change, or the resource availability changes:

- Changes in Objective Coefficient for **nonbasic** and **basic** variables:
 - Current Solution always remain feasible when we change the objective coefficients – but it may no longer be optimal
- Changes in RHS vector for **non-binding** and **binding** constraints:
 - The optimality (reduced costs) of the Primal is not affected, but the current basis may no longer be feasible.

Changes in Objective Coefficients of Nonbasic Variable

Final Tableau:

Basic variables	Current values	x_I	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
z	2460	0	0	60	40	0
x_1	12	1	0	2	- 2	0
x_2	9	0	1	-2	3	0
x_5	0.9	0	0	0.4	-0.9	1

- What happens when we decrease c_3 ?
- What happens when we increase c_3 ?

Changes in Objective Coefficients of NBV

Let's link this to the Simplex Method:

$$z + 60x_3 + 40x_4$$

$$= \left[z - 130x_1 - 100x_2\right] - \sum_{i=1,2,3} y_i \left(\sum_{j=1,\dots,5} a_{i,j} x_j\right)$$

Changes in Objective Coefficients of Basic Variables

- What happens when we decrease c_1 ?
- What happens when we increase c_1 ?

Changes in Objective Coefficients of BV

Let's link this to the Simplex Method:

$$\begin{split} z + 60x_3 + 40x_4 \\ &= \left[z - 130x_1 - 100x_2\right] - \sum_{i=1,2,3} y_i \left(\sum_{j=1,\dots,5} a_{i,j} x_j\right) \\ &\left[z - (130 + \Delta c_1)x_1 - 100x_2\right] - \sum_{i=1,2,3} y_i \left(\sum_{j=1,\dots,5} a_{i,j} x_j\right) \end{split}$$

Changes in Objective Coefficients of BV

Basic variables	Current values	x_{I}	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅
z	2460	- Δc_I	0	60	40	0
x_I	12	1	0	2	- 2	0
x_2	9	0	1	-2	3	0
<i>x</i> ₅	0.9	0	0	0.4	-0.9	1

But since x_1

it's z-row coefficient must be 0

• Make its z-row coefficient 0 by adding Δc_1 times row 1 to z-row New z-row becomes:

Changes in Right-Hand-Side

- Changing the RHS will clearly change the values of the current optimal solution, so the current basis may become infeasible
- However, it does not affect the optimality condition
 - If the basis is the same, then the shadow price/dual variables and reduced costs are the same

Analyze effects of changes RHS for:

- Nonbinding constraints (LHS < RHS)
- Binding constraints (LHS = RHS)

Changes in RHS of Nonbinding Constraint

• What happens when we change the RHS of the assembly constraint:

$$0.3x_1 + 0.5x_2 \le 9 + \Delta b_3$$

- In the optimal solution, x_5 =0.9 so the constraint is nonbinding, thus its shadow price is 0 (why?)
- What happens if we increase b_3 ?
- What happens if we decrease b_3 ?

Changes in RHS of Binding Constraint

• What happens when we change the RHS of the steel constraint:

$$1.5x_1 + x_2 \le 27 + \Delta b_1$$

- In the optimal solution, $x_3 = 0$, so the constraint is binding.
- Changing the RHS by Δb_I is the same as decreasing slack variable x_5 (nonbasic so current =0) by Δb_I
- How does this effect the current basic feasible solution?

Changes in RHS of Binding Constraint

Final Tableau:

Basic variables	Current values	x_{I}	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
Z	2460	0	0	60	40	0
x_I	12	1	0	2	- 2	0
x_2	9	0	1	-2	3	0
x_5	0.9	0	0	0.4	-0.9	1

Dual Simplex Method

New Final Tableau:

	Basic variables	Current values	x_I	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
Ţ,	z	2460 + 60 Δb_I	0	0	60	40	0
	x_I	$12 + 2 \Delta b_I$	1	0	2	- 2	0
	x_2	$9 - 2\Delta b_I$	0	1	-2	3	0
	<i>x</i> ₆	$0.9 + 0.4 \Delta b_{I}$	0	0	0.4	-0.9	1

• What happens if we increase b_I by 5? (Δb_I = +5)