## Syllabus C&O 367/CM 442, Wl09 Nonlinear Optimization

 ${\bf Instructor:\ Henry\ Wolkowicz}$ 

January 4, 2009

## Contents

| 1        | Unconstrained Optimization via Calculus                        |                                                                         |   |
|----------|----------------------------------------------------------------|-------------------------------------------------------------------------|---|
|          | 1.1                                                            | First and Second Order, Necessary and Sufficient, Optimality Conditions | 4 |
|          | 1.2                                                            | Local and Global Minimizers                                             | 2 |
|          | 1.3                                                            | (Non)Attainment                                                         |   |
|          | 1.4                                                            | Role of positive (semi)definite matrices                                |   |
| <b>2</b> | Cor                                                            | nvex Sets and Functions                                                 | 2 |
|          | 2.1                                                            | Basic Definitions                                                       | 2 |
|          | 2.2                                                            | First and Second Order Characterizations of Convex Functions            |   |
|          | 2.3                                                            | Unconstrained Geometric Programming                                     |   |
|          |                                                                | 0                                                                       |   |
| 3        | Iter                                                           | rative Methods for Unconstrained Optimization                           | 2 |
|          | 3.1                                                            | First Order Methods                                                     | 2 |
|          | 3.2                                                            | Rates of Convergence                                                    |   |
|          | 3.3                                                            | Newton's Method                                                         |   |
|          |                                                                |                                                                         |   |
| 4        | Convex Programming and the Karush-Kuhn-Tucker (KKT) Conditions |                                                                         | 2 |
|          | 4.1                                                            | Hyperplane Separation Theorems                                          | 2 |
|          | 4.2                                                            | Proof of KKT Conditions                                                 |   |
|          | 4.3                                                            | Necessity/Sufficiency, Constraint Qualifications, Attainment            |   |
|          | 4.4                                                            | Duality                                                                 |   |
|          | 4.5                                                            | Lagrangian Relaxation                                                   |   |
|          | 4.6                                                            | Proof of KKT and Weakest Constraint Qualifications                      |   |
|          | 4.0                                                            | 1 1001 of 1111 and wearest constraint quanteations                      | ٠ |
| 5        | Pen                                                            | alty and Barrier Methods                                                | : |
|          | 5.1                                                            | L1 and L2 Penalty Methods for Equality and Inequality Constraints       |   |
|          | 5.2                                                            | Barrier method for Inequality Constraints                               |   |

## 1 Unconstrained Optimization via Calculus

## 1.1 First and Second Order, Necessary and Sufficient, Optimality Conditions

(understand the different cases; understand examples for the different cases)

#### 1.2 Local and Global Minimizers

also existence, e.g. coercivity, strict convexity; special case of quadratic functions

## 1.3 (Non)Attainment

(attainment and nonattainment; coercivity)

## 1.4 Role of positive (semi)definite matrices

in optimality conditions (and examples); Hessians

## 2 Convex Sets and Functions

#### 2.1 Basic Definitions

Including cones, convex hull, polar cones

## 2.2 First and Second Order Characterizations of Convex Functions

Using the gradient and Hessian, respectively.

## 2.3 Unconstrained Geometric Programming

## 3 Iterative Methods for Unconstrained Optimization

#### 3.1 First Order Methods

Method of Steepest Descent

## 3.2 Rates of Convergence

## 3.3 Newton's Method

# 4 Convex Programming and the Karush-Kuhn-Tucker (KKT) Conditions

## 4.1 Hyperplane Separation Theorems

- 4.2 Proof of KKT Conditions
- 4.3 Necessity/Sufficiency, Constraint Qualifications, Attainment

## 4.4 Duality

Lagrangian Dual, Wolfe Dual, Examples (LP, QP, SDP), Connection between duality and the KKT conditions.

## 4.5 Lagrangian Relaxation

Max-Cut example

## 4.6 Proof of KKT and Weakest Constraint Qualifications

cone of feasible directions, tangent cone, linearizing cone, using the weakest constraint qualification to prove the KKT conditions for a general convex program (allowing for affine equality constraints); extensions of the KKT conditions to general nonconvex programs.

## 5 Penalty and Barrier Methods

- 5.1 L1 and L2 Penalty Methods for Equality and Inequality Constraints
- 5.2 Barrier method for Inequality Constraints