
MATH 235/W08: Orthogonal Diagonalization,
Symmetric & Complex Matrices, Assignment 8

Hand in questions 1,3,5,7,9,11,13 by 9:30 am on Wednesday April 2, 2008.
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1 Properties of Symmetric/Hermitian/Normal Matri-

ces***

A (complex) normal matrix is defined by A∗A = AA∗; it has orthogonal eigenvectors. A skew-

Hermitian matrix is defined by A∗ = −A.

1. Why is every skew-Hermitian matrix normal?

2. Why is every unitary matrix normal?

3. For what values of a, d is the 2 × 2 matrix

(

a 1
−1 d

)

normal?

2 More on Hermitian/Unitary Matrices

1. Let A,B be n × n matrices and suppose B = A−1AT and B is symmetric. Prove that A2 is
symmetric.

2. Suppose C is a real n×n matrix such that C is symmetric and C2 = C and let D = In − 2C
with In denoting the n × n identity matrix. Prove that D is symmetric and orthogonal.

3. Find all complex 2 × 2 matrices A = [aij ] which are both unitary and Hermitian, and have
a11 = 1/2.

3 Hermitian, Orthogonal Projections***

Let Z be an m×n complex matrix such that Z∗Z = In where In denotes the n×n identity matrix.

1. Show that H = ZZ∗ is Hermitian and satisfies H2 = H.

2. Show that U = In − 2ZZ∗ is both unitary and Hermitian.

4 Hermitian and Skew-Hermitian Parts

Let A be a complex n × n matrix.

1. Show that A = H + K for some Hermitian matrix H and some skew-Hermitian matrix K.

2. Show that H and K in part (a) are unique.

3. For H and K defined in part (a), show that AA∗ = A∗A if and only if HK = KH.

5 Quadratic Forms***

Let A be a real n × n matrix and let H be a complex n × n Hermitian matrix.

1. Find a real symmetric n×n matrix B such that the quadratic forms xT Ax = xT Bx,∀x ∈ R
n.

2. Verify that x∗Hx ∈ R, for all x ∈ C
n.

3. Show that if a Hermitian matrix H can be written as H = A∗A for some invertible complex
matrix A, then x∗Hx > 0 for all nonzero vectors x ∈ C

n.
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6 Normal Matrices

Recall that an n × n complex matrix N is normal if N∗N = NN∗ where N∗ = N
T
. Prove that

if N is normal, then N − cIn is also normal for any complex scalar c. Here, In denotes the n × n
identity matrix.

7 Orthogonal Diagonalization***

Consider the real symmetric matrix A =





2 3 3
3 2 3
3 3 2



.

1. Find an orthogonal matrix P and a diagonal matrix D such that A = PDP T .

2. Find a 3 × 3 real symmetric matrix X such that X3 = A.

8 Eigenspaces

Consider the complex Hermitian matrix C =





5 2 − i −1 + i
2 + i 1 3 − i
−1 − i 3 + i 4



.

(a) Find the eigenvalues of C and their corresponding eigenspaces. Note that the sum along
every row of C is 6.

(b) Find a unitary matrix U and a diagonal matrix D such that C = UDU∗.

9 Unitary Diagonalization***

1. A matrix Hs over C is skew-Hermitian if H∗

s = −Hs. Prove that every eigenvalue of a
skew-Hermitian matrix Hs has real part zero.

2. Find a unitary diagonalization of the following skew-symmetric matrix

A =





0 1 −1
−1 0 1
1 −1 0



.

10 Symmetric Square Root

Find a symmetric matrix B such that B2 =





17 16 −16
16 41 −32
−16 −32 41



.
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11 Orthogonal Eigenvectors***

This A is nearly symmetric. But its eigenvectors are far from orthogonal: A =

(

1 10−5

0 1 + 10−5

)

.

One eigenvector is

(

1
0

)

. What is another linearly independent eigenvector and what is the angle

between the two eigenvectors?

12 Common Eigenpairs

Note that a well known theorem states: AB = BA implies that A,B share the same eigenvectors.
Suppose that A is normal. Therefore, AAT = AT A and so A and AT share the same eigenvectors.
But A and AT always share the same eigenvalues. Therefore they must have the same matrices
U,D in a unitary diagonalization. Therefore, A = AT ? Where is the paradox?
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13 MATLAB***

13.1 Colliding Eigenvalues***

Choose two simple 2 × 2 symmetric matrices with different eigenvectors. Say A =

(

1 0
0 3

)

and

another nondiagonal symmetric matrix. Graph the two eigenvalues of A+tB as t varies −8 < t < 8.
Use e.g.

t=linspace(-8,8);

l1s=[];

l2s=[];

for i=1:length(t),

l=eig(A+t(i)*B);

l1s=[l1s l(1)];

l2s=[l2s l(2)];

end

plot(t,l1s,’ob’)

hold on

plot(t,l2s,’xr’)

hold off

Note that the eigenvalues appear to be on a collision course, yet at the last minute they turn aside.
How close do they come?

13.2 Equation of an Orbit***

The general equation of a conic section in the plane (a parabola, hyperbola, ellipse, or degenerate
forms of these) is given by

c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 = 0

Given five distinct points on the conic, the constants c1, · · · , c6 can be determined and will be
unique to within a multiplicative constant. To see why this is so, let (xi, yi), i = 1, · · · , 5 denote
the distinct points. Then, we can form the following system of equations:

x2c1 + xyc2 + y2c3 + xc4 + yc5 + c6 = 0

x2

1c1 + x1y1c2 + y2

1c3 + x1c4 + y1c5 + c6 = 0

x2

2c1 + x2y2c2 + y2

2c3 + x2c4 + y2c5 + c6 = 0

x2

3c1 + x3y3c2 + y2

3c3 + x3c4 + y3c5 + c6 = 0

x2

4c1 + x4y4c2 + y2

4c3 + x4c4 + y4c5 + c6 = 0

x2

5c1 + x5y5c2 + y2

5c3 + x5c4 + y5c5 + c6 = 0

This system can be written in the form of a homogeneous linear system of six equations for the
six unknowns c1, · · · , c6. Because c1, · · · , c6 are not all zero, this system has a nontrivial solution.
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Now, recall that a homogeneous linear system with as many equations as unknowns has a nontrivial
solution if and only if the determinant of the coefficient matrix is zero. Thus, we must have that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 xy y2 x y 1
x2

1
x1y1 y2

1
x1 y1 1

x2
2

x2y2 y2
2

x2 y2 1
x2

3
x3y3 y2

3
x3 y3 1

x2

4
x4y4 y2

4
x4 y4 1

x2

5
x5y5 y2

5
x5 y5 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (∗)

Hence, every point (x, y) on the conic must satisfy (∗); conversely, it can be shown that every point
(x, y) that satisfies (∗) lies on the conic. So, (∗) represents the equation of the conic.

Use this result to determine the orbit of an asteroid about the sun. Let the sun be positioned
at the origin of a Cartesian coordinate system in the plane of the orbit. An astronomer makes five
observations of the asteroid at five different times and finds five distinct points (xi, yi), i = 1, · · · , 5
along the orbit to be:
(8.025, 8.310) , (10.170, 6.355) , (11.202, 3.212) , (10.736, 0.375) , (9.092,−2.267)
Here, astronomical units of measurement are used along the axes where 1 astronomical unit =
mean earth - to - sun distance (i.e. 150 million kms). With the aid of MATLAB, find the equation
of the orbit.
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