C&O 367 Assignment 1

Due on Tuesday, Jan. 11, 2005 Instructor H. Wolkowicz

Notes:

1. Please explain your answers and proofs carefully. A yes or no does not constitute a valid answer; nor does a numerical value with no explanation constitute a valid answer.

1. GEOMETRY

For a vector $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, we define the (Euclidean) norm and (Euclidean) inner product

$$||x|| := (x_1^2 + \dots + x_n^2)^{1/2},$$

 $\langle x, y \rangle := x \cdot y := x_1 y_1 + \dots + x_n y_n.$

Theorem 1 (Cauchy-Schwarz) $|x \cdot y| \le ||x||||y||$, with equality if and only if $x = \lambda y$, for some λ .

EXERCISES

(a) (10) Explain the geometrical significance for the vectors x and y of:
i.

$$x \cdot y = 0.$$

ii.

$$x \cdot y > 0$$
.

(b) (10) Prove that the function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = a \cdot x$ is continuous, where a is a given vector.

2. CALCULUS

For a function $g: \mathbb{R}^n \to \mathbb{R}$, the gradient is denoted

$$\nabla g := \begin{pmatrix} \frac{\partial g}{\partial x_1} \\ \frac{\partial g}{\partial x_2} \\ \vdots \\ \frac{\partial g}{\partial x_n} \end{pmatrix}$$

EXERCISES

(a) (5) If g(x) = ||x||, calculate $\nabla g(x)$.

(b) (10) Suppose $g: \mathbb{R}^n \to \mathbb{R}$, $a, b \in \mathbb{R}^n$, and f(t) := g(a + tb). Calculate f'(t).

Suppose $f: \Re \to \Re$ is infinitely differentiable at x = a. The Taylor Series of f about a is:

$$f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \frac{1}{3!}f'''(a)(x-a)^3 + \cdots$$

EXERCISE

Write down the Taylor series of:

(a) (5)

$$f(x) = x^3$$
, about $x = 1$.

(b) (5)

$$f(x) = \log(1+x)$$
, about $x = 0$.

3. TOPOLOGY

The open ball $B(x;r) := \{ y \in \mathbb{R}^n : ||x-y|| < r \}$. Suppose that D is a subset of \mathbb{R}^n .

Interior: $x \in \text{int } D$ if there exists r > 0 with $B(x; r) \subset D$.

Closure: $x \in \operatorname{cl} D$ if there exists a sequence $x^k \in D$ with $x^k \to x$.

Boundary: $x \in \partial D$ if $x \in \operatorname{cl} D \setminus \operatorname{int} D$.

D is open if $D = \operatorname{int} D$. D is closed if $D = \operatorname{cl} D$.

EXERCISES

(a) (15) For each of the following sets, find the interior, the closure, and the boundary. Then determine which of the sets are open, closed, neither, or both.

i.

$$\{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$$
.

ii.

$$\{(x_1, x_2): x_1 > 0, x_2 > 0\}.$$

iii.

$$\{(x_1, x_2): x_1 > 0, x_2 \ge 0\}$$
.

iv.

 \Re^n

v.

$$\left\{ (x_1, x_2) : x_1^2 + x_2^2 < 0 \right\}.$$

vi.

 \emptyset .

- (b) i. (10) Prove that D is closed if and only if the complement D^c is open.
 - ii. (10) Prove that $x \in \partial D$ if and only if for any r > 0 there exists a $y \in B(x;r) \cap D$ and a $z \in B(x;r) \cap D^c$.

4. MATRICES

EXERCISES

(a) (10) Let

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right)$$

- i. Calculate the determinant of A.
- ii. Calculate the rank of A.
- iii. What is the rank of A^T .
- (b) (10) Let

$$B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$$

Calculate the eigenvalues and eigenvectors of B.

(c) (10) Let

$$C = \left(\begin{array}{cccc} 3 & 1 & 1 & 4\\ \rho & 4 & 10 & 1\\ 1 & 7 & 17 & 3\\ 2 & 2 & 4 & 3 \end{array}\right)$$

Using elementary transformations (elementary row and column operations), find the value of ρ that minimizes the rank of C.