C&O0 367, Winter 2001
Assignment 2

Due on Tuesday, Feb. 4, (at start of class)

Instructor H. Wolkowicz

1. (10 marks) Let f : R — R be a convex function. Suppose that a < b.
(a) Show that
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(c) Suppose that f is differentiable. Show that

f(b) = f(a)

b—a
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2. (10 marks) Suppose f: R — R is increasing and convex on its domain
(a,b). Let g denote its inverse, i.e. the function with domain [f(a), f(b)]
and g(f(z)) =z for all @ < < b. What can you say about convexity
or concavity of g7

3. (10 marks) Suppose f : B — R is convex. Show that its running
average, I, defined as

is convex. (You can assume that f is differentiable.)

4. (10 marks) Suppose f : R — R is convex and bounded above. Show
that f is constant.



5. (15 marks) Suppose that
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where b € R" and A is an n X n symmetric matrix. Show that f(z) is
bounded below on R™ if and only if the minimum of f on "™ is attained

(i.e. there exists  such that f(z) = Helgenﬂ f(z)).



