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SYMMETRY IN SEMIDEFINITE PROGRAMS

FRANK VALLENTIN

ABSTRACT. This paper is a tutorial in a general and explicit procedureto sim-
plify semidefinite programs which are invariant under the action of a symmetry
group. The procedure is based on basic notions of representation theory of finite
groups. As an example we derive the block diagonalization ofthe Terwilliger
algebra of the binary Hamming scheme in this framework. Hereits connection
to the orthogonal Hahn and Krawtchouk polynomials becomes visible.

1. INTRODUCTION

A (complex) semidefinite programis an optimization problem of the form

(1) max{〈C, Y 〉 : 〈Ai, Y 〉 = bi, i = 1, . . . , n, andY � 0},

whereAi ∈ C
X×X , andC ∈ C

X×X are given Hermitian matrices whose rows
and columns are indexed by a finite setX, (b1, . . . , bn)t ∈ R

n is a given vector
andY ∈ C

X×X is a variable Hermitian matrix and where “Y � 0” means that
Y is positive semidefinite. Here〈C, Y 〉 = trace(CY ) denotes the trace product
between symmetric matrices.

Semidefinite programming is an extension of linear programming and has a wide
range of applications: combinatorial optimization and control theory are the most
famous ones. Although semidefinite programming has an enormous expressive
power in formulating convex optimization problems it has a few practical draw-
backs: Highly robust and highly efficient solvers, unlike their counterparts for
solving linear programs, are currently not available. So itis crucial to exploit the
problems’ structure to be able to perform computations.

In the last years many results were obtained if the problem under consideration
has symmetry. This was done for a variety of problems and applications: interior
point algorithms (Kanno, Ohsaki, Murota, Katoh [16] and de Klerk, Pasechnik [5]),
polynomial optimization (Parrilo, Gatermann [10] and Jansson, Lasserre, Riener,
Theobald [14]), truss topology optimization (Bai, de Klerk, Pasechnik, Sotirov
[3]), quadratic assignment (de Klerk, Sotirov [7]), fast mixing Markov chains on
graphs (Boyd, Diaconis, Xiao [4]), graph coloring (Gvozdenović, Laurent [13]),

Date: July 30, 2008.
1991Mathematics Subject Classification.90C22, 33C90.
Key words and phrases.semidefinite programming, block diagonalization, Terwilliger algebra,

binary Hamming scheme, Hahn polynomials.
The author was supported by the Netherlands Organization for Scientific Research under grant

NWO 639.032.203 and by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHU 1503/4-
2.

1

http://arXiv.org/abs/0706.4233v3


2 FRANK VALLENTIN

crossing numbers for complete binary graphs (de Klerk, Pasechnik, Schrijver [6])
and coding theory (Schrijver [20], Gijswijt, Schrijver, Tanaka [11] and Laurent
[18]).

In all these applications the underlying principles are similar: one simplifies the
original semidefinite program which is invariant under a group action by apply-
ing an algebra isomorphism mapping a “large” matrix algebrato a “small” matrix
algebra. Then it is sufficient to solve the semidefinite program using the smaller
matrices. The existence of an appropriate algebra isomorphism is a classical fact
from Artin-Wedderburn theory. However, in the above mentioned papers the ex-
plicit determination of an appropriate isomorphism is rather mysterious. The aim
of this paper is to give an algorithmic way to do this which also is well-suited for
symbolic calculations by hand.

The paper is structured as follows: Section 2 recalls basic definitions and shows
how the Artin-Wedderburn theorem stated in (4) can be applied to simplify a semi-
definite program invariant under a group action. In Section 3we construct an
explicit algebra isomorphism. In Section 4 we apply this to the Terwilliger algebra
of the binary Hamming scheme.

This paper is of expository nature and probably few of the results are new. On
the other hand a tutorial of how to use symmetry in semidefinite programming is
not readily available. Furthermore our treatment of the Terwilliger algebra for bi-
nary codes provides an alternative point of view which emphasizes the action of the
symmetric group. Schrijver [20] treated the Terwilliger algebra with elementary
combinatorial and linear algebraic arguments. Our derivation has the advantage
that it gives an interpretation for the matrix entries in terms of Hahn polynomials.
In a similar way one can derive the block diagonalization of the Terwilliger algebra
for nonbinary codes which was computed by Gijswijt, Schrijver, Tanaka [11]. Here
products of Hahn and Krawtchouk polynomials occur.

2. BACKGROUND AND NOTATION

In this section we present the basic framework for simplifying a semidefinite
program invariant under a group action.

LetG be a finite group which acts on a finite setX by (a, x) 7→ ax with a ∈ G
andx ∈ X. This group action extends to an action on pairs(x, y) ∈ X × X
by (a, (x, y)) 7→ (ax, ay). In this way it extends to square matrices whose rows
and columns are indexed byX: for anX × X-matrix M we haveaM(x, y) =
M(ax, ay). HereM(x, y) denotes the entry ofM at position(x, y). A matrixM
is calledinvariant underG if M = aM for all a ∈ G.

A Hermitian matrixY ∈ C
X×X is called afeasible solutionof (1) if it fulfills

the conditions〈Ai, Y 〉 = bi andY � 0. It is called anoptimal solutionif it is
feasible and if for all other feasible solutionsY ′ we have〈C, Y 〉 ≥ 〈C, Y ′〉. In the
following we assume that the semidefinite program (1) has an optimal solution.

We say that the semidefinite program (1) isinvariant underG if for every fea-
sible solutionY and for everya ∈ G the matrixaY is again a feasible solution
and if it is satisfies〈C, aY 〉 = 〈C, Y 〉 for all a ∈ G. Because of the convexity of
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(1), one can find an optimal solution of (1) in the subspaceB of matrices which are
invariant underG. In fact, ifY is an optimal solution of (1), so is itsgroup average
1
|G|

∑

a∈G aY . Hence, (1) is equivalent to

(2) max{〈C, Y 〉 : 〈Ai, Y 〉 = bi, i = 1, . . . , n, Y � 0, andY ∈ B}.

The setX×X can be decomposed into the orbitsR1, . . . , RN by the action ofG.
For everyr ∈ {1, . . . , N} we define the matrixBr ∈ {0, 1}X×X byBr(x, y) = 1
if (x, y) ∈ Rr andBr(x, y) = 0 otherwise. ThenB1, . . . , BN forms a basis ofB.
We callB1, . . . , BN thecanonical basisof B. If (x, y) ∈ Rr we also writeB[x,y]

instead ofBr. Note thatB[y,x] is the transpose of the matrixB[x,y].
So the first step to simplify a semidefinite program which is invariant under a

group is as follows:
If the semidefinite program(1) is invariant underG, then(1) is equivalent to

(3)

max
{

c1y1 + · · · + cNyN : y1, . . . , yN ∈ C,

ai1y1 + · · · + aiNyN = bi, i = 1, . . . , n,
yj = yk if Bj = (Bk)

t,

y1B1 + · · · + yNBN � 0
}

,

wherecr = 〈C,Br〉, andair = 〈Ai, Br〉.
The following obvious property is crucial for the next step of simplifying (3):

The subspaceB is closed under matrix multiplication. SoB is a (semisimple)
algebra over the complex numbers. The Artin-Wedderburn theory (cf. [17, Chapter
1]) gives:

There are numbersd, andm1, . . . ,md so that there is an algebra isomorphism

(4) ϕ : B →

d
⊕

k=1

C
mk×mk .

This applied to (3) gives the final step of simplifying (1):
If the semidefinite program(1) is invariant underG, then(1) is equivalent to

(5)

max
{

c1y1 + · · · + cNyN : y1, . . . , yN ∈ C,

ai1y1 + · · · + aiNyN = bi, i = 1, . . . , n,
yj = yk if Bj = (Bk)

t,

y1ϕ(B1) + · · · + yNϕ(BN ) � 0
}

.

Notice that sinceϕ is an algebra isomorphism between matrix algebras with
unity, ϕ preserves eigenvalues and hence positive semidefiniteness. In accordance
to the literature, applyingϕ to a semidefinite program is calledblock diagonaliza-
tion.

The advantage of (5) is that instead of dealing with matricesof size|X|×|X| one
has to deal with block diagonal matrices withd block matrices of sizem1, . . . ,md,
respectively. In many applications the summ1 + · · · + md is much smaller than
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|X| and in particular many practical solvers take advantage of the block structure
to speed up the numerical calculations.

3. DETERMINING A BLOCK DIAGONALIZATION

In this section we give an explicit construction of an algebra isomorphismϕ. It
has two main features: One can turn the construction into an algorithm as we show
at the end of this section, and one can use it for symbolic calculations by hand as
we demonstrate in Section 4.

3.1. Construction. We begin with some basic notions from representation theory
of finite groups. Consider the complex vector spaceC

X of vectors indexed byX
with inner product(f, g) = 1

|X|

∑

x∈X f(x)g(x). The groupG acts onC
X by

af(x) = f(a−1x). Note that the inner product onCX is invariant under the group
action: For allf, g ∈ C

X and alla ∈ G we have(af, ag) = (f, g). A subspace
H ⊆ C

X is called aG-spaceif GH ⊆ H whereGH = {af : f ∈ H,a ∈ G}.
It is called irreducible if the only proper subspaceH ′ ⊆ H with GH ′ ⊆ H ′

is {0}. Two G-spacesH andH ′ are calledequivalentif there is aG-isometry
φ : H → H ′, i.e. a linear isomorphism withφ(af) = aφ(f) for all f ∈ H and
a ∈ G and(φ(f), φ(g)) = (f, g) for all f, g ∈ H.

By Maschke’s theorem (cf. [12, Theorem 2.4.1]) one can decomposeC
X or-

thogonally into irreducibleG-spaces:

(6) C
X = (H1,1 ⊥ . . . ⊥ H1,m1

) ⊥ . . . ⊥ (Hd,1 ⊥ . . . ⊥ Hd,md
),

whereHk,i with k = 1, . . . , d and i = 1, . . . ,mk is an irreducibleG-space of
dimensionhk and whereHk,i andHk′,i′ are equivalent if and only ifk = k′.

LetA be the subalgebra ofCX×X which is generated by the permutation matri-
cesPa ∈ C

X×X with a ∈ G where

(7) Pa(x, y) =

{

1 if a−1x = y,

0 otherwise.

Because of (6) the algebraA decomposes as a complex vector space in the follow-
ing way

(8) A ∼=

d
⊕

k=1

C
hk×hk ⊗ Imk

.

Recall that byB we denote the matrices inCX×X which are invariant under the
group action ofG. In other words, it is thecommutantof A:

B = Comm(A) = {B ∈ C
X×X : BA = AB for all A ∈ A}.

The double commutant theorem [12, Theorem 3.3.7] gives the following decom-
position ofB as a complex vector space:

(9) B ∼=

d
⊕

k=1

Ihk
⊗ C

mk×mk .
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Now we construct an explicit algebra isomorphism between the commutant al-
gebraB and matrix algebra

⊕d
k=1 C

mk×mk .
Let ek,1,l with l = 1, . . . , hk be an orthonormal basis of the spaceHk,1. Choose

G-isometriesφk,i : Hk,1 → Hk,i. Then,ek,i,l = φk,i(ek,1,l) is an orthonormal
basis ofHk,i. Define the matrixEk,i,j ∈ C

X×X with i, j = 1, . . . ,mk by

Ek,i,j(x, y) =
1

|X|

hk
∑

l=1

ek,i,l(x)ek,j,l(y).

The definition of these matrices depend on the choice of the orthonormal basis,
on the chosenG-isometries and on the chosen decomposition (6). The following
proposition shows the effect of different choices.

Proposition 3.1. ByEk(x, y) we denote themk ×mk matrix (Ek,i,j(x, y))i,j .
(a) The matrix entriesEk,i,j(x, y) do not depend on the choice of the orthonor-

mal basis ofHk,1.
(b) The change ofφk,i to αφk,i with α ∈ C, |α| = 1, simultaneously changes

thei-th row andi-th column in the matrixEk(x, y) by a multiplication withα and
α, respectively.

(c) The choice of another decomposition ofHk,1 ⊥ . . . ⊥ Hk,mk
as a sum of

mk orthogonal, irreducibleG-spaces changesEk(x, y) to UEk(x, y)U
t

for some
unitary matrixU ∈ U(Cmk).

Proof. This was proved in [2, Theorem 3.1] with the only difference that there only
the real case was considered. The complex case follows mutatis mutandis. �

The following theorem shows that the map

(10) ϕ : B →

d
⊕

k=1

C
mk×mk

mappingEk,i,j to the elementary matrix with the only non-zero entry1 at position
(i, j) in thek-th summandCmk×mk of the direct sum is an algebra isomorphism.

Theorem 3.2. The matricesEk,i,j form a basis ofB satisfying the equation

(11) Ek,i,jEk′,i′,j′ = δk,k′δj,i′Ek,i,j′,

whereδ denotes Kronecker’s delta.

Proof. The multiplication formula (11) is a direct consequence of the orthonormal-
ity of the vectorsek,i,l. ThatEk,i,j is an element ofB follows from [2, Theorem
3.1 (c)]. From (11) it follows that the matricesEk,i,j are linearly independent, they
span a vector space of dimension

∑d
k=1m

2
k. Hence, by (9), they form a basis of

the commutantB. �
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Now the expansion of the canonical basisBr, with r = 1, . . . , N , in the basis
Ek,i,j with coefficientspr(k, i, j)

(12) Br =

d
∑

k=1

mk
∑

i,j=1

pr(k, i, j)Ek,i,j .

yields

ϕ(Br) =

d
∑

k=1

mk
∑

i,j=1

pr(k, i, j)ϕ(Ek,i,j).

3.2. Orthogonality relation. For the computation of the coefficientspr(k, i, j)
the following orthogonality relation is often helpful.

If we expand the basis|X|Ek,i,j in the canonical basisBr we get a relation
which after normalization is inverse to (12)

(13) |X|Ek,i,j =
N

∑

r=1

qk,i,j(r)Br.

So we have an orthogonality relation between theqk,i,j:

Lemma 3.3. Letvr = |{(x, y) ∈ X ×X : (x, y) ∈ Rr}|. Then,

(14)
N

∑

r=1

vrqk,i,j(r)qk′,i′,j′(r) = δk,k′δj,j′δi,i′ |X|2hk.

Proof. Consider the sum
∑

x∈X Ek,i,jEk′,j′,i′(x, x).
On the one hand it is equal to

∑

x∈X

δk,k′δj,j′Ek,i,i′(x, x) = δk,k′δj,j′ traceEk,i,i′,

and

traceEk,i,i′ =

hk
∑

l=1

(ek,i,l, ek,i′,l) = δi,i′hk,

On the other hand it is

∑

x∈X

∑

y∈X

Ek,i,j(x, y)Ek′,j′,i′(y, x) =
1

|X|2

N
∑

r=1

vrqk,i,j(r)qk′,i′,j′(r),

where we used the factEk′,j′,i′(y, x) = Ek′,i′,j′(x, y) which follows from the def-
inition. �

The orthogonality relation gives a direct way to computepr(k, i, j) onceqk,i,j(r)
is known: We have

(15) pr(k, i, j) =
vrqk,i,j(r)

|X|hk
,
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which follows by Lemma 3.3 and by (12) and (13) because of

N
∑

r=1

pr(k, i, j)qk′,i′,j′(r) = |X|δk,k′δi,i′δj,j′.

3.3. Algorithmic issues. We conclude this section by reviewing algorithmic is-
sues for computingϕ. To calculate the isomorphism one has to perform the fol-
lowing steps:

(1) Compute the orthogonal decomposition (6) ofC
X into pairwise orthogo-

nal, irreducibleG-spacesHk,i.
(2) For every irreducibleG-spaceHk,1 determine an orthonormal basis.
(3) FindG-isometriesφk,i : Hk,1 → Hk,i.
(4) Express the basisBr in the basisEk,i,j.

Only the first step requires an algorithm which is not classical. Here one can
use an algorithm of Babai and Rónyai [1]. It is a randomized algorithm running
in expected polynomial time for computing the orthogonal decomposition (6). It
requires the permutation matricesPa given in (7) as input, wherea runs through
a (favorably small) generating set ofG. The other steps can be carried out using
Gram-Schmidt orthonormalization and solving systems of linear equations.

4. BLOCK DIAGONALIZATION OF THE TERWILLIGER ALGEBRA

The symmetric groupSn acts on the setX = {0, 1}n of binary vectors with
lengthn by σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)), i.e. by permuting coordinates. In
[20] Schrijver determined the block diagonalization of thealgebraB of X × X-
matrices invariant under this group action. The algebraB is called theTerwilliger
algebra of the binary Hamming scheme. Now we shall derive a block diagonaliza-
tion in the framework of the previous section. In this case itis possible to work
over the real numbers only because all irreducible representations of the symmetric
group are real.

Under the group action the setX splits inton+ 1 orbitsX0, . . . ,Xn whereXm

contains the elements of{0, 1}n having Hamming weightm, i.e. elements which
one can get from the binary vector1m0n−m by permuting coordinates. So we have
the orthogonal decomposition of theSn-spaceRX into

R
X = R

X0 ⊥ . . . ⊥ R
Xn .

It is a classical fact (cf. [8, Theorem 2.10]) that theSn-spaceRXm decomposes
further into

R
Xm =

{

H0,m ⊥ . . . ⊥ Hm,m, when0 ≤ m ≤ ⌊n/2⌋,
H0,m ⊥ . . . ⊥ Hn−m,m, otherwise.

whereHk,m are irreducibleSn-spaces which correspond to the irreducible repre-
sentation ofSn given by the partition(n−k, k) (cf. [19, Chapter 2]). Its dimension
is hk =

(n
k

)

−
( n
k−1

)

.
Thus, the matricesEk,i,j, with k = 0, . . . , ⌊n/2⌋, which correspond to the iso-

typic componentHk,k ⊥ . . . ⊥ Hk,n−k of R
X of type(n− k, k) are conveniently
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indexed byi, j = k, . . . , n− k. SinceEk,j,i is the transpose ofEk,i,j we only need
to consider the casek ≤ i ≤ j ≤ n− k.

To determineEk,i,j(x, y) we rely on the papers [8] and [9] of Dunkl. We recall
the facts and notation which we will need from them. LetTk : Sn → O(Rhk) be
an orthogonal, irreducible representation ofSn given by the partition(n − k, k).
ByH,K we denote the subgroupsH = Sj ×Sn−j andK = Si ×Sn−i of Sn. Let
Vk ⊆ R

Sn be the vector space spanned by the function(Tk)rs, with 1 ≤ r, s ≤ hk,
which are the matrix entries ofTk: (Tk)rs(π) = [Tk(π)]rs. A function f ∈ Vk is
calledH-K-invariant if f(σπτ) = f(π) for all σ ∈ H, π ∈ Sn, τ ∈ K. In [8, §4]
and [9,§4] Dunkl computed theH-K-invariant functions ofVk. These are all real
multiples of

ψk,H−K(π) =
(−j)k(i− n)k
(−i)k(j − n)k

Qk(v(π);−(n − i) − 1,−i− 1, j),

where(a)0 = 1, (a)k = a(a+ 1) . . . (a+ k − 1), and where,

Qk(x;−a− 1,−b− 1,m) =
1

(m
k

)

k
∑

j=0

(−1)j

(b−k+j
j

)

(a
j

)

(

m− x

k − j

)(

x

j

)

,

areHahn polynomials(for integersm,a, b with a ≥ m, b ≥ m ≥ 0), and where

v(π) = i− |π{1, . . . , i} ∩ {1, . . . , j}|.

The polynomialsQk(x) = Qk(x;−a−1,−b−1,m) are the orthogonal polynomi-
als for the weight function

(

a
x

)(

b
m−x

)

, x = 0, 1, . . . ,m, normalized byQk(0) = 1.
For more information about Hahn polynomials we refer to [15].

We will need the square of the norm ofψk,H−K which is given in [9, before
Proposition 2.7]:

(ψk,H−K , ψk,H−K) =
ψk,H−K(id)

hk
=

(−j)k(i− n)k
(−i)k(j − n)khk

.

Let ek,i,1, . . . , ek,i,hk
be an orthonormal basis ofHk,i. We get an orthogonal,

irreducible representationTk,i : Sn → O(Rhk) by

π(ek,i,l) =

hk
∑

l′=1

[Tk,i(π)]l′,lek,i,l′.

Consider the function

zk,i,j(π) = Ek,i,j(π(1i0n−i), 1j0n−j).

This is anH-K-invariant function becauseEk,i,j ∈ B. It lies inVk because vector
spaces spanned by matrix entries of two equivalent irreducible representations co-
incide. Thus,zk,i,j is a real multiple ofψk,H−K . By computing the squared norm
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of zk,i,j we determine this multiple up to sign:

(zk,i,j, zk,i,j) =
1

n!

∑

π∈Sn

zk,i,j(π)zk,i,j(π)

=
1

(

n
i

)

2n

hk
∑

l=1

(ek,i,l(1
j0n−j))2

=
1

(n
i

)Ek,j,j(1
j0n−j , 1j0n−j).

Here we used thatek,i,l is an orthonormal basis ofHk,i where the inner product is
(f, g) = 1

2n

∑

x∈Xi
f(x)g(x).

All diagonal entries belonging toXj ×Xj of Ek,j,j coincide and all others are
zero, so

(n
j

)

Ek,j,j(1
j0n−j , 1j0n−j) is the trace ofEk,j,j which equals its rankhk.

Hence,(zk,i,j, zk,i,j) = hk(
(n

i

)(n
j

)

)−1. So we have determinedEk,i,j up to sign.
To adjust the signs it is enough to ensure that the multiplication formula (11) is
satisfied.

So putting it together, we have proved the following theorem.

Theorem 4.1. For x, y ∈ X definev(x, y) = |{l ∈ {1, . . . , n} : xl = 1, yl = 0}|.
For k = 0, . . . , ⌊n/2⌋ andi, j = k, . . . , n− k with i ≤ j we have

Ek,i,j(x, y) =
hk

(
(n

i

)(n
j

)

)1/2

(

(−j)k(i− n)k
(−i)k(j − n)k

)− 1

2

·

Qk(v(x, y);−(n − i) − 1,−i − 1, j),

whenx ∈ Xi, y ∈ Xj . In the casex 6∈ Xi or y 6∈ Xj we haveEk,i,j(x, y) = 0.
Furthermore,Ek,j,i = (Ek,i,j)

t.

Finally, to find the desired algebra isomorphism (4) we determine the values of
pr(k, i, j) by formula (15). We represent the orbitsR1, . . . , RN by triples(r, s, d):
Two pairs(x, y), (x′, y′) ∈ X×X are equivalent wheneverx, x′ ∈ Xr, y, y′ ∈ Xs,
andv(x, y) = v(x′, y′) = d. Then,

pr,s,d(k, i, j) =
vr,s,dEk,i,j(x, y)

hk
,

where

vr,s,d =

(

n

d

)(

n− d

r − d

)(

n− r

s− s+ d

)

.

Remark 4.2. In a similar way one can give an interpretation of the block diago-
nalization of the Terwilliger algebra for nonbinary codes which was computed in
[11]. Using [8, Theorem 4.2]one can show the matrix entries are, up to scaling
factors, products of Hahn polynomials and Krawtchouk polynomials.
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