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Completely Positive Matrices

Let A = (a1, . . . , ak) be a nonnegative n× k matrix, then

X = a1a
T
1 + . . . + aka

T
k = AAT

is called completely positive.

COP = {X : X completely positive}

COP is closed, convex cone
• X ∈ COP, t ≥ 0⇒ tX ∈ COP

• X = AAT , Y = BBT ∈ COP ⇒

⇒ X + Y = [A B][A B]T ∈ COP

For basics, see the book: A. Berman and N. Shaked -
Monderer: Completely Positive Matrices, World Scientific
2003
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Copositive Matrices

Dual cone COP ∗ of COP in Sn (sym. matrices):

Y ∈ COP ∗ ⇐⇒ trXY ≥ 0 ∀X ∈ COP

⇐⇒ trAT Y A ≥ 0 ∀A ≥ 0

⇐⇒ aT Y a ≥ 0 ∀ vectors a ≥ 0.

By definition, this means Y is copositive, Y ∈ CP .
CP is dual cone to COP!
Bad News: X /∈ CP is NP-complete decision problem.

Positive semidefinite matrices PSD:
Y ∈ PSD ⇐⇒ aT Y a ≥ 0 ∀ vectors a.
Well known facts: • PSD∗ = PSD (PSD cone is selfdual. )
• COP ⊂ PSD ⊂ CP
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Semidefinite and Copositive Programs

Problems of the form

max trCX s.t. A(X) = b, X ∈ PSD

are called Semidefinite Programs.

Problems of the form

max trCX s.t. A(X) = b, X ∈ CP

or
max trCX s.t. A(X) = b, X ∈ COP

are called Copositive Programs, because the primal or the
dual involves copositive matrices.
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Why Copositive Programs ?

Copositive Programs can be used to solve combinatorial
optimization problems.

• Stable Set Problem:
Let A be adjacency matrix of graph, J be all ones matrix.
DeKlerk and Pasechnik (SIOPT 2002) show the following:

α(G) = max trJX s.t. tr(A + I)X = 1, X ∈ COP

= min y s.t. y(A + I)− J ∈ CP.

This is a copositive program with only one equation (in the
primal problem).
This is a simple consequence of the Motzkin-Strauss
Theorem.
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A general copositive modeling theorem

Burer (2007) shows the following general result for the
power of copositive programming:
The optimal values of P and C are equal: opt(P) = opt(C)

(P ) min xT Qx + cT x

aT
i x = bi, x ≥ 0, xi ∈ {0, 1}∀i ∈ B.

Here x ∈ IRn and B ⊆ {1, . . . , n}.

(C) min tr(QX) + cT x, s.t. aT
i x = bi,

aT
i Xai = b2

i , Xii = xi ∀i ∈ B,

(

1 xT

x X

)

∈ COP
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Approximating COP

We have now seen the power of copositive programming.

Since optimizing over CP is NP-Hard, it makes sense to get
approximations of CP or COP.

To get relaxations, we need supersets of COP, or inner
conic approximations of CP (and work on the dual cone).
The Parrilo hierarchy uses Sum of Squares and provides
such an outer approximation of COP (dual viewpiont!).

Now we consider inner approximations of COP.
This can be viewed as a method to generate feasible
solutions of combinatorial optimization problems ( primal
heuristic!).
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Inner approximations of COP

We consider

min trCX s.t. A(X) = b, X ∈ COP

Remember: COP= {X : X = V V T , V ≥ 0}.

Some previous work by:
• Bomze, DeKlerk, Nesterov, Pasechnik, others:
Get stable sets by approximating COP formulation of the
stable set problem using optimization of quadratic over
standard simplex, or other local methods.
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Incremental version

A general feasible descent approach:
Let X = V V T with V ≥ 0 be feasible. Consider the
regularized, and convex descent step problem:

min ǫ〈C, ∆X〉+ (1− ǫ)‖∆X‖2,

such that A(∆X) = 0, X + ∆X ∈ COP.
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Incremental version

A general feasible descent approach:
Let X = V V T with V ≥ 0 be feasible. Consider the
regularized, and convex descent step problem:

min ǫ〈C, ∆X〉+ (1− ǫ)‖∆X‖2,

such that A(∆X) = 0, X + ∆X ∈ COP.

For small ǫ > 0 we approach the true optimal solution,
because we follow the continuous steepest descent path,
projected onto COP.

Unfortunately, this problem is still not tractable. We
approximate it by working in the V -space instead of the
X-space.
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Incremental version: V -space

X+ = (V + ∆V )(V + ∆V )T hence ,

X = V V T

∆X = ∆X(∆V ) = V ∆V T + ∆V V T + (∆V )(∆V T ).

Now linearize and make sure ∆V is small.

Happy Birthday, Henry – p.12/26



Incremental version: V -space

X+ = (V + ∆V )(V + ∆V )T hence ,

X = V V T

∆X = ∆X(∆V ) = V ∆V T + ∆V V T + (∆V )(∆V T ).

Now linearize and make sure ∆V is small. We get

min ǫ〈2CV, ∆V 〉+ (1− ǫ)‖∆V ‖2 such that

〈2Ai, ∆V 〉 = bi − 〈AiV, V 〉 ∀i,

V + ∆V ≥ 0

This is convex approximation of nonconvex version in
∆X(∆V ).
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Correcting the linearization

The linearization obtained by replacing ∆X(∆V ) with
V ∆V T + ∆V V T introduces an error both in the cost function
and in the constraints A(X) = b.

We therefore include corrector iterations of the form

∆V = ∆Vold + ∆Vcorr

before actually updating V ← V + ∆V.
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Convex quadratic subproblem

The convex subproblem is of the following form, after
appropriate redefinition of data and variables
x = vec(V + ∆V ), . . ..

min cT x + ρxT x such that Rx = r, x ≥ 0.
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Convex quadratic subproblem

The convex subproblem is of the following form, after
appropriate redefinition of data and variables
x = vec(V + ∆V ), . . ..

min cT x + ρxT x such that Rx = r, x ≥ 0.

If V is n× k (k columns generating V ), x if of dimension nk
and there are m equations.
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Convex quadratic subproblem

The convex subproblem is of the following form, after
appropriate redefinition of data and variables
x = vec(V + ∆V ), . . ..

min cT x + ρxT x such that Rx = r, x ≥ 0.

If V is n× k (k columns generating V ), x if of dimension nk
and there are m equations.
Since Hessian of cost function is identity matrix, this
problem can be solved efficiently using interior-point
methods. (convex quadratic with sign constraints and linear
equations)

Main effort is solving a linear system of order m, essentially
independent of n and k.
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Test data sets

COP problems coming from formulations of NP-hard
problems are too difficult ( Stable Set, Coloring, Quadratic
Assignment) to test new algorithms.

Would like to have:

Data (A, b, C) and (X, y, Z) such that
• (X, y, Z) is optimal for primal and dual (no duality gap).
• COP is nontrivial (optimum not given by optimizing over
semidefiniteness plus nonnegativity )
• generate instances of varying size both in n and m.

Hard part: Z provably copositive !!
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A COP generator

Basic idea: Let G be a graph, with QG = A + I, and
(XG, yG, ZG) be optimal solution of

ω(G) = max〈J,X〉 such that 〈QG, X〉 = 1, X ∈ COP

= min y such that yQG − J ∈ CP.

We further assume:
• G = H ∗K (strong graph product of H and K).
• K is perfect and H = C5 (or some other graph with known
clique number and ω(G) < ϑ′(G)).

This implies:
• ω(G) = ω(H)ω(K) (same for ϑ′)
• Max cliques in G through Kronecker products from H,K.
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COP generator (2)

Then we have:

• yG := ω(H)ω(K) implies ZG = yGQG − J is CP.

• Let XH and XK convex combinations of outer products of
characteristic vectors of max cliques in H and K. This
implies that XG = XH ⊗XK is primal optimal.

• Select m and Matrix A of size m× n2 and set b = A(XG).

• Set C := ZG − AT (yG).

This implies that (XG, yG, ZG) is optimal for the data set
A, b, C and that there is no duality gap, and the problem is
nontrivial, because of ω(G) < ϑ′(G).
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Computational results

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it secs |b-A(X)| f(x)
1 5.17 0.166918 -54.5084

10 33.45 0.000028 -69.4370
20 64.94 0.000003 -69.5439
30 96.49 0.000002 -69.6109

The number of inner iterations was set to 3, column 1
shows the outer iteration count.
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Computational results

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it secs |b-A(X)| f(x)
1 5.17 0.166918 -54.5084

10 33.45 0.000028 -69.4370
20 64.94 0.000003 -69.5439
30 96.49 0.000002 -69.6109

The number of inner iterations was set to 3, column 1
shows the outer iteration count.

But starting point: V 0 = .9 Vopt + .1 rand
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Computational results (2)

Example (continued). recall n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

start iter |b-A(X)| f(x)
(a) 30 0.000000 -69.67
(b) 30 0.000002 -69.61
(c) 30 0.000100 -69.03

Different starting points:
(a) V = ,95 * Vopt + .05 * rand
(b) V = .90 * Vopt + .10 * rand
(c) V = rand(n, 2n)

Similar results for other instances using the COP generator.
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More results

n m opt found ‖b− A(X)‖

50 100 314.48 315.18 4 10−5

60 120 -266.99 -266.31 4 10−5

70 140 -158.74 -155.78 3 10−5

Starting point in all cases: rand(n,2n)
Inner iterations: 5
Outer iterations: 25
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Some experiments with Stable Set

max〈J,X〉 such that tr(X) = 1, tr(AGX) = 0, X ∈ COP

Only two equations but many local optima. We consider a
selection of graphs from the DIMACS collection.
Computation times in the order of a few minutes.

name n ω clique found
keller4 171 11 9

brock200-4 200 17 14
c-fat200-1 200 12 12
c-fat200-5 200 58 58

brock400-1 400 27 24
p-hat500-1 500 9 8

Happy Birthday, Henry – p.25/26



Last Slide

Unfortunately, the subproblem may have local solutions,
which are not local minima for the original descent step
problem.

The number of columns of V does not need to be larger
than

(

n+1

2

)

, but for practical purposes, this is too large.

Also, there is dependence on the starting point V .

Further technical details in a forthcoming paper by I.
Bomze, F. Jarre and F. R.: Quadratic factorization heuristics
for copositive programming, technical report, (2008).
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