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Completely Positive Matrices

Let A = (a1, . . . , ak) be a nonnegative n× k matrix, then

X = a1a
T
1 + . . . + aka

T
k = AAT

is called completely positive.

COP = {X : X completely positive}

COP is closed, convex cone. From the definition we get

COP = conv{aaT : a ≥ 0}.

For basics, see the book: A. Berman, N. Shaked-Monderer:

Completely Positive Matrices, World Scientific 2003
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Copositive Matrices

Dual cone COP ∗ of COP in Sn (sym. matrices):

Y ∈ COP ∗ ⇐⇒ trXY ≥ 0 ∀X ∈ COP

⇐⇒ aT Y a ≥ 0 ∀ vectors a ≥ 0.

By definition, this means Y is copositive.

CP = {Y : aT Y a ≥ 0 ∀a ≥ 0}

CP is dual cone to COP!
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Copositive Matrices

Dual cone COP ∗ of COP in Sn (sym. matrices):

Y ∈ COP ∗ ⇐⇒ trXY ≥ 0 ∀X ∈ COP

⇐⇒ aT Y a ≥ 0 ∀ vectors a ≥ 0.

By definition, this means Y is copositive.

CP = {Y : aT Y a ≥ 0 ∀a ≥ 0}

CP is dual cone to COP!
Bad News: X /∈ CP is NP-complete decision problem.

Semidefinite matrices PSD: Y ∈ PSD ⇐⇒ aT Y a ≥ 0 ∀a.
Well known facts: • PSD∗ = PSD (PSD cone is selfdual. )
• COP ⊂ PSD ⊂ CP
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Semidefinite and Copositive Programs

Problems of the form

max〈C,X〉 s.t. A(X) = b, X ∈ PSD

are called Semidefinite Programs.

Problems of the form

max〈C,X〉 s.t. A(X) = b, X ∈ CP

or
max〈C,X〉 s.t. A(X) = b, X ∈ COP

are called Copositive Programs, because the primal or the
dual involves copositive matrices.
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Why Copositive Programs ?

Copositive Programs can be used to solve combinatorial
optimization problems.

• Stable Set Problem:
Let A be adjacency matrix of graph, J be all ones matrix.
Theorem (DeKlerk and Pasechnik (SIOPT 2002))

α(G) = max{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ COP}

= min{y : y(A + I)− J ∈ CP}.

This is a copositive program with only one equation (in the
primal problem).
This is a simple consequence of the Motzkin-Strauss
Theorem.
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Proof (1)

1

α(G)
= min{xT (A+ I)x : x ∈ ∆} (Motzkin-Strauss Theorem)

∆ = {x :
∑

i xi = 1, x ≥ 0} is standard simplex. We get

0 = min{xT (A + I −
eeT

α
)x : x ∈ ∆}

= min{xT (α(A + I)− J)x : x ≥ 0}.

This shows that α(A + I)− J is copositive. Therefore

inf{y : y(A + I)− J ∈ CP} ≤ α.
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Proof (2)

Weak duality of copositive program gives:

sup{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ COP} ≤

≤ inf{y : y(A + I)− J ∈ CP} ≤ α.
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Proof (2)

Weak duality of copositive program gives:

sup{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ COP} ≤

≤ inf{y : y(A + I)− J ∈ CP} ≤ α.

Now let ξ be incidence vector of a stable set of size α. The
matrix 1

α
ξξT is feasible for the first problem. Therefore

α ≤ sup{. . .} ≤ inf{. . .} ≤ α.

This shows that equality holds throughout and sup and inf
are attained.
The recent proof of this result by DeKlerk and Pasechnik
does not make explicit use of the Motzkin Strauss Theorem.
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Connections to theta function

Theta function (Lovasz (1979) ):

ϑ(G) = max{〈J,X〉 : xij = 0 ij ∈ E, tr(X) = 1, X � 0} ≥ α(G).

Motivation: If ξ characteristic vector of stable set, then
1

ξT ξ
ξξT is feasible for above SDP.
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Connections to theta function

Theta function (Lovasz (1979) ):

ϑ(G) = max{〈J,X〉 : xij = 0 ij ∈ E, tr(X) = 1, X � 0} ≥ α(G).

Motivation: If ξ characteristic vector of stable set, then
1

ξT ξ
ξξT is feasible for above SDP.

Schrijver (1979) improvement: include X ≥ 0
In this case we can add up the constraints xij = 0 and get

ϑ′(G) = max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X ≥ 0, X � 0}.

(A . . . adjacency matrix). We have ϑ(G) ≥ ϑ′(G) ≥ α(G).
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Connections to theta function

Theta function (Lovasz (1979) ):

ϑ(G) = max{〈J,X〉 : xij = 0 ij ∈ E, tr(X) = 1, X � 0} ≥ α(G).

Motivation: If ξ characteristic vector of stable set, then
1

ξT ξ
ξξT is feasible for above SDP.

Schrijver (1979) improvement: include X ≥ 0
In this case we can add up the constraints xij = 0 and get

ϑ′(G) = max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X ≥ 0, X � 0}.

(A . . . adjacency matrix). We have ϑ(G) ≥ ϑ′(G) ≥ α(G).
Replacing the cone X ≥ 0, X � 0 by X ∈ COP gives α(G),
see before.
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Graph Coloring

Adjacency matrix A of a graph (left), associated partitioning
(right). The graph can be colored with 5 colors.

• M is k-partition matrix if ∃P ∈ Π such that P T MP is direct
sum of k all-ones blocks.
• Number of colors = number of all-ones blocks = rank of M .
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Chromatic number

• M is k partition matrix if ∃P ∈ Π such that P T MP is direct
sum of k all-ones blocks.
• Number of colors = number of all-ones blocks = rank of M .

Therefore chromatic number χ(G) of graph G can be
defined as follows:

χ(G) = min{rank(M) : M is partition matrix,mij = 0 ij ∈ E(G)}.

We need a ’better’ description of k-partition matrices.

Lemma: M is partition matrix if and only if

M = MT , mij ∈ {0, 1}, (tM − J � 0 ⇔ t ≥ rank(M)).
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Proof of Lemma

Proof:

⇒: Nonzero principal minor of tM − J has form

tIs − Js

and s ≤ rank(M). Hence tM − J � 0 iff t ≥ rank(M).

⇐: t 6= 0, therefore mii = 1 (so each vertex in one color
class). We also have M � 0.

mij = mjk = 1 implies mik = 1 because









1 1 0

1 1 1

0 1 1









6� 0.

Therefore M is direct sum of all-ones blocks.
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Chromatic number

Hence

χ(G) = min{rank(M) : M is partition matrix ,mij = 0 ij ∈ E} =

min{t : M = MT ,mij ∈ {0, 1},mij = 0∀ij ∈ E, tM − J � 0},

using the previous lemma.

Leaving out mij ∈ {0, 1} gives SDP lower bound:

χ(G) ≥ min{t : Y−J � 0, yii = t ∀i, yij = 0 ij ∈ E(G)} = ϑ(G).

This gives the second inequality in the Lovasz sandwich
theorem, Lovasz (1979):

ω(G) ≤ ϑ(G) ≤ χ(G).
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Copositive strengthening

χ(G) ≥ min{t : Y − J � 0, yii = t ∀i, yij = 0 ij ∈ E} = ϑ(G).
Note that Y can be interpreted as tM , where M is partition
matrix. By construction, we also have M ∈ COP .
Hence we get the following strenghthening

t′(G) = min{t : Y −J � 0, Y ∈ COP, yii = t ∀i, yij = 0 ij ∈ E}

Dukanovic and R. (2006) show that t′ is equal to the
fractional chromatic number χf (G) of G.

χ(G) ≥ χf (G) = t′(G) ≥ ϑ(G)

Gvozdenovic and Laurent (2007) show that (unless P=NP),
there is no polynomially computable number between χ(G)
and χf (G).
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A general copositive modeling theorem

Burer (2007) shows the following general result for the
power of copositive programming:
The optimal values of P and C are equal: opt(P) = opt(C)

(P ) min xT Qx + cT x

aT
i x = bi, x ≥ 0, xi ∈ {0, 1} ∀i ≤ m.

Here x ∈ IRn and m ≤ n.

(C) min tr(QX) + cT x, s.t. aT
i x = bi,

aT
i Xai = b2

i , Xii = xi ∀i ≤ m,

(

1 xT

x X

)

∈ COP
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Approximating COP

We have now seen the power of copositive programming.

Since optimizing over CP is NP-Hard, it makes sense to get
approximations of CP or COP.

• To get relaxations, we need supersets of COP, or inner
approximations of CP (and work on the dual cone). The
Parrilo hierarchy uses Sum of Squares and provides such
an outer approximation of COP (dual viewpiont!).

•We can also consider inner approximations of COP. This
can be viewed as a method to generate feasible solutions of
combinatorial optimization problems ( primal heuristic!).
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Relaxations

Inner approximation of CP.

CP := {M : xT Mx ≥ 0 ∀x ≥ 0}

Parrilo (2000) and DeKlerk, Pasechnik (2002) use the
following idea to approximate CP from inside:

M ∈ CP iff P (x) :=
∑

ij

x2
i x

2
jmij ≥ 0 ∀x.

A sufficient condition for this to hold is that
P (x) has a sum of squares (SOS) representation.

Theorem Parrilo (2000) : P (x) has SOS iff M = P + N ,
where P � 0 and N ≥ 0.
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Parrilo hierarchy

To get tighter approximations, Parrilo proposes to consider
SOS representations of

Pr(x) := (
∑

i

x2
i )

rP (x)

for r = 0, 1, . . .. (For r = 0 we get the previous case.)
Mathematical motivation by an old result of Polya.

Theorem Polya (1928):
If M strictly copositive then Pr(x) is SOS for some
sufficiently large r.
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Parrilo hierarchy (2)

Parrilo characterizes SOS for r = 0, 1:

P0(x) is SOS iff M = P + N , where P � 0 and N ≥ 0.

P1(x) is SOS iff ∃M1, . . . ,Mn such that

M −Mi � 0

(Mi)ii = 0 ∀i (Mi)jj + 2(Mj)ij = 0 ∀i 6= j

(Mi)jk + (Mj)ik + (Mk)ij ≥ 0 ∀i < j < k

The resulting relaxations are SDP. But the r = 1 relaxation
involves n matrices and n SDP constraints to certify SOS.
This is computationally challenging.
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Computational comparison

We consider Hamming graphs and compare the P0 and the
P1 relaxation of the chromatic number.

graph n r = 0 r = 1 χ

H(7,6) 128 53.33 63.9 64
H(8,6) 256 85.33 127.9 128
H(9,4) 512 51.19 53.9

H(10,8) 1024 383.99 511.9 512
H(12,4) 4096 211.86 255.5

Using the automorphism structure of Hamming graphs, the
general certificate for r = 1 reduces to one additional matrix
and one additional SDP constraint. (Computation time: a
few minutes!) (see Dukanovic, R.: Math Prog (2008))
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Inner approximations of COP

We consider

min〈C,X〉 s.t. A(X) = b, X ∈ COP

Remember: COP= {X : X = V V T , V ≥ 0}.

Some previous work by:
• Bomze, DeKlerk, Nesterov, Pasechnik, others:
Get stable sets by approximating COP formulation of the
stable set problem using optimization of quadratic over
standard simplex, or other local methods.
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Incremental version

A general feasible descent approach:
Let X = V V T with V ≥ 0 be feasible. Consider the
regularized, and convex descent step problem:

min ǫ〈C, ∆X〉+ (1− ǫ)‖∆X‖2,

such that A(∆X) = 0, X + ∆X ∈ COP.
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Incremental version

A general feasible descent approach:
Let X = V V T with V ≥ 0 be feasible. Consider the
regularized, and convex descent step problem:

min ǫ〈C, ∆X〉+ (1− ǫ)‖∆X‖2,

such that A(∆X) = 0, X + ∆X ∈ COP.

For small ǫ > 0 we approach the true optimal solution,
because we follow the continuous steepest descent path,
projected onto COP.

Unfortunately, this problem is still not tractable. We
approximate it by working in the V -space instead of the
X-space.
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Incremental version: V -space

X+ = (V + ∆V )(V + ∆V )T hence ,

X = V V T

∆X = ∆X(∆V ) = V ∆V T + ∆V V T + (∆V )(∆V T ).

Now linearize and make sure ∆V is small.
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Incremental version: V -space

X+ = (V + ∆V )(V + ∆V )T hence ,

X = V V T

∆X = ∆X(∆V ) = V ∆V T + ∆V V T + (∆V )(∆V T ).

Now linearize and make sure ∆V is small. We get

min ǫ〈2CV, ∆V 〉+ (1− ǫ)‖∆V ‖2 such that

〈2Ai, ∆V 〉 = bi − 〈AiV, V 〉 ∀i,

V + ∆V ≥ 0

This is convex approximation of nonconvex version in
∆X(∆V ).
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Correcting the linearization

The linearization obtained by replacing ∆X(∆V ) with
V ∆V T + ∆V V T introduces an error both in the cost function
and in the constraints A(X) = b.

We therefore include corrector iterations of the form

∆V = ∆Vold + ∆Vcorr

before actually updating V ← V + ∆V.
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Convex quadratic subproblem

The convex subproblem is of the following form, after
appropriate redefinition of data and variables
x = vec(V + ∆V ), . . ..

min cT x + ρxT x such that Rx = r, x ≥ 0.
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Convex quadratic subproblem

The convex subproblem is of the following form, after
appropriate redefinition of data and variables
x = vec(V + ∆V ), . . ..

min cT x + ρxT x such that Rx = r, x ≥ 0.

If V is n× k (k columns generating V ), x if of dimension nk
and there are m equations.
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Convex quadratic subproblem

The convex subproblem is of the following form, after
appropriate redefinition of data and variables
x = vec(V + ∆V ), . . ..

min cT x + ρxT x such that Rx = r, x ≥ 0.

If V is n× k (k columns generating V ), x if of dimension nk
and there are m equations.
Since Hessian of cost function is identity matrix, this
problem can be solved efficiently using interior-point
methods. (convex quadratic with sign constraints and linear
equations)

Main effort is solving a linear system of order m, essentially
independent of n and k.
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Test data sets

COP problems coming from formulations of NP-hard
problems are too difficult ( Stable Set, Coloring, Quadratic
Assignment) to test new algorithms.

Would like to have:

Data (A, b, C) and (X, y, Z) such that
• (X, y, Z) is optimal for primal and dual (no duality gap).
• COP is nontrivial (optimum not given by optimizing over
semidefiniteness plus nonnegativity )
• generate instances of varying size both in n and m.

Hard part: Z provably copositive !!
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A COP generator

Basic idea: Let G be a graph, with QG = A + I, and
(XG, yG, ZG) be optimal solution of

ω(G) = max〈J,X〉 such that 〈QG, X〉 = 1, X ∈ COP

= min y such that yQG − J ∈ CP.

We further assume:
• G = H ∗K (strong graph product of H and K).
• K is perfect and H = C5 (or some other graph with known
clique number and ω(G) < ϑ′(G)).

This implies:
• ω(G) = ω(H)ω(K) (same for ϑ′)
• Max cliques in G through Kronecker products from H,K.
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COP generator (2)

Then we have:

• yG := ω(H)ω(K) implies ZG = yGQG − J ∈ CP .

• Let XH and XK convex combinations of outer products of
characteristic vectors of max cliques in H and K. This
implies that XG = XH ⊗XK ∈ COP is primal optimal.

• Select m and Matrix A of size m× n2 and set b = A(XG).

• Set C := ZG − AT (yG).

This implies that (XG, yG, ZG) is optimal for the data set
A, b, C and that there is no duality gap, and the problem is
nontrivial, because of ω(G) < ϑ′(G). Therefore

min{. . . , X ∈ COP} > min{. . . , X ∈ PSD ∩N}

Optimization and Applications Seminar – p.39/46



Computational results

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it |b-A(X)| f(x)
1 0.002251 -68.7274
5 0.000014 -69.5523

10 0.000001 -69.6444
15 0.000001 -69.6887
20 0.000000 -69.6963

The number of inner iterations was set to 5, column 1
shows the outer iteration count.
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Computational results

A sample instance with n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it |b-A(X)| f(x)
1 0.002251 -68.7274
5 0.000014 -69.5523

10 0.000001 -69.6444
15 0.000001 -69.6887
20 0.000000 -69.6963

The number of inner iterations was set to 5, column 1
shows the outer iteration count.

But starting point: V 0 = .95 Vopt + .05 rand
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Computational results (2)

Example (continued). recall n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

start iter |b-A(X)| f(x)
(a) 20 0.000000 -69.696
(b) 20 0.000002 -69.631
(c) 50 0.000008 -69.402

Different starting points:
(a) V = ,95 * Vopt + .05 * rand
(b) V = .90 * Vopt + .10 * rand
(c) V = rand(n, 2n)
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Random Starting Point

Example (continued), n = 60, m = 100.
zsdp = −9600, 82, zsdp+nonneg = −172.19, zcop = −69.75

it |b-A(X)| f(x)
1 6.121227 1831.5750
5 0.021658 101.1745

10 0.002940 -43.4477
20 0.000147 -67.0989
30 0.000041 -68.7546
40 0.000015 -69.2360
50 0.000008 -69.4025

Starting point: V 0 = rand(n, 2n)
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More results

n m opt found ‖b− A(X)‖

50 100 314.48 314.90 4 10−5

60 120 -266.99 -266.48 4 10−5

70 140 -158.74 -157.55 3 10−5

80 160 -703.75 -701.68 5 10−5

100 100 -659.65 -655.20 8 10−5

Starting point in all cases: rand(n,2n)
Inner iterations: 5
Outer iterations: 30
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Some experiments with Stable Set

max〈J,X〉 such that tr(X) = 1, tr(AGX) = 0, X ∈ COP

Only two equations but many local optima. We consider a
selection of graphs from the DIMACS collection.
Computation times in the order of a few minutes.

name n ω clique found
keller4 171 11 9

brock200-4 200 17 14
c-fat200-1 200 12 12
c-fat200-5 200 58 58

brock400-1 400 27 24
p-hat500-1 500 9 8
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Last Slide

We have seen the power of copositivity.

Relaxations: The Parrilo hierarchy is computationally too
expensive. Other way to approximate CP?

Heuristics: Unfortunately, the subproblem may have local
solutions, which are not local minima for the original
descent step problem.

The number of columns of V does not need to be larger
than

(

n+1

2

)

, but for practical purposes, this is too large.

Further technical details in a forthcoming paper by I.
Bomze, F. Jarre and F. R.: Quadratic factorization heuristics
for copositive programming, technical report, (2008).
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