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Abstract

When liquidating a portfolio of large blocks of risky assets, an institutional investor wants to minimize
the cost as well as the risk of execution. An optimal execution strategy minimizes a weighted combination
of the expected value and the variance of the execution cost, where the weight is given by a nonnegative
risk aversion parameter. The execution cost is determined from price impact functions. In particular, a
linear price impact model is defined by the temporary impact matrix Ω and the permanent impact matrix
Γ, which represent the expected price depression caused by trading assets at a unit rate. In this paper,
we analyze the sensitivity of the optimal execution strategy to estimation errors in the impact matrices
under a linear price impact model. We show that, instead of depending on Ω and Γ individually, the
optimal execution strategy is determined by the combined impact matrix Θ = 1

τ

(
Ω + ΩT

) − Γ, where
τ is the time length between consecutive trades. We prove that the minimum expected execution cost
strategy is the naive execution strategy, independent of perturbations, when the permanent impact
matrix Γ is symmetric and the combined impact matrix Θ is positive definite. We provide upper bounds
on the size of change in the optimal execution strategy in a general setting. These upper bounds are
in terms of the changes in the impact matrices, the eigenvalues of a block tridiagonal matrix defined
by Θ, the risk aversion parameter, and the covariance matrix. These upper bounds indicate that, when
the covariance matrix is positive definite, a large risk aversion parameter reduces the sensitivity of the
optimal execution strategy. Moreover, when the permanent impact matrix Γ and its perturbation are
symmetric, the optimal execution strategy is asymptotically not sensitive to estimation errors when
either the minimum eigenvalue of the covariance matrix or the minimum eigenvalue of Θ is large. In
addition, our computational results confirm that the sensitivity of the optimal execution strategy to the
perturbations decreases, when Γ and the perturbed permanent impact matrix are symmetric. Moreover,
the change in the efficient frontier increases as the risk aversion parameter decreases for asymmetric
perturbations. We consistently observe that imposing short selling constraints reduces the sensitivity of
the optimal execution strategy and the efficient frontier to the perturbations.

Keywords: price impact, execution cost problem, estimation error, sensitivity analysis

1 Introduction

Portfolio management of large trades is one of the most important problems in modern market microstruc-
ture theory (O’Hara (1998)). When an investor trades in large volumes, in addition to explicit costs such as
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brokerage, he faces some implicit execution costs. These costs mainly consist of liquidity costs and informa-
tion effects transmitted by the size of the investor’s own trade. Liquidity costs include the additional prices
an investor pays for immediate execution of the trade (Focardi and Fabozzi (2004)); this is often called the
temporary price impact and only affects the execution price at the moment of trading. Furthermore, the
imbalance between supply and demand, due to the investor’s trade, usually transmits some information to
the market which can move the future market price. For example, selling a large block of some asset may
suggest that the seller believes that the asset is overvalued. The effect of this information is often referred to
as the permanent price impact. The total price impact is the accumulation of the temporary and permanent
price impacts.

The distinction between temporary and permanent price impacts associated with large trades and their
characteristics have been addressed broadly in the literature, e.g., see Huberman and Stanzl (2004) and the
references herein. A common result in all of these studies is that the magnitude of the price impact is a
function of the trading rate. This function is usually called the price impact function and has been widely
used in the microstructure literature since the work of Kyle (1985). The expected price impact function is
typically estimated through a linear or nonlinear regression based on the available historical data, e.g., see
Huberman and Stanzl (2004), Almgren et al. (2005).

Due to the dependence of the price impact on the trading volume, portfolio managers usually split a large
trade into some smaller partial orders, i.e., packages. They then submit these partial orders over several
periods during a finite time horizon. Such a sequence of orders submitted during a number of periods is
called an execution strategy. There are many possible execution strategies to complete a desired trade. Note
that the execution cost associated with an execution strategy is typically random since the future execution
price is uncertain. In this paper, we consider the execution cost problem which, for a given price impact
function, yields an execution strategy which minimizes a weighted linear combination of the mean and the
variance of the execution cost.

The execution cost problem shares a similar mathematical structure with the traditional multi-period
mean-variance portfolio optimization problem when a transaction cost is associated with rebalancing the
portfolio. In both problems, given some fixed number of investment periods and the initial state of the
portfolio, the goal is to produce a sequence of trades that maximizes some expected utility of the final wealth.
However, in the multi-period mean-variance portfolio optimization problem, the permanent price impact of
the trade at each period on the subsequent prices is typically not considered. Moreover, the execution cost
problem includes a specific constraint on the investor’s position at the end of the time horizon, i.e., the
investor’s position in each asset at the end of the time horizon must be zero.

The similarity of the execution cost problem to the mean-variance portfolio optimization problem moti-
vates the notion of an efficient frontier in the context of the execution cost problem. A feasible execution
strategy is efficient if it has the least expected execution cost among all execution strategies with the same
variance of the execution cost. The collection of efficient execution strategies form the efficient frontier of
the execution strategy universe.

The sensitivity of mean-variance efficient portfolios to estimation errors in the expected returns and the
covariance matrix has been widely noted in the literature, e.g., see Jobson and Korkie (1980), Kallberg
and Ziemba (1984), Frost and Savarino (1988), Michaud (1989), Best and Grauer (1991), Broadie (1993),
Chopra and Ziemba (1993), Chen and Zhao (2003). However, to the best of our knowledge, the sensitivity
of the optimal execution strategy and efficient frontier to estimation errors in the price impact function has
not been addressed yet. For the mean-variance portfolio optimization, the difficulty in accurate estimation
of the expected rate of returns is well known. Simultaneous estimation of the expected temporary and
permanent price impacts of concurrent trades is more complex and likely to be less accurate than estimation
of the expected returns, e.g., see Torre (1997). Therefore, it is important to understand the sensitivity
of an optimal execution strategy and the efficient frontier to any error in parameters of the price impact
function. Recognizing the effect of estimation errors may provide more realistic expectations about the
future performance of a chosen execution strategy.

A common approach to investigate the effect of estimation errors is to interpret the errors as perturbations
to the data and to perform a sensitivity analysis on the optimal solution. Sensitivity discussions are essential
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in model validation. In this paper, we carry out sensitivity analysis to study the effect of estimation errors
in parameters of the price impact function. Our main goals here are to explore how different an optimal
execution strategy obtained from the estimated price impact function is from the true optimal execution
strategy, and how far away the obtained efficient frontier is from the true efficient frontier.

In this paper, we consider linear time-independent price impact functions in which price impacts are
assumed to be proportional to the trading volume. Linear price impact functions are defined by the tempo-
rary impact matrix Ω and the permanent impact matrix Γ. These impact matrices are the expected price
depression caused by trading assets at a unit rate. Linear price impact functions have been well-studied in
the market microstructure literature, e.g., see Kyle (1985), Bertsimas and Lo (1998), Bertsimas et al. (1999),
Almgren and Chriss (2000), Huberman and Stanzl (2004). Huberman and Stanzl (2004) demonstrate that
nonlinear permanent price impact functions can give rise to the availability of a sequence of trades that
generates infinite expected profits per unit of risk. In addition, although the type and size of the price im-
pacts are different for buys and sells, and there is an asymmetry in the overall impact of buys and sells, e.g.,
see Holthausen et al. (1987), Chan and Lakonishok (1993), their mathematical models are similar. Hence,
without loss of generality, our presentation in this paper assumes that the investor’s goal is to liquidate
blocks of assets. Our discussion is based on the price impact model in Almgren and Chriss (2000).

Estimation errors can occur in both the covariance matrix and impact matrices. However, estimation
errors in the impact matrices are expected to be much larger than estimation errors in the covariance matrix.
Therefore, in this study, we assume that the covariance matrix is given and focus on the sensitivity of the
optimal execution strategy and efficient frontier to perturbations in the impact matrices. We first show
that, under the assumed linear price impact model, the optimal execution strategy depends on the combined
impact matrix Θ = 1

τ

(
Ω + ΩT

) − Γ, rather than Ω and Γ individually. Here τ is the time length between
consecutive trades. This suggests that one may want to estimate Θ directly in order to determine an optimal
execution strategy. In addition, we prove that when the permanent impact matrix is symmetric and the
combined impact matrix is positive definite, a unique optimal execution strategy exists for any positive risk
aversion parameter.

We discuss some cases in which the optimal execution strategy is insensitive to perturbations in the
impact matrices. In particular, we prove that, for any symmetric permanent impact matrix and positive
definite Θ, the naive execution strategy of liquidating an equal amount in each period minimizes the expected
execution cost. Therefore, as long as the symmetry of the permanent impact matrix Γ is maintained, the
minimum expected execution cost strategy is not sensitive to perturbations.

We then analyze the sensitivity of the optimal execution strategy when the risk aversion parameter is
positive or the permanent impact matrix is asymmetric. Since the impact matrices appear both in the
Hessian matrix and the linear coefficient of the quadratic objective function for the execution cost problem,
the optimal execution strategy in general may be quite sensitive to their perturbations. We show that the
optimal execution strategy is Lipschitz continuous in the impact matrices and provide upper bounds on the
size of the change in the optimal execution strategy. These upper bounds are represented in terms of the
change in the impact matrices and a magnification factor, which is essentially the Lipschitz constant. We
also present upper bounds for the magnification factors. These upper bounds explicitly specify which factors
may magnify the effect of estimation errors on the optimal execution strategy. For example, following the
established upper bounds, it can be easily seen that the change in the optimal execution strategy decreases
when a large risk aversion parameter is chosen. In general, upper bounds for the magnification factors
depend on the eigenvalues of the block tridiagonal Hessian matrix defined by the covariance matrix, the
impact matrices, and the risk aversion parameter. The upper bounds can be simplified when the permanent
impact matrix and its perturbation are symmetric. Under these assumptions and the additional assumption
of a positive risk aversion parameter, the magnification factor becomes small, for small perturbations, when
the minimum eigenvalue of either the covariance matrix or the combined impact matrix Θ is large. When
both of these minimum eigenvalues are small, the optimal execution strategy may be very sensitive to the
estimation errors. These results implicitly evince that the optimal execution strategy for trading a single
asset is expected to be less sensitive than the optimal strategy for trading portfolios.

We also illustrate the sensitivity of the efficient frontier to perturbations in the impact matrices through
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simulations. Our computational results demonstrate that, when short selling is prohibited, the optimal
execution strategy and efficient frontier are less sensitive than the case when short selling is permitted.
Indeed, when short selling is allowed, the efficient frontier can be quite sensitive to perturbations in the
impact matrices. In particular, when the permanent impact matrix is symmetric, changes in the efficient
frontier can become very significant for a small risk aversion parameter if perturbations in the permanent
impact matrix are asymmetric. We also observe that, for the minimum variance execution cost strategies,
estimation errors can lead to large variations in the expected execution cost. On the other hand, the
variance of the execution cost for the minimum expected execution cost strategy can change significantly.
Our sensitivity analysis is restricted to the execution cost problems and perturbations for which both the
original problem and perturbed problems have unique optimal solutions.

The presentation of the paper is as follows. The mathematical formulation of the execution cost problem
is described in §2. We discuss, in §3, the sensitivity of the optimal execution strategy to perturbations in
the impact matrices and provide upper bounds on the size of its change. Simulations are carried out in §4
to illustrate the effect of perturbations in the impact matrices on the efficient frontier and optimal execution
strategy. Concluding remarks are given in §5.

Throughout the paper, we use the following notations. Vectors and matrices are denoted respectively by
lower and uppercase letters. We use Ik to represent a k × k identity matrix. We denote the matrix of all
zeros with the appropriate dimension by 0. Throughout, ek denotes a column vector with the appropriate
dimension which is zero everywhere except that, at the kth entry, the value equals one. The subscripts of
matrices show their dimensions. We use A º 0 and A Â 0 to denote (not necessarily symmetric) positive
semidefiniteness and positive definiteness respectively. Moreover, for a given vector x, we use x ≥ 0 to
mean x has nonnegative elements. By ‖A‖2 and κ2(A), we mean the Euclidean norm and the condition
number with respect to the Euclidean norm of the matrix A. For a symmetric matrix A, λi(A) denotes the
ith eigenvalue of A when the eigenvalues are numbered in a nondecreasing order. Moreover, λmax(A) and
λmin(A) stand for the maximum and minimum eigenvalues of A respectively. The Kronecker product of two
matrices Am×n and Bp×q is denoted by the mp × nq matrix A ⊗ B. For the properties of the Kronecker
product, a reader is referred to §4.5.5 in Golub and Loan (1996).

2 The Portfolio Execution Cost Problem

Assume that an investor plans to liquidate his holdings in m assets during N periods in the time horizon T ,
t0 = 0 < t1 < · · · < tN = T , where τ

def= tk − tk−1 = T
N for k = 1, 2, . . . , N . The investor’s position at time

tk is denoted by the m-vector xk = (x1k, x2k, . . . , xmk)T , where xik is the investor’s holding in the ith asset
at period k. The investor’s initial position is x0 = S̄, and his final position xN equals 0, which guarantees
complete liquidation by time T . The difference between the positions of two successive periods k − 1 and
k is denoted by an m-vector nk = xk−1 − xk for k = 1, 2, . . . , N . Negative nik implies that the ith asset
is bought between tk−1 and tk. We refer to a sequence {nk}N

k=1 satisfying
∑N

k=1 nk = S̄ as an execution
strategy. Similarly, {xk}N

k=0 with xN = 0 is referred to as an execution position.
Let P̃k be the execution price of one unit of assets at time tk for k = 1, 2, . . . , N . The deterministic initial

market price, before the trade begins, is denoted by P0. Due to the price volatility, P̃k is not deterministic
over the execution horizon. In this paper, we assume that the execution price P̃k is given by

P̃k = Pk−1 − h
(nk

τ

)
, k = 1, 2, . . . , N, (1)

where the market price Pk evolves according to the discrete arithmetic random walk,

Pk = Pk−1 + τ1/2Σξk − τg
(nk

τ

)
. (2)

Here ξk = (ξ1k, ξ2k, ..., ξlk)T represents an l-vector of independent standard normals and Σ is an m × l
volatility matrix of the asset prices. The functions g(.) and h(.) measure the expected permanent price
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impact and temporary price impact respectively. In each interval (tk−1, tk], let price impacts be proportional
to the trading rate v = nk

τ . Then we have the following price impact model

g(v) = Γv,

h(v) = Ωv,
(3)

where the m-by-m matrix Γ is the permanent impact matrix and Ω is the temporary impact matrix. The
temporary impact matrix Ω is not necessarily symmetric but needs to be positive semidefinite in order to
exclude arbitrage opportunities. Otherwise the existence of a vector v 6= 0 with vT Ωv < 0 suggests that
trading at the rate v makes a net profit from instantaneous market impact, e.g., see Almgren and Chriss
(2000).

The execution cost of the trade is often defined as PT
0 S̄ −∑N

k=1 nT
k P̃k. Hence, the mean-variance formu-

lation of the execution cost problem with the risk aversion parameter µ ≥ 0 is

min
n1,n2,...,nN

E

(
PT

0 S̄ −
N∑

k=1

nT
k P̃k

)
+ µ ·Var

(
PT

0 S̄ −
N∑

k=1

nT
k P̃k

)
(4)

s.t.
N∑

k=1

nk = S̄,

nk ≥ 0, k = 1, 2, . . . , N,

where E(·) and Var(·) denote the expectation and the variance of a random variable respectively. In terms
of the execution positions {xk}N

k=0, the portfolio execution cost problem becomes

min
x0,x1,x2,...,xN

E

(
PT

0 S̄ −
N∑

k=1

(xk−1 − xk)T P̃k

)
+ µ ·Var

(
PT

0 S̄ −
N∑

k=1

(xk−1 − xk)T P̃k

)
(5)

s.t. x0 = S̄,

xN = 0,

xk−1 ≥ xk, k = 1, 2, . . . , N.

A large value of µ corresponds to the investor’s small tolerance to risk. These problems can be modified to
reflect regulation constraints or the investor’s preferences on the trading volumes. We refer to an optimal
solution of Problem (4) and Problem (5) as an optimal execution strategy and optimal execution position
respectively. In both of the aforementioned problems, the inequality constraints rule out short sales.

For any execution strategy {nk}N
k=1 and its associated execution position {xk}N

k=0, applying the price
impact model (3) and the execution price dynamic model (1), we obtain

N∑

k=1

nT
k P̃k = S̄T P0 +

N∑

k=1

τ
1
2 xT

k Σξk − τ

N∑

k=1

xT
k g

(nk

τ

)
−

N∑

k=1

nT
k h

(nk

τ

)
. (6)

Thus the variance of the execution cost equals

Var

(
PT

0 S̄ −
N∑

k=1

nT
k P̃k

)
= τ

N∑

k=1

xT
k Cxk,

where the m × m symmetric positive semidefinite matrix C is the covariance matrix of asset prices, i.e.,
C = ΣΣT .
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¿From (6), the expected execution cost can be expressed as below:

E

(
PT

0 S̄ −
N∑

k=1

nT
k P̃k

)
=

N∑

k=1

xT
k Γnk +

N∑

k=1

nT
k Ω

nk

τ

=
N∑

k=1

xT
k Γ(xk−1 − xk) +

N∑

k=1

1
τ

(xk − xk−1)
T Ω (xk − xk−1)

=
N∑

k=1

xT
k

(
1
τ

Ω− Γ
)

xk +
N∑

k=1

xT
k

(
Γ− 1

τ
Ω

)
xk−1 −

N∑

k=1

1
τ

xT
k−1Ωxk +

N∑

k=2

1
τ

xT
k−1Ωxk−1 +

1
τ

xT
0 Ωx0

=
1
τ

S̄T ΩS̄ − 1
τ

xT
NΩxN +

N∑

k=1

xT
k

(
2
τ

Ω− Γ
)

xk +
N∑

k=1

xT
k

(
Γ− 1

τ

(
Ω + ΩT

))
xk−1. (7)

Define
L

def=
2
τ

Ω− Γ + µτC, and Θ def=
1
τ

(
Ω + ΩT

)− Γ. (8)

Subsequently, we refer to Θ as the combined impact matrix. Clearly,

L + LT =
2
τ

(Ω + ΩT )− (Γ + ΓT ) + 2µτC = (Θ + ΘT ) + 2µτC.

Using these notations, we obtain

E

(
PT

0 S̄ −
N∑

k=1

(xk−1 − xk)T P̃k

)
+ µ ·Var

(
PT

0 S̄ −
N∑

k=1

(xk−1 − xk)T P̃k

)

=
1
τ

S̄T ΩS̄ − 1
τ

xT
NΩxN +

N∑

k=1

xT
k Lxk −

N∑

k=1

xT
k Θxk−1

=
1
τ

S̄T ΩS̄ − 1
τ

xT
NΩxN +

N∑

k=1

1
2

(
xT

k Lxk + xT
k LT xk

)−
N∑

k=1

1
2

(
xT

k Θxk−1 + xT
k−1Θ

T xk

)

=
1
τ

S̄T ΩS̄ − 1
τ

xT
NΩxN +

N∑

k=1

1
2
xT

k

(
L + LT

)
xk −

N∑

k=1

1
2

(
xT

k Θxk−1 + xT
k−1Θ

T xk

)
. (9)

To simplify the representation of the constraints in Problem (5), we introduce the sequence of square
matrices {Gk}+∞k=1, where G1 = (1) and

G2 =

(
1 −1
0 1

)
, G3 =




1 −1 0
0 1 −1
0 0 1


 , Gk =




Gk−1




0
· · ·
0
−1




0 1




for k ≥ 2. (10)

Using the Kronecker product, eliminating the constant term 1
τ S̄T ΩS̄ from the objective function, and ex-

plicitly imposing xN = 0 and x0 = S̄, Problem (5) is reduced to the following problem:

min
z∈Rm(N−1)

1
2
zT W (Ω,Γ, µ)z + bT (Ω, Γ)z, (11)

s.t. (−eT
1 ⊗ Im)z ≥ −S̄,

(GN−1 ⊗ Im)z ≥ 0.
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The m(N −1)×m(N −1) symmetric tridiagonal block matrix W (Ω, Γ, µ), and the m(N −1)-vectors b(Ω,Γ)
and z are defined as follows:

W (Ω, Γ, µ) def=




L + LT −ΘT 0 . . . 0
−Θ L + LT −ΘT . . . 0
0 −Θ L + LT 0
...

...
...

...
0 0 0 . . . L + LT




, b(Ω, Γ) def=




−ΘS̄

0
...
0




, z
def=




x1

x2

...
xN−1




.

Similar to the mean-variance portfolio optimization problem, the execution cost problem (11) is a
quadratic programming problem. However, in contrast to the mean-variance portfolio optimization problem
in which the expected return appears only in the linear term of the quadratic objective, in the execution cost
problem (11) the impact matrices appear in both the quadratic term and the linear term of the objective
function in a structured fashion. Therefore sensitivity analysis restricted to perturbations in the linear term
of the quadratic objective function, e.g., see Best and Grauer (1991), is not applicable in this context. It is
necessary to explicitly analyze the effect of estimation errors in the impact matrices for the execution cost
problem.

The quadratic programming problem (11) is convex if and only if W (Ω, Γ, µ) º 0. When the variance of
the execution cost is not considered, the minimum expected execution cost problem corresponds to Problem
(11) with µ = 0. In Problem (11), constraints appear only when short selling is not permitted, which implies
0 ≤ xN−1 ≤ . . . ≤ x2 ≤ x1 ≤ S̄. When short selling is allowed, the execution cost problem is reduced to the
following unconstrained quadratic minimization problem:

min
z∈Rm(N−1)

1
2
zT W (Ω,Γ, µ)z + bT (Ω, Γ)z. (12)

When W (Ω, Γ, µ) is not positive semidefinite, Problem (12) has no local minima. If W (Ω,Γ, µ) is pos-
itive semidefinite but singular, Problem (12) has either no solution or infinitely many solutions. Prob-
lem (12) has a unique minimizer if and only if W (Ω, Γ, µ) Â 0. The unique minimizer in this case is
z∗ = −W−1(Ω, Γ, µ)b(Ω,Γ).

When short selling is prohibited, the set of feasible solutions of Problem (11),
{
(xT

1 , ..., xT
N )T : S̄ ≥ x1, xk−1 ≥ xk for k = 2, 3, . . . , N − 1, xN−1 ≥ 0

}
,

is compact. Therefore, the Weierstrass Theorem along with the continuity of the objective function of
Problem (11), implies that Problem (11) has a global minimizer. Moreover, positive definiteness of W (Ω,Γ, µ)
guarantees that the global minimizer is unique.

Since one expects a unique optimal execution strategy under a reasonable price impact model (whether
short selling is permitted or not), assuming W (Ω, Γ, µ) is positive definite seems appropriate for a linear
price impact model (3). This assumption guarantees that both Problems (11) and (12) have unique optimal
solutions.

The representation of Problem (11) indicates that the optimal execution strategy only depends on the
combined impact matrix Θ = 1

τ (Ω + ΩT )−Γ rather than matrices Ω and Γ individually. This suggests that,
in order to decrease estimation errors, one may want to estimate Θ directly. In particular, the estimation
method in Almgren et al. (2005) can be modified to directly estimate Θ.

In the following lemma, we show that when the permanent impact matrix Γ is symmetric, positive
definiteness of Θ is a necessary and sufficient condition for the positive definiteness of W (Ω, Γ, 0). Symmetric
permanent impact matrices, e.g., diagonal matrices, have been used in the literature on the execution cost
problem, see, e.g., Almgren and Chriss (2000) and Almgren et al. (2005).

Lemma 2.1. Let the permanent impact matrix Γ be symmetric. Then W (Ω, Γ, 0) º 0 (W (Ω,Γ, 0) Â 0) if
and only if Θ º 0 (Θ Â 0).
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Proof. When Γ is symmetric, Θ = ΘT . For any real m(N − 1)-vector h = (hT
1 , hT

2 , ..., hT
N−1)

T ,

hT W (Ω,Γ, 0)h = −
N−2∑

i=1

hT
i+1Θhi +

N−1∑

i=1

hT
i Θhi +

N−1∑

i=1

hT
i Θhi −

N−2∑

i=1

hT
i Θhi+1

= hT
1 Θh1 −

N−2∑

i=1

hT
i+1Θ(hi − hi+1) +

N−2∑

i=1

hT
i Θ(hi − hi+1) + hT

N−1ΘhN−1

= hT
1 Θh1 +

N−2∑

i=1

(hi+1 − hi)T Θ(hi+1 − hi) + hT
N−1ΘhN−1. (13)

If Θ º 0, each term in (13) is nonnegative. Thus hT W (Ω,Γ, 0)h ≥ 0 and consequently W (Ω,Γ, 0) º 0. The
other direction of the statement follows from the fact that 2Θ is a leading principle submatrix of W (Ω, Γ, 0).
Therefore (symmetric) positive semidefiniteness of W (Ω, Γ, 0) implies Θ º 0.

For any µ ≥ 0, W (Ω, Γ, µ) = 2µτIN−1 ⊗ C + W (Ω, Γ, 0). Hence, when the permanent impact matrix Γ
is symmetric and Θ º 0, Lemma 2.1 implies that the matrix W (Ω,Γ, µ) º 0 for any µ ≥ 0.

Thus whether short selling is permitted or not, the uniqueness of the optimal execution strategy for any
risk aversion parameter µ ≥ 0 is guaranteed when Θ Â 0 and Γ = ΓT . In the next proposition, we show that
under these assumptions, the execution strategy that minimizes the expected execution cost (µ = 0) can be
found explicitly. Surprisingly, it is independent of the values of the impact matrices.

Proposition 2.1. Let the permanent impact matrix Γ be symmetric. Then, whether short selling is allowed
or not, the naive execution strategy n∗k = S̄

N , k = 1, 2, . . . , N , is the unique execution strategy that minimizes
the expected execution cost if and only if Θ Â 0.

Proof. The assumption ΓT = Γ implies ΘT = Θ. Consequently W (Ω, Γ, 0) = (GN−1 + GT
N−1) ⊗Θ. Firstly

we consider the situation when short selling is allowed, i.e., Problem (12) with µ = 0. A direct use of Lemma
2.1 implies that Problem (12) with µ = 0 has a unique optimal solution if and only if Θ Â 0. Applying
properties of the Kronecker product, this unique solution equals

z∗ = −W−1(Ω,Γ, 0)b(Ω, Γ) =
((

GN−1 + GT
N−1

)−1 ⊗Θ−1
) (

e1 ⊗ΘS̄
)

=
((

GN−1 + GT
N−1

)−1
e1

)
⊗ S̄.

Recall that e1 = (1, 0, · · · , 0)T . Applying the explicit representation of the inverse of the tridiagonal matrix
GN−1 + GT

N−1, e.g., see Fonseca (2007), we have

(
GN−1 + GT

N−1

)−1
e1 =

(
N − 1

N
,
N − 2

N
, · · · ,

1
N

)T

.

Hence, the minimum expected execution cost position is {x∗k}N
k=0 =

{
(N−k)

N S̄
}N

k=0
, which corresponds to

the naive execution strategy n∗k = S̄
N , k = 1, · · · , N . Since this solution satisfies the constraints of Problem

(11), it is also the unique minimum expected execution strategy when short selling is prohibited.

Therefore, the minimum expected execution cost strategy is always the naive execution strategy of trading
a constant number of shares per period, under the assumptions that the permanent impact matrix Γ is
symmetric and Θ is positive definite. Thus, the minimum expected execution cost strategy is insensitive to
any change in the impact matrices as long as the perturbation maintains the strict convexity of the objective
function and the symmetry in the permanent impact matrix.

When short selling is permitted, the optimal execution strategy is the solution to a linear system with
the coefficient matrix W (Ω,Γ, µ). Thus it is important to analyze the condition number of this matrix.
Moreover, as we show subsequently in §3, sensitivity of the optimal execution strategy to perturbations in
the impact matrices depends on the eigenvalues of W (Ω,Γ, µ). In the rest of this section, we analyze the
condition number and the minimum eigenvalue of the matrix W (Ω,Γ, µ). We apply the following result from
Kulkarni et al. (1999) in our discussion.
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Lemma 2.2. Let N ≥ 2. Then the eigenvalues of GN−1+GT
N−1 satisfy λi

(
GN−1 + GT

N−1

)
= 2

(
1− cos

(
iπ
N

))
for i = 1, 2, . . . , N − 1.

A direct consequence of Lemma 2.2 is

κ2

(
GN−1 + GT

N−1

)
=

λmax

(
GN−1 + GT

N−1

)

λmin

(
GN−1 + GT

N−1

) =
1− cos

(
(N−1)π

N

)

1− cos
(

π
N

) =
1 + cos

(
π
N

)

1− cos
(

π
N

) = cot2
( π

2N

)
. (14)

Since W (Ω,Γ, µ) = 2µτIN−1 ⊗ C + W (Ω,Γ, 0) and the matrices C and W (Ω, Γ, 0) are symmetric, the
Courant-Fischer Theorem, e.g., see Theorem 8.1.2 in Golub and Loan (1996), implies that

λmin(W (Ω,Γ, µ)) ≥ 2µτλmin(C) + λmin(W (Ω,Γ, 0)). (15)

When Γ is symmetric, this lower bound can be stated explicitly in terms of the combined impact matrix Θ:

Corollary 2.1. Let N ≥ 2 and the permanent impact matrix Γ be symmetric. Then

λmin (W (Ω, Γ, µ)) ≥ 2µτλmin(C) + 4 sin2
( π

2N

)
λmin(Θ).

In addition, the equality holds when µ = 0.

Proof. When Γ is symmetric, W (Ω, Γ, 0) can be represented as the Kronecker product of the matrices(
GN−1 + GT

N−1

)
and Θ. Thus

λmin(W (Ω, Γ, 0)) = λmin

(
GN−1 + GT

N−1

)
λmin(Θ) = 2

(
1− cos

( π

N

))
λmin(Θ).

This result, along with inequality (15), completes the proof.

In the next proposition, we investigate how κ2(W (Ω, Γ, µ)) depends on the condition number of the
covariance matrix and the combined impact matrix Θ.

Proposition 2.2. Let W (Ω, Γ, 0) Â 0 and N ≥ 2. Then

(a) κ2(W (Ω,Γ, 0)) ≥ cot2
(

π
2N

)
κ2(Θ + ΘT ).

(b) If, in addition, Γ is symmetric, then

κ2(W (Ω,Γ, 0)) = cot2
( π

2N

)
κ2(Θ). (16)

(c) Assume C Â 0. Then κ2(W (Ω,Γ, µ)) ≤ κ2(C) + κ2(W (Ω,Γ, 0)) for any µ ≥ 0.

Proof. (a) To prove part (a), we use the fact that the matrices W (Ω, Γ, 0) and W (Ω, ΓT , 0) have identical
eigenvalues. More precisely, (rT

1 , rT
2 , ..., rT

N−1)
T is an eigenvector of W (Ω, Γ, 0) associated with the eigenvalue

λ if and only if (rT
N−1, r

T
N−2, ..., r

T
1 )T is an eigenvector of W (Ω, ΓT , 0) for the same eigenvalue. In particular,

we have

λmax (W (Ω,Γ, 0)) = λmax

(
W (Ω, ΓT , 0)

)
, λmin (W (Ω, Γ, 0)) = λmin

(
W (Ω, ΓT , 0)

)
.

Now the corollary of the Courant-Fischer Theorem, e.g., see Theorem 8.1.5 in Golub and Loan (1996), along
with the assumption W (Ω, Γ, 0) Â 0, results in

λmax

(
W (Ω, Γ, 0) + W (Ω,ΓT , 0)

)

λmin (W (Ω, Γ, 0) + W (Ω, ΓT , 0))
≤ 2λmax (W (Ω, Γ, 0))

2λmin (W (Ω, Γ, 0))
= κ2 (W (Ω,Γ, 0)) .
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Consequently κ2

(
W (Ω,Γ, 0) + W (Ω,ΓT , 0)

) ≤ κ2 (W (Ω,Γ, 0)). This inequality, along with the expression
of W (Ω,Γ, 0)+W (Ω, ΓT , 0) as the Kronecker product of the matrices

(
GN−1 + GT

N−1

)
and (Θ+ΘT ), yields

κ2 (W (Ω,Γ, 0)) ≥ κ2

(
W (Ω, Γ, 0) + W (Ω, ΓT , 0)

)
= κ2

((
GN−1 + GT

N−1

)⊗ (
Θ + ΘT

))
. (17)

Thus

κ2(W (Ω,Γ, 0)) ≥ κ2

(
GN−1 + GT

N−1

)
κ2

(
Θ + ΘT

)
= cot2

( π

2N

)
κ2(Θ + ΘT ), (18)

which completes the proof of part (a).
(b) When Θ is symmetric, W (Ω, Γ, µ) = W (Ω, ΓT , µ). Therefore

κ2

(
W (Ω, Γ, 0) + W (Ω, ΓT , 0)

)
= κ2 (2W (Ω,Γ, 0)) = κ2(W (Ω,Γ, 0)).

Hence, equality holds in (17) and (18), which completes the proof of part (b).
(c) To prove part (c), let µ ≥ 0 be given. Using W (Ω,Γ, µ) = 2µτIN−1 ⊗ C + W (Ω, Γ, 0), we have

κ2 (W (Ω, Γ, µ)) =
λmax (W (Ω, Γ, 0) + 2µτIN−1 ⊗ C)
λmin (W (Ω, Γ, 0) + 2µτIN−1 ⊗ C)

≤ λmax (W (Ω, Γ, 0))
λmin (W (Ω, Γ, 0))

+
λmax(2µτIN−1 ⊗ C)
λmin(2µτIN−1 ⊗ C)

(19)

= κ2(W (Ω, Γ, 0)) + κ2(C),

where inequality (19) comes from the fact that λmin(W (Ω, Γ, 0)) > 0 and λmin(2µτIN−1 ⊗ C) > 0.

Proposition 2.2 shows that the condition number of the matrix W (Ω, Γ, µ) can be large when the condition
number of either the covariance matrix C or the Hessian matrix W (Ω,Γ, 0) is large. However, κ2(W (Ω,Γ, 0))
is at least as large as cot2

(
π

2N

)
times the condition number of the matrix (Θ + ΘT ). Proposition 2.2 also

implies that, in the single asset trading, the condition number of the obtained matrix W (Ω, Γ, 0) depends
only on the number of periods N .

In the next section, we investigate the sensitivity of optimal execution strategies to perturbations in the
impact matrices Ω and Γ.

3 The Sensitivity of the Optimal Execution Strategy

In this section, we show that the optimal execution strategy is Lipschitz continuous in a given pair of impact
matrices Ω and Γ with respect to the Euclidean norm. We then use an estimation of the Lipschitz constant to
derive some upper bounds for the change in the optimal execution strategy due to perturbations in the impact
matrices. These upper bounds are represented in terms of changes in the impact matrices and eigenvalues of
the Hessian of the objective function. Such analysis indicates under what conditions the optimal execution
strategy is insensitive to perturbations and when it may become very sensitive. Throughout, we denote
perturbations in the temporary and permanent impact matrices as ∆Ω and ∆Γ respectively. In subsequent
discussions, we assume that W (Ω, Γ, µ) Â 0. Therefore, for sufficiently small perturbations of ∆Ω and ∆Γ,
the matrix W (Ω+∆Ω, Γ+∆Γ, µ) is symmetric positive definite. Consequently the optimal execution strategy
after perturbation remains unique.

Given the perturbed impact matrices Ω + ∆Ω and Γ + ∆Γ, the perturbed execution cost problem (11) is

min
z∈Rm(N−1)

1
2
zT W (Ω + ∆Ω, Γ + ∆Γ, µ)z + bT (Ω + ∆Ω, Γ + ∆Γ)z, (20)

s.t. (−eT
1 ⊗ Im)z ≥ −S̄,

(GN−1 ⊗ Im)z ≥ 0,

10



where the matrix GN−1 is defined in (10). Problems (11) and (20) have the same set of feasible solutions.
Applying the properties

b(Ω + ∆Ω, Γ + ∆Γ) = b(Ω,Γ) + ∆b, ∆b
def= b(∆Ω, ∆Γ),

W (Ω + ∆Ω, Γ + ∆Γ, µ) = W (Ω,Γ, µ) + ∆W, ∆W
def= W (∆Ω, ∆Γ, 0), (21)

we may restate the objective function of Problem (20):

1
2
zT W (Ω,Γ, µ)z + bT (Ω,Γ)z +

1
2
zT ∆Wz + ∆bT z. (22)

Quantities ∆W and ∆b are determined by ∆Θ = 1
τ (∆Ω+∆ΩT )−∆Γ. Thus the optimal solution of Problem

(20) and consequently the optimal execution strategy depends on the perturbation in the combined impact
matrix ∆Θ rather than ∆Ω or ∆Γ individually. Therefore, all of the perturbations in the impact matrices
that produce the same ∆Θ affect the optimal execution strategy identically. In particular, when ∆Θ = 0,
we have ∆W = 0 and ∆b = 0. Therefore, Problem (20) is equivalent to Problem (11) and their optimal
solutions are identical. Hence the optimal execution strategy is insensitive to this special perturbation of
the impact matrices ∆Ω and ∆Γ, when ∆Θ = 0.

Furthermore, as we discussed in Proposition 2.1, the minimum expected execution cost strategy is also
insensitive to any perturbations in the impact matrices as long as the perturbed permanent impact matrix
Γ + ∆Γ remains symmetric and W (Ω + ∆Ω,Γ + ∆Γ, 0) Â 0. Specifically, when trading a single asset and
µ = 0, the optimal execution strategy is not sensitive to any changes in the impact matrices, assuming that
the minimum expected execution cost problem has a unique optimal solution.

Therefore, in the aforementioned cases the optimal execution strategy and the variance of the execution
cost remain the same. However, in both cases, the expected value of the corresponding execution cost
changes as the impact matrices are perturbed. When ∆Θ = 0, the change in the mean of the execution cost
is 1

τ S̄T ∆ΩS̄. In the second case, in which µ = 0, Θ = ΘT and ∆Θ = ∆ΘT are considered, the variation in
the mean of the execution cost equals 1

2zT ∆Wz +∆bT z + 1
τ S̄T ∆ΩS̄, where z is the solution of Problem (11)

corresponding to the naive execution strategy. However, when ∆Γ is not symmetric, our simulation study
in §4 shows that the changes in the mean and particularly the variance of the execution cost become very
significant for small values of µ, especially when µ = 0.

In the rest of this section, we analyze the sensitivity of the optimal execution strategy to more general
perturbations in the impact matrices. Firstly, we note that the Euclidean distance between any two execution
strategies n∗ = {n∗k}N

k=1 and n̄ = {n̄k}N
k=1 is related to the change between corresponding execution positions

x∗ = {x∗k}N
k=0 and x̄ = {x̄k}N

k=0:

‖n∗ − n̄‖22 =
N∑

k=1

‖n∗k − n̄k‖22 =
N∑

k=1

∥∥x∗k−1 − x∗k − (x̄k−1 − x̄k)
∥∥2

2

=
N∑

k=1

∥∥x∗k−1 − x̄k−1

∥∥2

2
+

N∑

k=1

‖x∗k − x̄k‖22 − 2
N∑

k=1

(x∗k−1 − x̄k−1)T (x∗k − x̄k)

≤ 2
N∑

k=1

∥∥x∗k−1 − x̄k−1

∥∥2

2
+ 2

N∑

k=1

‖x∗k − x̄k‖22 = 4
N−1∑

k=1

‖x∗k − x̄k‖22 .

This result can be summarized as

‖n∗ − n̄‖2 ≤ 2 ‖x∗ − x̄‖2 . (23)

We start our sensitivity discussion with the strategy in which short selling is permitted. In the following
theorem, we exploit the explicit representation of the optimal solution of Problem (12) to determine the
exact change in the optimal execution strategy. For notational simplicity, abbreviate W (Ω, Γ, µ) as W when
there is no confusion.
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Theorem 3.1. Consider the execution cost problem (12) when short selling is allowed. Assume W (Ω, Γ, µ) Â
0 and W (Ω + ∆Ω,Γ + ∆Γ, µ) Â 0. Denote the unique optimal solutions of Problem (12) before and after
perturbation with z∗ and z̄ respectively. Then

z∗ − z̄ = W−1(Ω + ∆Ω, Γ + ∆Γ, µ)
(
∆b−∆WW−1(Ω,Γ, µ)b(Ω, Γ)

)
. (24)

Furthermore, let n∗ = {n∗k}N
k=1 and n̄ = {n̄k}N

k=1 be the optimal execution strategies corresponding to the
optimal solutions z∗ and z̄ respectively. Then, there exists a magnification factor ϑ > 0 such that:

‖n∗ − n̄‖2 ≤ 2‖z∗ − z̄‖2 ≤ 2ϑ‖S̄‖2
(
1 + 4

√
mϑ‖Θ‖2

) ‖∆Θ‖2, (25)

where ϑ ≤ 1
min{λmin(W ),λmin(W+∆W )} .

Proof. Positive definiteness of W guarantees Problem (12) has the unique optimal solution z∗ = −W−1b(Ω,Γ).
Similarly, under the assumption W + ∆W Â 0, Problem (12), with the perturbed impact matrices Ω + ∆Ω
and Γ + ∆Γ, has a unique optimal solution, namely z̄ = −(W + ∆W )−1(b(Ω, Γ) + ∆b). Therefore

(W + ∆W )(z∗ − z̄) = (W + ∆W )[−W−1b(Ω, Γ)− (−(W + ∆W )−1(b(Ω,Γ) + ∆b))]
= −b(Ω, Γ)−∆WW−1b(Ω,Γ) + b(Ω,Γ) + ∆b

= −∆WW−1b(Ω,Γ) + ∆b,

which proves (24). Thus

‖z∗ − z̄‖2 =
∥∥(W + ∆W )−1

(
∆b−∆WW−1b(Ω,Γ)

)∥∥
2

≤ ‖(W + ∆W )−1‖2
(‖∆b‖2 + ‖∆W‖2‖W−1‖2‖b(Ω, Γ)‖2

)
.

Since W + ∆W and W are symmetric positive definite, the above inequality is reduced to

‖z∗ − z̄‖2 ≤ 1
λmin(W + ∆W )

(
‖∆b‖2 +

‖∆W‖2
λmin(W )

‖b(Ω, Γ)‖2
)

(26)

≤ 1
λmin(W + ∆W )

(
‖∆Θ‖2 +

‖∆W‖2
λmin(W )

‖Θ‖2
)
‖S̄‖2. (27)

Since ∆W is symmetric, ‖∆W‖1 = ‖∆W‖∞ and ‖∆W‖2 ≤
√
‖∆W‖1‖∆W‖∞ = ‖∆W‖1. Thus

‖∆W‖2 ≤ ‖∆Θ‖1 + ‖∆Θ + ∆ΘT ‖1 + ‖∆ΘT ‖1
≤ 2‖∆Θ‖1 + 2‖∆ΘT ‖1
= 2‖∆Θ‖1 + 2‖∆Θ‖∞
≤ 4

√
m‖∆Θ‖2. (28)

Substituting inequality (28) in (27) and using inequality (23) complete the proof of (25).

Inequality (26) is valid for any unconstrained quadratic minimization problem with the Hessian matrix
W and the linear coefficient b(Ω, Γ). If the perturbation of the Hessian matrix ∆W is sufficiently small,
relative to the change in the linear coefficient ∆b, the upper bound is dominated by ϑ‖∆b‖, which is linear in
ϑ. This is particularly the case in the traditional mean-variance portfolio optimization since the covariance
(Hessian) matrix can in general be estimated more accurately than the mean rate of return (linear coefficient).
However, in the execution cost problem, the change in the combined impact matrix ∆Θ appears in both the
linear coefficient b(Ω, Γ) and the Hessian matrix W . Therefore, when the magnification factor ϑ is sufficiently
large, the upper bound is dominated by the term ϑ2‖∆W‖2, which is quadratic in ϑ. Thus, the effect of
estimation errors in the impact matrices can potentially be more significant than the effect of perturbations
in the mean rate of return in the traditional mean-variance portfolio optimization.
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The upper bound in (25) illustrates the main factors which can magnify the effect of estimation errors
in the impact matrices on the optimal execution strategy. This effect is described through the magnification
factor ϑ. When the upper bound of ϑ is small, the optimal execution strategy is not so sensitive to pertur-
bations in the impact matrices. On the other hand, the optimal execution strategy may be sensitive to the
perturbation ∆Θ when this upper bound is large.

The provided upper bound for ϑ in Theorem 3.1 depends only on the minimum eigenvalues of W and
W + ∆W . When both of these eigenvalues are large, the magnification factor becomes small. Consequently
the optimal execution strategy does not change significantly due to perturbations in the impact matrices.
When µ > 0 and C Â 0, according to inequality (15), λmin(W ) (and similarly λmin(W + ∆W )) increases
as µλmin(C) increases, which implies that the magnification factor ϑ becomes small. This result indicates
that, when the risk aversion parameter is nonzero and λmin(C) is large (or equivalently κ2(C) is small), the
optimal execution strategy is not very sensitive to the perturbations. Furthermore, assuming C Â 0, the
variation in the optimal execution strategy due to the perturbations diminishes as µ → +∞. This result is
entirely expected; since as µ → +∞ the objective function of Problem (12) is dominated by the variance of
the execution cost which depends only on the covariance matrix C. In these two cases the investor may not
need to be concerned about the effect of estimation errors in the impact matrices.

On the other hand, when the minimum eigenvalue of C Â 0 is small, the influence of estimation errors
on the optimal execution strategy may become more prominent for a small risk aversion parameter. This
dependence of the effect of estimation errors on the risk aversion parameter is analogous to the traditional
mean-variance portfolio optimization, e.g., see Chopra and Ziemba (1993).

When the permanent impact matrices Γ and Γ+∆Γ are symmetric, using Corollary 2.1, the upper bound
for ϑ presented in Theorem 3.1 can be stated in terms of the minimum eigenvalues of Θ and Θ + ∆Θ.

Corollary 3.1. Let the assumptions in Theorem 3.1 hold. In addition, assume that Γ and ∆Γ are symmetric,
λmin(Θ) ≥ 0 and λmin(Θ + ∆Θ) ≥ 0. Then there exists a magnification factor ϑ0 > 0 such that

‖n∗ − n̄‖2 ≤ 2‖z∗ − z̄‖2 ≤ ϑ0‖S̄‖2
(
1 + 2

√
mϑ0‖Θ‖2

) ‖∆Θ‖2,

where

ϑ0 ≤ 1
µτλmin(C) + 2 sin2

(
π

2N

)
min{λmin(Θ), λmin(Θ + ∆Θ)} . (29)

For sufficiently small perturbations, the upper bound of ϑ0 in (29) becomes small if and only if either
µλmin(C) or λmin(Θ) is large. Either case results in a small sensitivity of the optimal execution strategy
to perturbations. However, for a given positive risk aversion parameter, when both λmin(C) and λmin(Θ)
are small, the change in the optimal execution strategy can potentially be large relative to the perturbation
∆Θ. Note that, based on Proposition 2.1, the minimum expected execution cost strategy is insensitive to
perturbations when matrices Γ and Γ + ∆Γ are symmetric and Θ and Θ + ∆Θ are positive definite.

Now consider the execution cost problem when short selling is not permitted. Denote the coefficient
matrix of the short selling constraints in Problem (11) with A, i.e., A = Y ⊗ Im, where

Y
def=

(
−eT

1

GN−1

)
. (30)

The following property of the bidiagonal matrix GN−1 is proved in Fonseca (2007).

Proposition 3.1. For every integer k ≥ 1, λi

(
GkGT

k

)
= 2

(
1− cos

(
2i−1
2k+1π

))
for i = 1, 2, . . . , k. Particu-

larly, λmin

(
GkGT

k

)
= 2

(
1− cos

(
π

2k+1

))
= 4 sin2

(
π

4k+2

)
.

Therefore, λmin(GkGT
k ) is a decreasing function of k, i.e., for k ≥ 1, λmin(GkGT

k ) ≥ λmin(Gk+1G
T
k+1).

Moreover, 1 ≥ λmin(GkGT
k ) > 0 and consequently the matrix GkGT

k is symmetric positive definite.
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Next, we present a property of the coefficient matrix of the binding constraints in Problem (11) at a
feasible solution. Throughout, for a given subset J of the row indices of A, we let AJ denote the submatrix
of A consisting of the rows with indices in J . Similarly, the submatrix of A consisting of those columns with
indices in a subset J of column indices is denoted by AJ .

Lemma 3.1. Consider the coefficient matrix A of the constraints in Problem (11), i.e., A = Y ⊗ Im, where
Y is defined in (30). Let z∗ be a feasible solution of Problem (11) and J be the set of indices of the binding
constraints at z∗. Then

λmin

(
AJAT

J

) ≥ λmin

(
GN−1G

T
N−1

)
= 4 sin2

(
π

4N − 2

)
. (31)

Proof. Applying properties of the Kronecker product, we have

AJAT
J = (Y ⊗ Im)J (Y ⊗ Im)T

J =
(
(Y ⊗ Im) (Y ⊗ Im)T

)J

J
=

((
Y Y T

)
⊗ Im

)J

J
. (32)

Let M be the permutation matrix such that

[1, 2, . . . , N, 1, 2, . . . , N, . . . , 1, 2, . . . , N ]MT = [1, . . . , 1, 2, . . . , 2, . . . , N, . . . , N ].

Therefore, corresponding to the index set J , we can find an index set J
′
such that

M
(((

Y Y T
)⊗ Im

)J

J

)
MT =

(
Im ⊗ (

Y Y T
))J ′

J ′ .

Thus

λmin

(((
Y Y T

)⊗ Im

)J

J

)
= λmin

(
M

(((
Y Y T

)⊗ Im

)J

J

)
MT

)

= λmin

((
Im ⊗ (

Y Y T
))J ′

J ′

)

≥ min
i=1,2,...,m

λmin

(
Y(i)Y

T
(i)

)
.

Here Y(i) is the submatrix of Y with the row indices equal to j −N(i− 1) where

j ∈
(
J
′ ∩ {N(i− 1) + 1, ..., N(i− 1) + N}

)
.

This result, along with equality (32), yields

λmin

(
AJAT

J

) ≥ min
i=1,2,...,m

λmin

(
Y(i)Y

T
(i)

)
. (33)

In the rest of the proof, we show that for every i = 1, 2, . . . , m,

λmin

(
Y(i)Y

T
(i)

)
≥ λmin

(
GN−1G

T
N−1

)
. (34)

Denote the execution position associated with the feasible solution z∗ with {x∗k}N
k=0. Note that, for

each asset i, a positive number of shares must be sold in at least one of the periods. Thus, for every asset
i = 1, 2, . . . ,m, there is at least some j ∈ {1, 2, ..., N} so that the constraint corresponding to the jth row
of Y is not active. For any asset i, there are two cases to consider: either S̄i > x∗i1 or S̄i = x∗i1. In the first
case, S̄i > x∗i1, the rows of Y(i) are a subset of the rows of GN−1. Let Y(−i) denote the submatrix consisting
of rows of GN−1 that are not in Y(i). We then have

λmin

(
GN−1G

T
N−1

)
= min

z 6=0

zT
(
GN−1G

T
N−1

)
z

zT z
(35)

= min
(z1,z2)6=0

zT
1 Y(i)Y

T
(i)z1 + zT

2 Y(−i)Y
T
(i)z1 + zT

1 Y(i)Y
T
(−i)z2 + zT

2 Y(−i)Y
T
(−i)z2

zT
1 z1 + zT

2 z2

≤ min
(z1,0) 6=0

zT
1

(
Y(i)Y

T
(i)

)
z1

zT
1 z1

= λmin

(
Y(i)Y

T
(i)

)
,
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which proves inequality (34).
Now consider the case S̄i = x∗i1. In this case, there must be at least some j ∈ {2, 3, . . . , N}, such that

x∗i(j−1) > x∗ij . When N = 2, the second constraint must be inactive, which implies that the only row of Y(i)

is the first row of Y . Therefore, λmin

(
Y(i)Y

T
(i)

)
= λmin

(
GN−1G

T
N−1

)
.

When N ≥ 3, at least one of the rows of GN−1 corresponds to an inactive constraint. Let this row be
the jth row of GN−1 where j ∈ {1, 2, . . . , N − 1}. When j = N − 1, Y(i) does not include the last row of
GN−1. Since the matrix Y after eliminating its last row equals −GT

N−1, Y(i) is a submatrix of −GT
N−1. Thus

similar to (35), we can show that

λmin

(
Y(i)Y

T
(i)

)
≥ λmin

(
GT

N−1GN−1

)
= λmin

(
GN−1G

T
N−1

)
,

where the last equality comes from the fact that GT
N−1GN−1 and GN−1G

T
N−1 have identical eigenvalues.

This result proves inequality (34) for this case.
When j ∈ {1, 2, . . . , N − 2}, the rows of Y(i) are a subset of the rows of the following matrix

(
−GT

j 0

0 GN−j−1

)
.

Note that
(
−GT

j 0

0 GN−j−1

) (
−Gj 0

0 GT
N−j−1

)
=

(
GT

j Gj 0

0 GN−j−1G
T
N−j−1

)
.

Therefore

λmin

(
Y(i)Y

T
(i)

)
≥ min

{
λmin

(
GT

j Gj

)
, λmin

(
GN−j−1G

T
N−j−1

)} ≥ λmin

(
GN−1G

T
N−1

)
,

where the last inequality comes from the facts that λmin

(
GT

j Gj

)
= λmin

(
GjG

T
j

)
and λmin

(
GjG

T
j

)
is a

decreasing function of j. Thus, for every i = 1, 2, . . . , m, inequality (34) holds. Applying inequalities (33),
(34), and Proposition 3.1 completes the proof.

Our analysis for the sensitivity of the optimal execution strategy, when short selling is prohibited, is based
on a result of Hager (1979). He proves that for a linearly constrained quadratic programming problem, under
some conditions on the Hessian of the objective function and the Jacobian matrix of the binding constraints,
both the optimal solution and the dual multipliers are Lipschitz continuous functions of the problem data.
An estimate for the Lipschitz constant is discussed in §3 of Hager (1979); this result is summarized in the
following theorem. Note that the upper bound presented in the following theorem is slightly tighter than
the bound in Lemma 3.2 of Hager (1979); but the result essentially follows from the same proof.

Theorem 3.2. Consider the following quadratic programming problem with the data d = (Q, b, A, c)

min
x∈Rn

1
2
xT Qx + bT x (36)

s.t. Ax + c ≤ 0.

Let D be a convex set of data so that for every d ∈ D, the above problem has a unique optimal solution,
denoted by x(d), and a unique dual multiplier, denoted by u(d). Let J(d) be the set of indices corresponding
to the binding constraints at x(d). Assume that there exist some parameters v1 < +∞, v2 < +∞, β > 0,
and α > 0 so that for every d = (Q, b, A, c) in D:

(a) ‖Q‖2 ≤ v1,

(b)
∥∥∥AT

J(d)

∥∥∥
2
≤ v2,
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(c)
∥∥∥AT

J(d)u(d)
∥∥∥

2
≥ β‖u(d)‖2,

(d) xT Qx ≥ α‖x‖22, for every x such that AJ(d)x = 0.

Then there exists a positive constant % < +∞ such that for every d1, d2 ∈ D:

‖x(d1)− x(d2)‖2 ≤ % (‖b(d1)− b(d2)‖2 + ‖c(d1)− c(d2)‖2) + %2

(
max

i∈{1,2}
(‖b(di)‖2 + ‖c(di)‖2)

)

(‖Q(d1)−Q(d2)‖2 + ‖A(d1)−A(d2)‖2 +
∥∥AT (d1)−AT (d2)

∥∥
2

)
,

where % ≤ 1
α + 1

β

(
v1
α + 1

) (
v2 + v2v1

β + 1
)
.

In the execution cost problem, the impact matrices only appear in the objective function. Therefore,
perturbations in the impact matrices do not affect the constraints of Problem (11). When the constraints in
Problem (36) do not change for any d ∈ D, a tighter upper bound for % can be obtained as in the following
corollary:

Corollary 3.2. Let the assumptions in Theorem 3.2 hold. In addition, assume that A(d) and c(d) are
constant on D, i.e., A(d) = A and c(d) = c for every d ∈ D. Let d1 ∈ D be given. Then there exists a
positive constant %0 < +∞ such that for every d2 ∈ D

‖x(d1)− x(d2)‖2 ≤ %0 ‖b(d1)− b(d2)‖2 + %2
0

(
max

i∈{1,2}
‖b(di)‖2 + max {1, ‖Q(d1)‖2} ‖c‖2

)
‖Q(d1)−Q(d2)‖2 ,

where %0 ≤ 1
α + 1

β max{1,‖Q(d1)‖2}
(

v1
α + 1

) (
v2 + v2v1

β max{1,‖Q(d1)‖2} + 1
)
.

Proof. Consider Problem (36) with the input data d = (Q, b, A, c) with the corresponding parameters
v1, v2, β, and α given. Clearly, for any d ∈ D, Problem (36) and the following problem have the identi-
cal optimal solution:

min
x∈Rn

1
2
xT Q̄x + b̄T x (37)

s.t. Ax + c ≤ 0,

where Q̄ = rQ, b̄ = rb, and r = 1
max{1,‖Q(d1)‖2} . Applying Theorem 3.2 to Problem (37) and using the fact

that A(d) and c(d) are constant on D, there exists a positive constant %̂ < +∞ such that for every d2 ∈ D

‖x(d1)− x(d2)‖2 ≤ %̂
(∥∥b̄(d1)− b̄(d2)

∥∥
2

+ ‖c(d1)− c(d2)‖2
)

+ %̂2

(
max

i∈{1,2}
(‖b̄(di)‖2 + ‖c(di)‖2)

)

(∥∥Q̄(d1)− Q̄(d2)
∥∥

2
+ ‖A(d1)−A(d2)‖2 +

∥∥AT (d1)−AT (d2)
∥∥

2

)

= %̂ ‖rb(d1)− rb(d2)‖2 + %̂2

(
max

i∈{1,2}
‖rb(di)‖2 + ‖c‖2

)
‖rQ(d1)− rQ(d2)‖2

= r%̂ ‖b(d1)− b(d2)‖2 + r2%̂2

(
max

i∈{1,2}
‖b(di)‖2 +

1
r
‖c‖2

)
‖Q(d1)−Q(d2)‖2

where %̂ ≤ 1
rα + 1

β

(
rv1
rα + 1

) (
v2 + rv2v1

β + 1
)

or equivalently r%̂ ≤ 1
α + r

β

(
v1
α + 1

) (
v2 + rv2v1

β + 1
)
. The

result follows by defining %0 = r%̂ and substituting r = 1
max{1,‖Q(d1)‖2} into the above inequality. This

completes the proof.

The following theorem establishes an upper bound on the size of the change in the optimal execution
strategy, due to perturbations in the impact matrices, when short selling is not permitted.
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Theorem 3.3. Assume for the given risk aversion parameter µ ≥ 0, W (Ω, Γ, µ) Â 0 and W (Ω + ∆Ω,Γ +
∆Γ, µ) Â 0. Denote the unique optimal solutions of Problems (11) and (20) with z∗ and z̄ respectively. Then
there exists some ς > 0 such that

‖n∗ − n̄‖2 ≤ 2 ‖z∗ − z̄‖2 ≤ 2ς
∥∥S̄

∥∥
2
(1 + 4ς

√
m (max{1, ‖W‖2}+ ‖Θ‖2 + ‖∆Θ‖2)) ‖∆Θ‖2, (38)

where n∗ = {n∗k}N
k=1 and n̄ = {n̄k}N

k=1 are the optimal execution strategies associated with z∗ and z̄ respec-
tively, and

ς ≤ 1
λ


1 +

1

2 sin2
(

π
4N−2

)
(

λ̄ + λ

max{1, λmax(W )}
)(

λ̄

max{1, λmax(W )} + 3 sin
(

π

4N − 2

))
 , (39)

with λ̄ = max
η∈[0,1]

λmax(W + η∆W ) and λ = min
η∈[0,1]

λmin(W + η∆W ).

Proof. For the given perturbations ∆Γ and ∆Ω of the impact matrices, define

D def= {d(η) = (Ω + η∆Ω,Γ + η∆Γ) : η ∈ [0, 1]} .

Clearly, D is a convex set. Since W (Ω, Γ, µ) Â 0 and W (Ω + ∆Ω, Γ + ∆Γ, µ) Â 0 for any η ∈ [0, 1], we have

W + η∆W = W (Ω + η∆Ω,Γ + η∆Γ, µ) = (1− η)W (Ω,Γ, µ) + ηW (Ω + ∆Ω, Γ + ∆Γ, µ) Â 0.

Therefore, for any η ∈ [0, 1], Problem (11) with the impact matrices Ω + η∆Ω and Γ + η∆Γ has a unique
optimal solution, denoted as z(η). For a given η ∈ [0, 1], let J(η) denote the set of indices corresponding
to the binding constraints of Problem (11) at z(η). Lemma 3.1 implies that λmin

(
AJ(η)A

T
J(η)

)
> 0 and

consequently AJ(d)A
T
J(d) is invertible. Thus the rows of AJ(d) are linearly independent and Problem (11) has

a unique dual multiplier u(η).
Define

λ̄
def= max {λmax(W + η∆W ) : η ∈ [0, 1]} , λ

def= min {λmin(W + η∆W ) : η ∈ [0, 1]} .

Since for any η ∈ [0, 1], W + η∆W is symmetric positive definite, λ̄ and λ are positive. In addition,

‖W + η∆W‖2 = λmax(W + η∆W ) ≤ λ̄ ∀η ∈ [0, 1]. (40)

Using the corollary of the Courant-Fischer Theorem, we have λmax(W + η∆W ) ≤ λmax(W ) + ηλmax(∆W ),
which implies λ̄ < +∞. Furthermore, for any η ∈ [0, 1], W + η∆W is symmetric. The Courant-Fischer
Theorem yields

zT (W + η∆W )z ≥ λmin(W + η∆W )‖z‖22 ≥ λ‖z‖22 ∀η ∈ [0, 1]. (41)

Applying the definitions of 1-norm, ‖.‖1, and ∞-norm, ‖.‖∞, for the matrix AT
J(η), we get

∥∥∥AT
J(η)

∥∥∥
1

= max
i∈J(η)

N−1∑

j=1

|aij | ≤ max
i=1,2,...,N

N−1∑

j=1

|aij | = ‖A‖∞ , ∀η ∈ [0, 1]

∥∥∥AT
J(η)

∥∥∥
∞

= max
j=1,2,...,N−1

∑

i∈J(η)

|aij | ≤ max
j=1,2,...,N−1

N∑

i=1

|aij | = ‖A‖1 , ∀η ∈ [0, 1],

where aij is the entry of A in the ith row and jth column. Hence

∥∥∥AT
J(η)

∥∥∥
2
≤

√∥∥∥AT
J(η)

∥∥∥
1

∥∥∥AT
J(η)

∥∥∥
∞
≤

√
‖A‖1 ‖A‖∞ ≤

√
‖(Y ⊗ Im)‖1 ‖(Y ⊗ Im)‖∞ ≤ 2,
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where the last inequality follows from ‖Y ⊗ Im‖∞ = 2 and ‖Y ⊗ Im‖1 = 2. Therefore,
∥∥∥AT

J(η)

∥∥∥
2
≤ 2 ∀η ∈ [0, 1]. (42)

For any η ∈ [0, 1] and the associated unique optimal dual multiplier u(η), the Courant-Fischer Theorem
yields

∥∥∥AT
J(η)u(η)

∥∥∥
2

2
= u(η)T AJ(η)A

T
J(η)u(η) ≥ λmin

(
AJ(η)A

T
J(η)

)
‖u(η)‖22 ≥ λmin

(
GN−1G

T
N−1

) ‖u(η)‖22 , (43)

where the last inequality comes from Lemma 3.1. Hence
∥∥∥AT

J(η)u(η)
∥∥∥

2
≥ 2 sin

(
π

4N − 2

)
‖u(η)‖2 ∀η ∈ [0, 1]. (44)

Inequalities (40), (41), (42), and (44) show that the assumptions of Theorem 3.2 are satisfied on the convex
data set D for

v1
def= λ̄, v2

def= 2, β
def= 2 sin

(
π

4N − 2

)
> 0, α

def= λ > 0.

Applying Corollary 3.2 to Problem (11), there exists some ς such that

‖z∗ − z̄‖2 ≤ ς‖∆b‖2 + ς2‖∆W‖2
(
max{‖b(Ω, Γ)‖2, ‖b(Ω + ∆Ω,Γ + ∆Γ)‖2}+ max{1, ‖W‖2}‖S̄‖2

)

≤ ς‖∆ΘS̄‖2 + ς2‖∆W‖2
(‖ΘS̄‖2 + ‖∆ΘS̄‖2 + max{1, ‖W‖2}‖S̄‖2

)

≤ ς‖S̄‖2 (‖∆Θ‖2 + ς‖∆W‖2 (‖Θ‖2 + ‖∆Θ‖2 + max{1, ‖W‖2})) ,

where ς ≤ 1
λ

(
1 + 1

2 sin2( π
4N−2 )

(
λ̄+λ

max{1,λmax(W )}
)(

λ̄
max{1,λmax(W )} + 3 sin

(
π

4N−2

)))
. Applying inequality (28),

i.e., ‖∆W‖2 ≤ 4
√

m‖∆Θ‖2, and inequality (23) completes the proof.

Theorem 3.3 provides an upper bound for the size of the change in the optimal execution strategy, when
short selling is not permitted. For a given N , the upper bound of the magnification factor ς depends, at
least asymptotically (as ∆W → 0), only on the eigenvalues of the Hessian matrix W .

Similar to Theorem 3.1, a small value of ς guarantees that the optimal execution strategy is not very
sensitive to the perturbation in the combined impact matrix ∆Θ. As ∆W → 0, the term


1 +

1

2 sin2
(

π
4N−2

)
(

λ̄ + λ

max{1, λmax(W )}
)(

λ̄

max{1, λmax(W )} + 3 sin
(

π

4N − 2

))
 , (45)

is bounded by a constant which depends only on N . Therefore, for the fixed number of periods N , asymp-
totically (as ∆W → 0), the upper bound for the magnification factor ς is small when λmin(W ) is large.

The eigenvalues λmax(W ), λ and λ̄ increase with the same rate as the risk aversion parameter µ increases,
and consequently, all the terms in (45) are bounded as µ → +∞. However, when C Â 0, 1

λ approaches zero
as µ → +∞. Therefore, as the risk aversion parameter µ increases, the upper bound for ς becomes small.
Hence, when the covariance matrix is positive definite, ‖z∗ − z̄‖2 → 0 as µ → +∞. This result indicates
that, similar to the case that short selling is allowed, the sensitivity of the optimal execution strategy to
perturbations in the impact matrices diminishes as the risk aversion parameter µ increases. Furthermore,
when the risk aversion parameter is positive and λmin(C) is large (or equivalently κ2(C) is small), the optimal
execution strategy is not very sensitive to the perturbations.

We can express the upper bound for the magnification factor ς provided in Theorem 3.3 in terms of
the eigenvalues of C and Θ, when the permanent impact matrix Γ and its perturbation ∆Γ are symmetric.
Under these assumptions, the Courant-Fischer Theorem can be applied, and we have

λ = min
η∈[0,1]

λmin(W + η∆W ) ≥ 2µτλmin(C) + λmin(GN−1 + GT
N−1) min

η∈[0,1]
λmin(Θ + η∆Θ), (46)

λ̄ = max
η∈[0,1]

λmax(W + η∆W ) ≤ 2µτλmax(C) + λmax(GN−1 + GT
N−1) max

η∈[0,1]
λmax(Θ + η∆Θ).
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Applying these inequalities, the upper bound in (39) can be simplified as follows:

Corollary 3.3. Let the assumptions in Theorem 3.3 hold. In addition, assume that the matrices Γ and ∆Γ
are symmetric. Then there exists a magnification factor ς0 such that

‖n∗ − n̄‖2 ≤ 2‖z∗ − z̄‖2 ≤ ς0‖S̄‖2
(
1 + 2ς0

√
m (max{1, ‖W‖2}+ ‖Θ‖2 + ‖∆Θ‖2)

) ‖∆Θ‖2,

where

ς0 ≤

 1

µτλmin(C) + 2 sin2
(

π
2N

)
min

η∈[0,1]
λmin(Θ + η∆Θ)


 (47)


1 +

1

2 sin2
(

π
4N−2

)
(

λ̄ + λ

max{1, λmax(W )}
)(

λ̄

max{1, λmax(W )} + 3 sin
(

π

4N − 2

))
 .

Inequality (47) indicates that when the permanent impact matrices Γ and Γ + ∆Γ are symmetric, the
magnification factor ς0 asymptotically (as ∆W → 0) depends on µτλmin(C) + 2 sin2

(
π

2N

)
λmin(Θ). In this

case, for a given positive risk aversion parameter, ς0 becomes small when either the minimum eigenvalue
of the covariance matrix or the minimum eigenvalue of the combined impact matrix Θ is large. However,
when both µλmin(C) and λmin(Θ) are small, the upper bound for ς0 in (47) becomes large, which suggests
pronounced sensitivity of the optimal execution strategy to estimation errors in the impact matrices.

Theorems 3.1 and 3.3 imply that for a given risk aversion parameter µ ≥ 0 and for every given pair
of impact matrices Ω and Γ, where W (Ω, Γ, µ) Â 0, the unique optimal execution strategy is Lipschitz
continuous at Ω and Γ with respect to the Euclidean norm.

Both upper bounds in inequalities (24) and (38) indicate that the change in the optimal execution strategy
increases proportionally with respect to the size of the initial portfolio holding S̄. Next, we precisely analyze
the dependence of the optimal execution strategy on the initial portfolio holding.

Lemma 3.2. Consider the execution cost problem (11) with the impact matrices Ω and Γ where W (Ω, Γ, µ) Â
0. Let z∗ be the optimal solution with the initial portfolio holding S̄. Then, for every α ≥ 0, αz∗ is the
optimal solution of Problem (11) with the initial portfolio holding αS̄.

Proof. First note that z is a feasible solution of Problem (11) with the initial portfolio holding S̄ if and only
if αz is a feasible solution of Problem (11) with the initial portfolio holding αS̄. Since z∗ is the optimal
solution, for every feasible solution z of Problem (11), we have

1
2
(z∗)T W (Ω, Γ, µ)z∗ − (ΘS̄)T x∗1 ≤

1
2
zT W (Ω, Γ, µ)z − (ΘS̄)T x1,

where x∗1 and x1 are execution positions in the first period corresponding to z∗ and z respectively. Therefore,
multiplying the above inequality by α2, we get

1
2
(αz∗)T W (Ω, Γ, µ)(αz∗)− (αΘS̄)T (αx∗1) ≤

1
2
(αz)T W (Ω, Γ, µ)(αz)− (αΘS̄)T (αx1).

This result yields αz∗ is the optimal solution of Problem (11) with the initial portfolio holding αS̄.

A similar result holds for problem (12). Proposition 3.2 yields that, when S̄ is multiplied by some
nonnegative scalar α, the change in the optimal execution strategy is also multiplied by α. However, the
coordinates (variance, mean) of the efficient frontier are multiplied by α2. This illustrates the significant
effect of estimation errors in the impact matrices on trades with large volumes.

In the next section, we use simulation to illustrate the sensitivity of the optimal execution strategy and
the efficient frontier to perturbations in the impact matrices.
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4 Computational Investigation

In this section, we use simulations to computationally investigate the influence of perturbations in the impact
matrices on the optimal execution strategy and efficient frontier. The covariance matrix is assumed to be
given. The simulations are done using MATLAB Version 6.5.

Consider an investor who holds a portfolio of three different assets with the initial holding S̄i = 105, i =
1, 2, 3. The goal is to liquidate the holdings in five days by trading daily, i.e., T = 5, N = 5, and τ = 1. Let
the true daily asset price covariance matrix be1

C =




0.3246 0.0230 0.4204
0.0230 0.0499 0.0192
0.4204 0.0192 0.7641


 × 1%,

Note that λmin(C) = 0.0005. The price impact model (3) assumes that the price impacts are proportional
to the trading rate. Assume that the median daily trading volume of each asset is one million shares. For
the temporary impact matrix, we suppose that for each 10% of the daily volume traded, the price impact
equals the daily variance. In addition, we assume that selling 20% of the daily volume incurs a permanent
price depression equal to the daily variance. In other words,

Ω =
C

0.10× 106
= 10−5C $/share2, Γ =

C

0.20× 106
= (0.5× 10−5)C ($/share)/(share/day).

Note that W (Ω, Γ, 0) Â 0 and λmin(W (Ω, Γ, 0)) = 2.5960 × 10−9. Throughout this section, we refer to Ω
and Γ as the true impact matrices, and to the corresponding optimal execution strategy as the true optimal
execution strategy.

In our simulation investigation, we assume that perturbations in the impact matrices have independent
normal distributions. Specifically,

∆Ω = ρ max {‖Ωei‖∞ , i = 1, 2, 3}Φ, ∆Γ = ρ max {‖Γei‖∞ , i = 1, 2, 3}Ψ, (48)

where Φ and Ψ are 3 × 3 random matrices whose elements are independent zero-mean Gaussian random
variables with unit variance. We use the randn command in MATLAB to generate Φ and Ψ. The parameter
ρ ∈ [0, 1] indicates the size of the relative perturbation.

In order to ensure that the optimal execution strategy corresponding to the perturbed impact matrices,
Ω + ∆Ω and Γ + ∆Γ, is unique, we only consider perturbations with W (Ω + ∆Ω, Γ + ∆Γ, 0) Â 0. We refer
to the optimal execution strategy determined from a pair of perturbed impact matrices as the estimated
optimal execution strategy. We use the convex quadratic optimization solver mskqpopt in the software
package MOSEK Version 4.0 to compute the optimal execution strategies, both in the presence and absence
of short selling constraints.

In §4.1, we illustrate the sensitivity of the optimal execution strategy to perturbations in the impact
matrices and present some typical plots of true and estimated optimal execution strategies . The sensitivity
of the efficient frontier is demonstrated in §4.2.

4.1 The Sensitivity of The Optimal Execution Strategy

In this section, we investigate the effect of the risk aversion parameter µ and no short selling constraints on
the sensitivity of the optimal execution strategy. For illustration, we focus on the case when the risk aversion
parameter µ = 0, which corresponds to minimizing the expected execution cost, and µ = 10−5. Following
Proposition 2.1, the true optimal execution strategy, which minimizes the expected execution cost, is the
naive execution strategy nk = 1

5 S̄ for k = 1, . . . , 5, since in our assumed setting Γ is symmetric and Θ Â 0.
On the other hand, the perturbed impact matrices Ω+∆Ω and Γ+∆Γ from (48) are typically not symmetric.
For each simulation study, a total of M = 50 simulations is used unless otherwise stated. In addition, a
relative perturbation ρ = 0.05 is assumed.
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Figure 1: Optimal execution strategies for µ = 0 with 5% relative perturbation (ρ = 0.05) for M = 50
simulations. For plots on the left, short selling is allowed. Short selling is prohibited for plots on the right.
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Figure 2: Optimal execution strategies for µ = 10−5 with 5% relative perturbation (ρ = 0.05) for M = 50
simulations. For plots on the left, short selling is allowed. Short selling is prohibited for plots on the right.
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µ Short selling is allowed Short selling is prohibited

0
10−5

0.05
0.5
1

100

Asset 1 Asset 2 Asset 3
62.62835 105.79562 39.85288
23.86030 35.73191 14.20801
0.01979 0.03288 0.01178
0.00198 0.00329 0.00118
0.00099 0.00165 0.00059
0.00001 0.00003 0.00001

Asset 1 Asset 2 Asset 3
38.62073 59.90888 24.29109
23.02855 35.47777 13.96043
0.01907 0.03094 0.01147
0.00191 0.00310 0.00115
0.00095 0.00155 0.00057
0.00001 0.00003 0.00000

Table 1: Relative average error εi(µ) (percentages) with 5% relative perturbation based on 50 simulations
with general (likely asymmetric) perturbations in the permanent impact matrix.

Figure 1 plots the true optimal execution strategy when µ = 0 (the naive execution strategy) against
the optimal execution strategies from the perturbed impact matrices. The left plots are generated under
the assumption that short selling is allowed. For the plots on the right, it is assumed that short selling is
not permitted. Graphs in Figure 1 demonstrate that the optimal execution strategy in this case is quite
sensitive to perturbations in the impact matrices. In addition, these plots illustrate that imposing short
selling constraints on the problem significantly decreases the sensitivity of the optimal execution strategy
to perturbations. Note that the range in the number of shares traded (vertical axis), when short selling is
allowed, is much larger than the range after imposing short selling constraints.

For the risk aversion parameter µ = 10−5, the true optimal execution strategy and estimated optimal
execution strategies associated with the same set of perturbed impact matrices are plotted in Figure 2.
Similar to the previous case, the left plots are generated under the assumption that short selling is allowed.
For the plots on the right, it is assumed that short selling is not permitted. Comparing Figure 2 with Figure
1, it is clear that, the sensitivity of the optimal execution strategy to perturbations in the impact matrices is
decreased when the risk aversion parameter µ = 10−5. Moreover, in Figure 2, there is little difference in the
sensitivity of the optimal execution strategy to perturbations whether short selling constraints are imposed
or not.

In addition, we compute, for each asset, the ratio of the average difference, between the true and estimated
optimal execution strategies, to the initial holding, i.e.,

εi(µ) def=
1

MS̄i

M∑

`=1

‖n(`)
i − n∗i ‖1, i = 1, 2, 3,

where the vector n
(`)
i is the estimated optimal execution strategy of the ith asset in the `th simulation. Table

1 presents the values of εi(µ) for various choices of µ. From Table 1, we observe that, whether short selling
is allowed or not, the relative average error εi(µ) decreases as the risk aversion parameter µ increases. For
example while the relative average error in asset 2 is 35.73191% for µ = 10−5, it becomes less than 0.1% for
µ ≥ 0.05. This observation is consistent with our analytical result that the change in the optimal execution
strategy decreases as the risk aversion parameter increases. Table 1 also confirms that the optimal execution
strategy when short selling is prohibited is less sensitive than the one obtained when short selling is allowed.
This difference is more striking for small values of µ. As µ increases, the difference between the two cases
almost diminishes. While εi(0) when short selling is allowed is almost twice as that when short selling is
prohibited, the value of εi(10−5) in both cases is almost identical.

Given Γ = ΓT in our example, Proposition 2.1 implies that, when perturbation in the permanent impact
matrix satisfies ∆ΓT = ∆Γ, the unique minimum expected execution cost strategy is the naive execution

1This is the covariance matrix of three risky assets used in Rockafellar and Uryasev (2000).
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µ Short selling is allowed Short selling is prohibited

0
10−5

0.05
0.5
1

100

Asset 1 Asset 2 Asset 3
9.51× 10−10 1.04× 10−9 5.10× 10−10

25.86364 42.39184 14.98491
0.01991 0.03900 0.01188
0.00199 0.00390 0.00119
0.00100 0.00195 0.00059
0.00001 0.00002 0.00001

Asset 1 Asset 2 Asset 3
2.08× 10−5 1.78× 10−4 1.23× 10−5

22.66105 32.06339 13.13987
0.01931 0.03182 0.01166
0.00193 0.00319 0.00117
0.00097 0.00159 0.00058
0.00001 0.00003 0.00000

Table 2: Relative average error εi(µ) (percentage) with 5% relative perturbations based on 50 simulations
with symmetric perturbations in the permanent impact matrix.

strategy. In our computation setting, the only possible violation is the asymmetric perturbation in the per-
manent impact matrix. This evinces the importance of maintaining symmetry in estimating the permanent
impact matrix if it is known or assumed to be symmetric. To illustrate how restricting to symmetric per-
turbations affects the sensitivity of the optimal execution strategy, we compute εi(µ) for estimated optimal
execution strategies with the perturbed impact matrices Ω + ∆Ω and Γ + 1

2 (∆Γ + ∆ΓT ), where ∆Ω and ∆Γ
are determined according to (48). Table 2 presents these values.

Comparing Table 2 with Table 1, we observe that the relative average error εi(0), with symmetric
perturbations in the permanent impact matrix, is much smaller than the relative average error εi(0) in Table
1 with asymmetric perturbations. However for µ ≥ 10−5 there is little difference in the relative average errors.
Thus, when the permanent impact matrix Γ is known to be symmetric and this property is maintained with
its estimate, an investor who wants to minimize the expected execution cost need not to worry about the
effect of estimation errors in the impact matrices on the optimal execution strategy.

4.2 The Sensitivity of The Efficient Frontier

In this section, we illustrate the effect of perturbations in the impact matrices on the efficient frontier in
the space of the variance and the expected execution cost. For a given pair of perturbed impact matrices
Ω + ∆Ω and Γ + ∆Γ, we compute the following three efficient frontiers of the optimal execution strategies
for µ ∈ [0, 10−5]:

• The true (efficient) frontier is the efficient frontier computed from the true values of the impact
matrices Ω and Γ.

• The actual (efficient) frontier is the curve of the true mean and variance of the execution cost of the
optimal execution strategy determined from the perturbed impact matrices Ω + ∆Ω and Γ + ∆Γ. The
actual frontier depicts the true performance of estimated optimal execution strategies for various values
of µ.

• The estimated (efficient) frontier is the efficient frontier based on the perturbed impact matrices Ω+∆Ω
and Γ + ∆Γ.

The notions of the actual frontier and estimated frontier have been used in Broadie (1993) to investigate
the effect of estimation errors in mean returns and the covariance matrix in the traditional mean-variance
portfolio optimization. As mentioned in Broadie (1993), the estimated frontier is what appears to be the
case based on estimated input data, but the actual frontier is what really occurs based on the true values
of the data. Since the true values of the data are unknown, the true and actual frontiers are unobservable
in practice. Note that actual frontiers can never be below the true efficient frontier as the execution cost
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(b) Estimated Frontiers versus the True Frontier

Figure 3: Actual and estimated frontiers with 5% relative asymmetric perturbations for 50 simulations.
Short selling is allowed for plots on the left. Short selling is prohibited for plots on the right.
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problem is a minimization problem. However, the estimated frontiers can be either above or below the actual
and true frontiers.

When perturbation in the permanent impact matrix is asymmetric, the effect of perturbations in the
impact matrices on the efficient frontier is demonstrated in Figure 3. Figure 3 (a) illustrates deviations of
actual frontiers from the true efficient frontier for µ ∈ [0, 10−5]. From the plot on the left generated under the
assumption that short selling is allowed, it can be observed that large deviations of actual frontiers can occur,
particularly when the risk aversion parameter is very small. Moreover, the lengths of the actual frontier from
different simulations vary drastically; the lengths of some actual frontiers largely differ from the length of
the true frontier. Figure 3 (a) also demonstrates that, similar to the sensitivity of the optimal execution
strategy, the change in the efficient frontier decreases as µ increases. Therefore, an execution strategy that
minimizes the variance of the execution cost can be estimated more accurately than the one that minimizes
the mean of the execution cost. This is consistent with our theoretical results.

Comparing the right plot to the left plot in Figure 3 (a), deviations of the actual frontiers from the true
frontier are significantly reduced in the right plot in which short selling is prohibited. There is also less
variation in the length of the actual frontiers. Thus, imposing no short selling constraints significantly
decreases the effect of estimation errors in impact matrices. Similar phenomena has been observed in
the mean-variance portfolio optimization, e.g., see Frost and Savarino (1988), Best and Grauer (1991),
Jagannathan and Ma (2003).

Figure 3 (b) depicts deviations of estimated frontiers from the true frontier. Comparing to plots in Figure
3 (a), there seems to be less difference in the deviations for different risk aversion parameters, whether short
selling constraints are imposed or not. In addition, for a large risk aversion parameter, we observe larger
deviations in the estimated frontiers than in the actual frontiers. On the other hand, deviations of estimated
frontiers are smaller than those of actual frontiers for a small risk aversion parameter.

Let perturbed impact matrices be Ω + ∆Ω and Γ + 1
2 (∆Γ + ∆ΓT ) where ∆Ω and ∆Γ are defined in

(48); thus the permanent impact matrix perturbation is symmetric. For these symmetric perturbations in
the permanent impact matrix, Figure 4 illustrates that the differences between actual frontiers and the true
efficient frontier are significantly reduced when the risk aversion parameter is small. In particular, when
the risk aversion parameter is near zero, actual frontiers are very close to the true frontier. Maintaining
symmetry does not seem to affect the sensitivity at the left end of the frontier for a large value of µ. In
addition, we note that the assumption of symmetry in the permanent impact matrix has little effect in the
estimated frontiers.

We now compare the sensitivity of the mean of the execution cost with the sensitivity of the variance of
the execution cost. Figure 5 displays (mean,variance) points on the actual frontiers for µ = 0 and µ = 10−5.
The left plots are generated when short selling is permitted. For the plots on the right, short selling is
prohibited. This figure suggests that, when µ = 0, variation in the variance of the execution cost is relatively
larger than the variation in the mean of the execution cost. For µ = 10−5, on the other hand, the relative
variation in the mean is larger than variance of the execution cost.

To quantify the relative variations in the mean and variance of the actual execution cost, for a given risk
aversion parameter µ and a relative perturbation ρ, we consider the following measure,

εvar(µ, ρ) def=
maxM

j=1 varj(µ)−minM
j=1 varj(µ)

|true variance for (µ = 0)− true variance for (µ = 10−5)| ,

εmean(µ, ρ) def=
maxM

j=1 meanj(µ)−minM
j=1 meanj(µ)

|true mean for (µ = 0)− true mean for (µ = 10−5)| ,

where (varj(µ), meanj(µ)) is the coordinate of the actual frontier for the jth simulation. Table 3 displays
values of εvar(µ, ρ) and εmean(µ, ρ) based on 50 simulations. These results illustrate that, whether short selling
is allowed or not, the relative variation εvar(0, ρ) is larger than the relative variation in mean εmean(0, ρ).
On the other hand, the relative variation in variance εvar(10−5, ρ) is less than the relative variation in mean
εmean(10−5, ρ). In addition, Table 3 demonstrates that the difference in both mean and variance increases
quickly and nonlinearly as the relative perturbation ρ increases. The fast increase is particularly prominent
when short selling is permitted.
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(b) Estimated Frontiers versus the True Frontier

Figure 4: Actual and estimated frontiers with 5% relative symmetric perturbations in the permanent impact
matrix for 50 simulations. Short selling is allowed for the plots on the left. Short selling is prohibited for
plots on the right.

ρ Short selling is allowed Short selling is prohibited

0.02
0.05
0.08
0.10

µ = 0 µ = 10−5

εvar εmean εvar εmean

0.16026 0.09950 0.01271 0.05570
0.75538 0.70920 0.04420 0.18996
3.83520 3.05705 0.05605 0.26419

45.16636 33.01414 0.08737 0.36430

µ = 0 µ = 10−5

εvar εmean εvar εmean

0.04643 0.03685 0.02038 0.08873
0.18433 0.09185 0.03951 0.17412
0.29582 0.18370 0.06779 0.33724
0.39132 0.14567 0.06600 0.27287

Table 3: Relative variation in mean and variance of the execution cost: εvar(µ, ρ) and εmean(µ, ρ).
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(a) Risk Aversion Parameter µ = 0
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(b) Risk Aversion Parameter µ = 10−5

Figure 5: Points on the actual frontier for µ = 0 and µ = 10−5 with 5% relative asymmetric perturbations
for 50 simulations. Short selling is allowed for plots on the left. For plots on the right, short selling is
prohibited.
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In summary, our computational investigation suggests that the effect of estimation errors in impact
matrices on the execution strategy and efficient frontiers can be quite large in general. Moreover, the effect
of these errors varies with the risk aversion parameter. For a large risk aversion parameter, the difference
between the true frontier and the actual frontier is small. In addition, we consistently observe that imposing
short selling constraints decreases the effect of estimation errors on both the optimal execution strategy and
the efficient frontier. Moreover, when appropriate, maintaining symmetry in the permanent impact matrix
decreases the effect of estimation errors.

In our simulations, we have also noticed that it is possible for a small perturbation in impact matrices to
make the Hessian matrix indefinite. As the number of assets grow, this issue becomes even more pronounced.
When the Hessian matrix is indefinite, the execution cost problem (12), in which short selling is permitted,
no longer has an optimal solution since the objective function becomes unbounded below. This is another
evidence of potentially large sensitivity of the optimal execution strategy to perturbations in the impact
matrices.

5 Concluding Remarks

Specification and estimation of the price impact function in the execution cost problem inevitably have
errors. Therefore it is important to analyze how sensitive the optimal execution strategy and the efficient
frontier are to these estimation errors. In this paper, we consider linear price impact functions and study
the effect of perturbations in the parameters of the price impact function.

We first show that the optimal execution strategy is determined from the combined impact matrix
Θ = 1

τ

(
Ω + ΩT

) − Γ. Therefore one may want to estimate the combined impact Θ directly, rather than
estimating the temporary and permanent impact matrices individually.

We discuss some cases in which the optimal execution strategy is insensitive to the estimation errors in the
impact matrices. For example, the optimal execution strategy, which minimizes the expected execution cost,
is the naive execution strategy as long as the permanent impact matrix and its perturbation are symmetric
and the combined impact matrices Θ and Θ + ∆Θ are positive definite. In other words, when symmetry
is maintained for the permanent impact matrices and positive definiteness is maintained for the combined
impact matrices, the minimum expected execution cost strategy is not sensitive to changes in the impact
matrices.

We prove that the optimal execution strategy is Lipschitz continuous in the impact matrices Ω and Γ
with respect to the Euclidean norm. We provide upper bounds for the size of the change in the optimal
execution strategy in terms of the change in the impact matrices and some magnification factor. In general,
the magnification factor is defined by the minimum eigenvalue of the block tridiagonal Hessian matrix W .
This matrix W is determined by the covariance matrix C, the combined impact matrix Θ, and the risk
aversion parameter µ. From the established upper bounds, it can be concluded that the change in the
optimal execution strategy diminishes as the risk aversion parameter increases. However, for a small risk
aversion parameter, estimation errors may significantly affect the optimal execution strategy and efficient
frontiers.

When the permanent impact matrix and its perturbation are symmetric, magnification factors can be
explicitly expressed in terms of minimum eigenvalues of the covariance matrix C and Θ. Specifically, the
magnification factor becomes small when either λmin(C) or λmin(Θ) is large, assuming that µ > 0 is fixed.
In this case, the sensitivity of the optimal execution strategy to perturbations in the impact matrices is not
as pronounced.

Our computational investigation confirms the importance of accurate specification of the impact matrices.
We demonstrate that, in addition, maintaining symmetry of the permanent impact matrix also reduces the
effect of estimation errors. Moreover, our simulations suggest that adding appropriate constraints, such
as short selling constraints, can significantly alleviate the effect of estimation errors in the impact matrices.
Consistent with our theoretical results, the computational investigation shows large sensitivity of the optimal
execution strategy and the efficient frontier for a small risk aversion parameter µ, when the permanent
impact matrix is asymmetric. Specially, this change becomes more significant in the absence of short selling
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constraints. This result also coincides with the observation that, for the traditional mean-variance portfolio
optimization, the effect of estimation errors in the mean and covariance matrix reduces when short selling
constraints are imposed on the problem.

In summary, our theoretical and computational results indicate that the optimal execution strategy can
potentially be very sensitive to estimation errors in the impact matrices. This is particularly the case if the
permanent impact matrix is asymmetric, the risk aversion parameter is small, and short selling is permitted.
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