ions are

which resul

hich may b

objective value for the perturbed problem reduce to the original unperblem when t = 0. A systematic procedure for performing an analysimpact of variations in the c_j 's can be summarized as follows.

Parametric programming procedure: c vector (maximization pr

- STEP 1. Set the parameter t = 0 and find an optimal solution to the original problem
- STEP 2. Add an additional top row to the optimal tableau containing the $z'_j c'_j$ we computed using $z'_j c'_j = \mathbf{c}'_B \mathbf{B}^{-1} \mathbf{a}_j c'_j$. The contribution to the objective value is given by $\mathbf{c}'_B \mathbf{B}^{-1} \mathbf{b}$.
- STEP 3. Determine the parameter range over which the tableau is optimal by example optimality conditions

$$(z_i-c_i)+t(z_i'-c_i')\geq 0,$$
 for all i

Let this range be given by $l \le t \le u$, where l is the lower bound and u is bound on parameter t. (Note that the values of l and u need not be finite

STEP 4. If l is finite, determine which nonbasic variable has $(z_j - c_j) + t(z_j' - c_j) = t = l$. Enter this variable into the basis by performing a primal simplex power will possibly result in a new tableau that is optimal for additional values of Similarly, if u is finite, determine which nonbasic variable has $(z_j - c_j) + t(z_j' - c_j) = t$

Similarly, if u is finite, determine which nonbasic variable has $(z'_j - c'_j) = 0$ when t = u. Enter this variable into the basis by performing simplex pivot. This will possibly result in a new tableau that is optimal for values of t.

STEP 5. Repeat Steps 3 and 4 until all the appropriate ranges of the parameter investigated.

We now illustrate the solution procedure via the following simple

Example 6.19: Parametric Programming: c Vector

maximize
$$z = x_1 + 4x_2 + t(x_1 + x_2) = (1 + t)x_1 + (4 \oiint t)x_2$$

subject to

$$2x_1 + x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_2 \leq 4$$

$$x_1, x_2 \ge 0$$

Considering the original problem with t=0 and denoting the respectation variables by x_3 , x_4 , and x_5 yield the optimal tableau shown in Table 6.36 Note, from (6.295), that \mathbf{c} and \mathbf{c}' are given by

$$\mathbf{c} = (1 \ 4 \ 0 \ 0 \ 0)$$

$$\mathbf{c}' = (1 \quad -1 \quad 0 \quad 0 \quad 0)$$

Now, add an additional top row to the optimal tableau containing $z'_j - c'_j$ with objective value $\mathbf{c}'_B \mathbf{B}^{-1} \mathbf{b}$. The updated tableau is shown in Tableau

. . . .

original unpern ing an analysis ws.

kimization pro

e original problem g the $z_j' - z_j'$, which the objective z_j'

otimal by examin

und and u is a not be finite +i(z)-c is all simplex prional values of riable has a performing optimal to

parameter h

ing simple

(4 A) 1) X

theresp

ese m Tableis **TABLE 6.30**

	z —	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS
z	1	0	0	0	1	3	18
x_3 x_1 x_2	0 0 0	0 1 0	0 0 1	1 0 0	-2 1 0	1 -1 1	2 2 4

TABLE 6.31

	z	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS
		0	0	0	1	-2	-2
z	1	0	0	0	1	3	18
x_3 x_1 x_2	0 0 0	0 1 0	0 0 1	1 0 0	-2 1 0	1 -1 1	2 2 4

Examining Table 6.31, we see that the present solution is x = (2, 4, 2, 0, 0) and z = 18 - 2t. Now we use the optimality conditions given in (6.293) to determine for what range of the parameter t the current solution is optimal. The optimality conditions are

$$(z_4 - c_4) + t(z'_4 - c'_4) = 1 + t \ge 0$$

$$(z_5 - c_5) + t(z_5' - c_5') = 3 - 2t \ge 0$$

which result in

$$-1 \le t \le \frac{3}{2}$$

Thus, the current tableau is optimal for $-1 \le t \le \frac{3}{2}$. Note that $(z_4 - c_4) + t(z_4' - c_4') = 0$ when t = -1. Therefore, an alternative optimal solution exists for this tableau, which may be found by entering x_4 via a primal simplex pivot. The departing variable is x_1 and the new tableau is shown in Table 6.32.

TABLE 6.32

	z	<i>x</i> ₁	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS
		-1	0	0	0	-1	-4
	1	-1	0	0	0	4	16
x ₃ x ₄ x ₂	0 0 0	2 1 0	0 0 1	1 0 0	0 1 0	-1 -1 1	6 2 4

From Table 6.32, we see that it is optimal if

$$-1-t\geq 0$$

$$4-t\geq 0$$

That is, for $-\infty \le t \le -1$, $\mathbf{x} = (0, 4, 6, 2, 0)$ and z = 16 - 4t. Note that because we have already examined the bound t = -1, no finite bounds remain to be examined for the tableau of Table 6.32.

Returning to Table 6.31, we now examine the case of $t = \frac{3}{2}$. In this case, we perform a primal pivot entering x_5 into the basis. Table 6.33 shows the resulting

TABLE 6.33

	z	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	RHS
		0	0	2	-3	0	2
z	1	0	0	-3	7	0	12
x_5 x_1 x_2	0 0 0	0 1 0	0 0 1	1 1 -1	-2 -1 2	1 0 0	2 4 2

Examining Table 6.33, we find that $\mathbf{x} = (4, 2, 0, 0, 2)$ and z = 12 + 2t for $\frac{3}{2} \le t \le \frac{7}{3}$. This results from the optimality conditions

$$-3+2t\geq 0$$

$$7-3t\geq 0$$

There are two finite bounds on the parameter t at this point, but we have already examined $t = \frac{3}{2}$. Thus, we look at $t = \frac{7}{3}$. For this case, we use a primal pivot to enter x_4 in Table 6.33. The resulting tableau is shown in Table 6.34.

TABLE 6.34

	z	x_1	x_2	x_3	<i>x</i> ₄	x_5	RHS
		0	3 2	$\frac{1}{2}$	0	0	5
z	1	0	$-\frac{7}{2}$	$\frac{1}{2}$	0	0	5
x_5 x_1 x_4	0 0	0 1 0	1 1 2 1 2	$0 \\ -\frac{1}{2} \\ -\frac{1}{2}$	0 0 1	1 0 0	4 5 1

Table 6

This results
At th
summarize
6.35. The t
graphically

4t. Note that because emain to be examined

of $t = \frac{3}{2}$. In this case 6.33 shows the result

RHS

2	A STATE OF THE STATE OF
12	
2 4 2	
and the state of t	

1, 2) and z = 12

oint, but we have allouse a primal pivot to e 6.34.

RHS

	经分配收益 医阿克尼氏链球	
1000	- 5	2" 1 . 12" - 1" 1 . 1
3	5	14, 117, 12, 1
	4 5 1	

This results in the solution $\mathbf{x} = (5, 0, 0, 1, 4), z = 5 + 5t$ for $\frac{7}{3} \le t \le \infty$.

At this point, no *finite* bounds on t remain to be examined. Thus, we may summarize the results, for the entire range of t (from $-\infty$ to ∞), as shown in Table 6.35. The results of Table 6.35 pertaining to the objective value z can also be viewed graphically, as shown in Figure 6.10.

TABLE 6.35 RESULTS OF EXAMPLE 6.19

Range of t	Optimal solution	Optimal objective
$-\infty \le t \le -1$	$\mathbf{x} = (0, 4, 6, 2, 0)$	z=16-4t
$-1 \le t \le \frac{3}{2}$	$\mathbf{x} = (2, 4, 2, 0, 0)$	z=18-2t
$\frac{3}{2} \le t \le \frac{7}{3}$	$\mathbf{x} = (4, 2, 0, 0, 2)$	z=12+2t
$\frac{7}{3} \le t \le \infty$	$\mathbf{x} = (5, 0, 0, 1, 4)$	z=5+5t

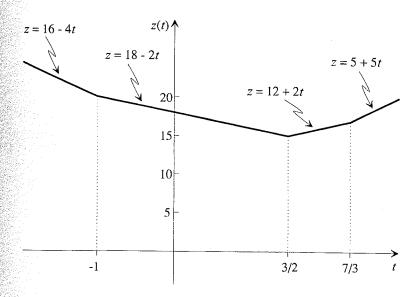


Figure 6.10 Graph for Example 6.19.