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Abstract

This contains a list of definitions and basic results in Convex Analysis. Please notify the
instructor about any errors and/or missing content.
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1 Euclidean Spaces, Linear Manifolds, Hyperplanes

Definition 1.1 A Euclidean space E is a finite dimensional vector space over the reals, R, equipped
with an inner product, 〈·, ·〉.

Include definitions and basic results on: linear manifold, polyhedral set, hyperplanes and
halfspaces, affine hull, span, linear transformation, adjoint, relative interior, closure, boundary,
Bolzano-Weierstrass Theorem.

1.1 Basics for Background

• Unit ball in E. B = {x ∈ E : ‖x‖ ≤ 1}

• Open set S ⊆ E. ∀x ∈ S,∃δ > 0, {x} + δB ⊆ S

• Interior of S ⊆ E. int(S) = {x ∈ E : {x}+δB ⊆ S for some δ > 0} = union of all open sets contained in S

• Closed set S ⊆ E. ∀x /∈ S,∃δ > 0, ({x} + δB) ∩ S = ∅

• Closure of S ⊆ E. cl(S) = {x ∈ E : ∀δ > 0, ({x}+δB)∩S 6= ∅} = intersection of all closed sets containing S

• Linear subspace S ⊆ E. ∀x, y ∈ S,∀λ, µ ∈ R, λx + µy ∈ S

• Linear function f : E → (−∞,+∞]. ∀x, y ∈ dom(f),∀λ, µ ∈ R, f(λx+ µy) = λf(x) + µf(y)

• Linear map L : E → Y. ∀x, y ∈ E,∀λ, µ ∈ R, L(λx + µy) = λL(x) + µL(y)

• Adjoint of linear map A : E → Y. Linear map Aadj : Y → E satisfying ∀x ∈ E,∀y ∈
Y, 〈Aadjy, x〉E = 〈y,Ax〉Y

• Affine subspace S ⊆ E. (1) ∀x, y ∈ S,∀λ ∈ R, λx+ (1− λ)y ∈ S
(2) S = V + {x} for some linear subspace V and vector x

• Affine function a : E → (−∞,+∞]. (1) ∀x, y ∈ dom(a),∀λ ∈ R, a(λx + (1− λ)y) = λa(x) + (1− λ)a(y)

(2) a : x 7→ f(x) + r for some linear function f and real number r

• Affine map A : E → Y. (1) ∀x, y ∈ E,∀λ ∈ R, A(λx + (1− λ)y) = λA(x) + (1− λ)A(y)

(2) A : x 7→ L(x) + b for some linear map L and vector b

• Affine hull of S ⊆ E. Aff(S) = {λx + (1 − λ)y : x, y ∈ S, λ ∈ R} = intersection of all affine
subspaces containing S

• Cone K ⊆ E. ∀x ∈ K,∀λ > 0, λx ∈ K
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• Positively-homogeneous function f : E → [−∞,+∞]. (1) ∀x ∈ E,∀λ > 0, f(λx) = λf(x)

(2) epi(f) is a cone

• Relatively open set S ⊆ E. ∀x ∈ S,∃δ > 0, ({x} + δB) ∩Aff(S) ⊆ S

• Relative interior of S. ri(S) = {x ∈ Aff(S) : ({x} + δB) ∩Aff(S) ⊆ S for some δ > 0}

• Domain of f : E → [−∞,+∞]. dom(f) = {x ∈ E : f(x) < +∞}

• Proper function f : E → [−∞,+∞]. dom(f) 6= ∅ and f(x) > −∞ for all x ∈ E

• Epigraph of f : E → [−∞,+∞]. epi(f) = {(x, r) ∈ E ⊕ R : f(x) ≤ r}

• Sub-level set of f : E → [−∞,+∞] at level r ∈ R. Sr(f) = {x ∈ E : f(x) ≤ r}

• Closure of f : E → [−∞,+∞]. cl(f) : x ∈ E 7→ lim infy→x f(y)

• Infimum convolution of f, g : E → (−∞,+∞]. f⊙ g : x ∈ E 7→ inf{f(y) + g(x− y)}

• Indicator function of S ⊆ E. δS : x ∈ E 7→ 0 if x ∈ S, + ∞ otherwise

2 Convex Sets and Functions

2.1 Convex Sets

Definition 2.1 The set S ⊂ E is a convex set if

λx+ (1− λ)y ∈ S,∀λ ∈ (0, 1),∀x, y ∈ S.

Proposition 2.2 For a nonempty convex set C:

1. We have relintC 6= ∅ and the affine hulls aff C = aff relint (C). Moreover, for any x ∈ relintC
and y ∈ clC, the line segment [x, y) ⊂ relintC and thus relintC is convex. Furthermore,

clC = cl relintC, relintC = relint cl C.

2. relintC ⊂ C ⊂ cl C.

Include definitions and basic results on: Basic (strong, strict) separation theorems, convex
hull, convex combination, recession cones, Caratheodory Theorem.

2.2 Convex Functions

Definition 2.3 The epigraph of a function f : R
n → (−∞,+∞] is defined as

epi (f) = {(x, r) : f(x) ≤ r}.

Definition 2.4 The function f : R
n → (−∞,+∞] is a convex function if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y),∀x, y ∈ R
n ,∀λ ∈ [0, 1].
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Definition 2.5 The convex hull or convex envelope of a function f : R
n → R is defined as

conv (f)(x) = inf{t : (x, t) ∈ conv epi f}.

Proposition 2.6 A convex function f is locally Lipschitz on the interior of its domain.

Include definitions and basic results on: composing convex functions, convex growth
conditions, locally Lipschitz

2.3 Basics for Convex Functions and Convex Sets

• Convex set. ∀x, y ∈ S,∀λ ∈ (0, 1), λx + (1− λ)y ∈ S

• Convex function f : E → [−∞,+∞]. epi(f) is convex

• Sublinear function f : E → [−∞,+∞]. f is positively-homogeneous and convex

• Subadditive function f : E → [−∞,+∞]. ∀x, y ∈ dom(f), f(x + y) ≤ f(x) + f(y)

• Convex hull of S ⊆ E. conv(S) = {λx + (1− λ)y : x, y ∈ S, λ ∈ (0, 1)}

• Convex hull of f : E → [−∞,+∞]. conv(f) : x 7→ inf{r : (x, r) ∈ conv(epi(f))}

• Locally Lipschitz f at x ∈ dom(f). ∃K > 0,∃δ > 0,∀y, z ∈ {x} + δB, |f(y) − f(z)| ≤ K‖y − z‖

3 Duality of Functions and Sets

3.1 Conjugate, Positively Homogeneous, Sublinear Functions

Definition 3.1 The Fenchel conjugate of h : E → [−∞,+∞] is

h∗(φ) := sup
x∈E

{〈φ, x〉 − h(x)}.

Proposition 3.2 1. f ≥ g ⇒ f∗ ≤ g∗

Include definitions and basic results on: positively homogeneous, subadditive, sublinear,

3.2 Indicator Functions, Support Functions and Sets, Closures

Definition 3.3 The indicator function of a set S ⊂ E is

δS(x) :=

{
0 if x ∈ S
∞ otherwise

Definition 3.4 The support function of a set S ⊂ E is

σS(φ) := sup
x∈S

{〈φ, x〉}.

Definition 3.5 A function f is positively homogeneous if

f(λx) = λf(x),∀λ > 0,∀x ∈ E.
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Remark 3.6 Equivalently, the function f is positively homogeneous if

f(λx) ≤ λf(x),∀λ > 0,∀x ∈ E.

And, a support function is positively homogeneous.

Definition 3.7 A function is sublinear if it is subadditive and positively homogeneous, equivalently,
if

f(αx+ βy) ≤ αf(x) + βf(y),∀α > 0,β > 0,∀x, y ∈ E.

Definition 3.8 The set Sf := {φ : 〈φ, x〉 ≤ f(x),∀x} is the set supported by f.

Proposition 3.9 Suppose that the function f is positively homogeneous. Then the conjugate func-
tion

f∗ = δSf
.

3.2.1 Closures of Sets and Functions

Proposition 3.10 δ∗∗S = δS iff S is closed and convex.

Proposition 3.11 The second conjugate function f∗∗ = f iff f is a closed and convex function.

Definition 3.12 The closure of a function f is defined as

cl (f)(x) = inf

{
lim

k→∞
f(xk) : xk → x

}
.

Proposition 3.13 The second conjugate functions:

δ∗∗S = δcl (conv (S))

σ∗∗S = σcl (conv (S))

f∗∗ = cl (conv (f))

Proposition 3.14 The second polar S◦◦ = cl (conv (S ∪ {0})).

3.2.2 Convex Cones

Proposition 3.15 If K is a nonempty cone, then K−− = cl (conv (K)).

3.2.3 More on Support Functions

Theorem 3.16 1. If ∅ 6= S ⊂ E is a closed, convex set, then the support function σS is a proper,
closed, sublinear function.

2. Moreover, if f is a proper, closed and sublinear function, then

f = σSf
,

i.e. it is the support function of the set supported by f.

3. Thus S ↔ σS is a bijection between {closed, convex sets} and {closed, sublinear functions}.
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3.3 Gauge Functions, Polar of a Function, Norms and Dual Norms

Definition 3.17 The function defined by γS(x) := inf{λ ≥ 0 : x ∈ λS} is called the gauge of S.

Definition 3.18 The polar of a function g is

g◦(φ) := inf{λ > 0 : 〈φ, x〉 ≤ λg(x),∀x}

Proposition 3.19 1. The support function of the polar set of S, σs◦, is majorized by the gauge
function of S, γS.

2. γS ≥ 0 and γ(0) = 0.

3. γS is positively homogeneous.

4. If S is convex, then γS is sublinear.

5. If S is closed and convex, then γS is closed and sublinear.

6.
γS = γ∗∗S = δ∗S◦ = σS◦ .

7. A gauge function is a non-negative sublinear function which maps the origin to 0.

8. A norm is a gauge function. Conversely, the gauge function of a closed, convex set containing
0 is a norm.

Proposition 3.20 Given a norm ‖ · ‖, then the polar function ‖ · ‖◦, is also a norm, called the
dual norm. Moreover,

S‖·‖ = {φ : ‖φ‖◦ ≤ 1}, S‖·‖◦ = {x : ‖x‖ ≤ 1} = S◦‖·‖.

3.4 Subdifferentials, Directional Derivatives, Set Constrained Optimization

3.4.1 Subdifferentials and Directional Derivatives

Theorem 3.21 Let f be a differentiable function on an open convex subset S ⊂ E. Each of the
following conditions is necessary and sufficient for f to be convex on S:

1. f(x) − f(y) ≥ 〈x − y,∇f(y)〉,∀x, y ∈ S.

2. 〈∇f(x) − ∇f(y), x − y〉 ≥ 0,∀x, y ∈ S.

3. ∇2f(x) is positive semidefinite for all x ∈ S whenever f is twice differentiable on S.

To extend results as in Theorem 3.21 to the nondifferentiable case, we use the following.

Definition 3.22 The vector φ is called a subgradient of f at x if

f(y) − f(x) ≥ 〈φ,y − x〉,∀y ∈ E .

The subdifferential of f at x is

∂f(x) = {φ : f(y) − f(x) ≥ 〈φ,y − x〉,∀y ∈ E .

∂f(x) = ∅, if x /∈ dom (f).
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Proposition 3.23 Suppose that f is convex. Then ∂f(x) is a closed convex set. And, x ∈
argminx f(x) if and only if 0 ∈ ∂f(x).

Proposition 3.24 Suppose that f : E → (−∞,+∞] is convex. Let

g(t) :=
f(x+ td) − f(x)

t
.

Then for all x, d ∈ E, x ∈ dom (f), the function g is monotonically nondecreasing for t > 0 (and
for t < 0).

Definition 3.25 The directional derivative of f at x (in dom (f)) along d is

f′(x;d) := lim
t↓0

1

t
f(x + td) − f(x)

if it exists.

Theorem 3.26 Suppose that f is convex. Then for all x, d ∈ E, x ∈ dom (f), the directional
derivative

f′(x;d) = lim
t↓0

f(x+ td) − f(x)

t

exists in [−∞,+∞].

3.4.2 Properties of f′(x;d), ∂f(x)

Proposition 3.27 Let f be convex and x ∈ dom (f). Then φ is a subgradient of f at x iff f′(x;d) ≥
〈φ,d〉,∀d ∈ E.

Proposition 3.28 Let f, g be proper convex functions.

1. f′(x; ·) is positively homogeneous.

2. If f is convex, then f′(x; ·) is convex; hence it is sublinear.

3. If f is convex, then ∀x ∈ dom (f) we have

∂f(x) = Sf′(x;·).

4.
∂(f + g)(x) ⊃ ∂f(x) + ∂g(x).

5. With f(x) finite:

(a) ∂f(x) 6= ∅ ⇒ f(x) = f∗∗(x).

(b) f(x) = f∗∗(x) ⇒ ∂f(x) = ∂f∗∗(x).

(c) y ∈ ∂f(x) ⇒ x ∈ ∂f(y).
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Example 3.29 Let X ∈ S
n, f(X) := λmax(X) denote the largest eigenvalue of X, and let V be the

corresponding eigenspace, i.e. the subspace of eigenvectors V = {v : Xv = λmax(X)v}. Then the
directional derivative in the direction D ∈ S

n is

f′(X;D) = max
‖v‖=1,v∈V

vTDv = σ∂f(X).

Therefore, f is differentiable if ∂f(X) is a singleton, i.e. if the eigenvalue λmax(X) is a singleton so
the dimension of the eigenspace V is 1.

3.5 Basics for Duality of Functions and Sets

• Polar set of S ⊆ E. S◦ =
⋂

x∈S{φ ∈ E : 〈φ, x〉 ≤ 1}

• Polar cone of K ⊆ E. K− =
⋂

x∈K{φ ∈ E : 〈φ, x〉 ≤ 0}

• Fenchel conjugate of f : E → [−∞,+∞]. f∗ : φ ∈ E 7→ supx∈dom(f){〈φ, x〉 − f(x)}

• Support function of S ⊆ E. σS = δ∗S : φ 7→ sup{〈φ, x〉 : x ∈ S}

• Set supported by f : E → [−∞,+∞]. Sf = {φ ∈ E : ∀x ∈ E, 〈φ, x〉 ≤ f(x)}

4 Optimization

4.1 Set Constrained Optimization and Normal Cones

Proposition 4.1 Suppose that f is a differentiable convex function and S is an open convex set.
Then x̄ ∈ argminx∈S f(x) iff ∇f(x̄) = 0.

Definition 4.2 The normal cone to the convex set C in E at x̄ ∈ C is

NC(x̄) := {d ∈ E : 〈d, x− x̄〉 ≤ 0,∀x ∈ C}.

Definition 4.3 The (convex) tangent cone to the convex set C in E at x̄ ∈ C is

TC(x̄) := cl cone (C − x̄).

Definition 4.4 The set of feasible directions to the convex set C in E at x̄ ∈ C is

DC(x̄) := cone (C− x̄).

Proposition 4.5 Suppose that C is a convex set and f : C → R. If x̄ is a local minimum of f on
C, then

f′(x̄; x− x̄) ≥ 0,∀x ∈ C. (4.1)

If f is differentiable, this is equivalent to ∇f(x̄) ∈ −NC(x̄).
If, in addition, f is convex on C, then the condition (4.1) is sufficient for x̄ to be a minimum of f
on C, i.e. we get (if f is lsc on S) that

x̄ ∈ argmin
x∈C

f(x) iff ∃φ ∈ (−NC(x̄)) ∩ ∂f(x̄).
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4.2 Basics for Optimization

• Subdifferential of f at x ∈ dom(f). ∂f(x) = {φ ∈ E : ∀y ∈ dom(f), 〈φ,y − x〉 ≤ f(y) − f(x)}

• Subgradient of f at x ∈ dom(f). φ ∈ ∂f(x)

• Directional derivative of f at x ∈ dom(f) in direction d ∈ E. f ′(x;d) = limt↓0
1
t
[f(x +

td) − f(x)], if exists

• Differentiability of f at x ∈ dom(f). ∃∇f(x) ∈ E,∀d ∈ E, f ′(x;d) = 〈∇f(x), d〉; ∇f(x) is
called the gradient

• Normal cone to convex set S at x ∈ S. NS(x) =
⋂

y∈S{φ ∈ E : 〈φ,y − x〉 ≤ 0} = ∂δS(x)

5 Theorems

5.1 Convexity

• Relative interior.
S convex =⇒ ∅ 6= ri(S) = {x ∈ S : ∀y ∈ S,∃δ > 0, x + δ(x − y) ∈ S} = {x ∈ S :

⋃
t≥0 t(S −

{x}) is a linear subspace}

• Convexity preserving operations. Suppose that {St : t ∈ T } is a collection of convex sets,
{ft : t ∈ T } is a collection of convex functions, and A is an affine map. Then the following are
convex:

–:
⋂

t∈T St –
⊕

t∈T St (T finite) –:
∑

t∈T St (T finite)

–: A(St) (t ∈ T) – A−1(St) (t ∈ T) – ri(St) (t ∈ T) – cl(St) (t ∈ T)

–: supt∈T ft –
∑

t∈T ft (T finite) –:
⊙

t∈T ft (T finite) – ft ◦A (t ∈ T)

• Monotonicity of gradient. Suppose f continuous over dom(f) and differentiable over int(dom(f)),
dom(f) convex, and int(dom(f)) 6= ∅.

–: f convex ⇐⇒ ∀x, y ∈ int(dom(f)), 〈∇f(x) − ∇f(y), x − y〉 ≥ 0

–: f strictly convex over int(dom(f)) ⇐⇒ ∀x, y ∈ int(dom(f)), 〈∇f(x) − ∇f(y), x − y〉 > 0

• Interior representation of convexity. –: S ⊆ E is convex ⇐⇒ S = conv(S)

–: f : E → [−∞,+∞] is convex ⇐⇒ f = conv(f)

• Basic separation. S is a closed, convex set and x /∈ S =⇒ ∃a ∈ E,∃b ∈ R,∀y ∈ S, 〈a, x〉 >
b ≥ 〈a, y〉.
If S is a cone, we may take b = 0.

• Characterization of sublinearity. f is sublinear ⇐⇒ f is positively-homogeneous and
subadditive.
f is proper, closed and sublinear ⇐⇒ Sf 6= ∅ and f = σSf

• Continuity of convex functions. f is proper and convex, and x ∈ int(dom(f)) =⇒ f is
locally Lipschitz at x
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5.2 Duality

• Exterior representation of convexity.
–: S ⊆ E is closed, convex and contains 0 ⇐⇒ S = (S◦)◦

–: f : E → [−∞,+∞] is closed and convex ⇐⇒ f = (f∗)∗

• Fenchel-Young inequality. ∀φ, x ∈ E, f(x) + f∗(φ) ≥ 〈φ, x〉, with equality iff φ ∈ ∂f(x)

• Polar Calculus. Suppose S, T are nonempty sets, K a nonempty cone.

–: (S◦)◦ = cl(conv(S ∪ {0}))

–: (K−)− = cl(conv(K))

–: (S ∪ T)◦ = S◦ ∩ T◦

–: (S ∩ T)◦ ⊇ cl(conv(S◦ ∪ T◦)), with equality when S, T are closed, convex and contain 0

• Conjugate calculus. Suppose f, g, f1, . . . , fm are proper.

–: (f∗)∗ = cl(conv(f))

–: f, g convex =⇒ (f⊙ g)∗ = f∗ + g∗

–: f, g convex =⇒ (f + g)∗ ≤ f∗ ⊙ g∗. Equality holds when int(dom(f)) ∩ dom(g) 6= ∅

–: f convex, and A a linear map =⇒ (f ◦A)∗(φ) ≤ inf{f∗(ψ) : Aadjψ = φ}.
Equality holds when ∃y,Ay ∈ int(dom(f)), in which case infimum is attained when finite

–: f1, . . . , fm convex with common domain =⇒ (maxi fi)
∗(φ) ≤ inf{

∑m
i=1λif

∗
i(φ

i) :
∑m

i=1λi(φ
i, 1) =

(φ, 1), λi ≥ 0}.
Equality holds when int(dom(fi)) 6= ∅, in which case the infimum is attained when finite

• Fenchel duality. Suppose f, g are proper and convex

–: inf{f(x) + g(x)} ≥ sup{−f∗(−φ) − g∗(φ)}

–: Equality holds when int(dom(f)) ∩ dom(g) 6= ∅, in which case the supremum is attained
when finite

• Convex conic duality. Suppose K is a convex cone, and A,D are linear maps

–: infx{〈c, x〉 : b−Ax ∈ K,Dx = e} ≥ supφ,η{〈b,φ〉 + 〈e, η〉 : Aadjφ +Dadjη = c,φ ∈ K−}

–: Equality holds when ∃x,Dx = e, b−Ax ∈ int(K), in which case the supremum is attained if
finite

• Lagrange duality. Suppose f, g1, . . . , gm are proper, L : (x, λ) ∈ E⊕R
m 7→ f(x)+

∑m
i=1λigi(x),

and D = dom(f) ∩ (
⋂m

i=1dom(gi)).

–: inf{f(x) : gi(x) ≤ 0, i = 1, . . . ,m} ≥ supλ≥0 infxL(x, λ)

–: ∃x ∈ D,λ ≥ 0, (gi(x) ≤ 0, i = 1, . . . ,m) ∧ (x minimizes y 7→ L(y, λ) over D) ∧ (λigi(x) =

0, i = 1, . . . ,m)

=⇒ equality holds with x and λ attaining the infimum and supremum respectively

–: (f, g1, . . . , gm convex) ∧ (∃y ∈ dom(f),∀i ∈ {1, . . . ,m}gi(y) < 0) ∧ (x attains the infimum)
=⇒ equality holds and ∃λ ≥ 0, (x minimizes y 7→ L(y, λ) over D) ∧ (λigi(x) = 0, i =

1, . . . ,m)
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–: (f, g1, . . . , gm closed and convex) ∧ (∃λ ≥ 0, x 7→ L(x, λ) has bounded sub-level sets
=⇒ equality holds and the infimum is attained if finite

5.3 Optimization

• Convex optimality conditions. Suppose f, g1, . . . , gm are proper and convex, and S is
nonempty and convex

–: x minimizes f ⇐⇒ 0 ∈ ∂f(x)

–: 0 ∈ ∂f(x)+NS(x) =⇒ x minimizes f over S. The converse is true when int(dom(f))∩S 6= ∅

–: (KKT condition) Suppose S = {y : gi(y) ≤ 0, i = 1, . . . ,m}, x ∈ S and f, g1, . . . , gm are
differentiable at x.
∃λ ≥ 0, (∇f(x) +

∑m
i=1λi∇g(x) = 0) ∧ (λigi(x) = 0, i = 1, . . . ,m) =⇒ x minimizes f over S.

The converse is true when ∃y ∈ dom(f),∀i ∈ {1, . . . ,m}, gi(y) < 0

• Subdifferential calculus. Suppose f, g, f1, . . . , fm are proper and convex with f1, . . . , fm shar-
ing same domain, and A is a linear map.

–: ∀x ∈ dom(f) ∩ dom(g), ∂(f + g)(x) ⊇ ∂f(x) + ∂g(x). Equality holds when int(dom(f)) ∩
dom(g) 6= ∅

–: ∀x ∈ dom(f ◦A)), ∂(f ◦A)(x) ⊇ Aadj∂f(Ax). Equality holds when ∃y,Ay ∈ int(dom(f))

–: ∀x ∈ dom(fi), ∂(maxi fi)(x) =
⋃

{∂(
∑

i∈Iλifi)(x) :
∑

i∈Iλi = 1, λi ≥ 0} ⊇ conv(
⋃

i∈I∂fi(x)),
where I = {i : fi(x) = f(x)}. Equality holds when int(dom(fi)) 6= ∅.

• Sublinearity of directional derivatives. Suppose f is proper and convex.

–: x ∈ dom(f) =⇒ f ′(x; ·) : d ∈ E 7→ f ′(x;d) is sublinear and ∂f(x) = Sf′(x;·) is closed and
convex

–: x ∈ int(dom(f)) =⇒ ∂f(x) is closed, convex and bounded, and f ′(x; ·) = maxφ∈∂f(x)〈φ, ·〉
is closed.

–: x ∈ dom(f) \ int(dom(f)) =⇒ ∂f(x) is either empty or unbounded.

• Directional derivatives of max-function. f1, . . . , fm are proper and convex, x ∈
⋂m

i=1 int(dom(fi))

and I = {i : fi(x) = f(x)} =⇒ ∀d ∈ E, f ′(x;d) = maxi∈I{f
′
i(x;d)}

• Unique subgradient. Suppose f is proper and convex and x ∈ dom(f)

–: f is differentiable at x ⇐⇒ ∂f(x) is a singleton
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