In Progress: Summary of Notation and Basic Results Convex Analysis C\&O 663, Fall 2007

Intructor: Henry Wolkowicz
December 4, 2007
University of Waterloo
Department of Combinatorics \& Optimization

Abstract

This contains a list of definitions and basic results in Convex Analysis. Please notify the instructor about any errors and/or missing content.

Contents

1 Euclidean Spaces, Linear Manifolds, Hyperplanes 2
1.1 Basics for Background 2
2 Convex Sets and Functions 3
2.1 Convex Sets 3
2.2 Convex Functions 3
2.3 Basics for Convex Functions and Convex Sets 4
3 Duality of Functions and Sets 4
3.1 Conjugate, Positively Homogeneous, Sublinear Functions 4
3.2 Indicator Functions, Support Functions and Sets, Closures 4
3.2.1 Closures of Sets and Functions 5
3.2.2 Convex Cones 5
3.2.3 More on Support Functions 5
3.3 Gauge Functions, Polar of a Function, Norms and Dual Norms 6
3.4 Subdifferentials, Directional Derivatives, Set Constrained Optimization 6
3.4.1 Subdifferentials and Directional Derivatives 6
3.4.2 Properties of $f^{\prime}(x ; d), \partial f(x)$ 7
3.5 Basics for Duality of Functions and Sets 8
4 Optimization 8
4.1 Set Constrained Optimization and Normal Cones 8
4.2 Basics for Optimization 9
5 Theorems 9
5.1 Convexity 9
5.2 Duality 10
5.3 Optimization 11
6 Bibliography 12

1 Euclidean Spaces, Linear Manifolds, Hyperplanes

Definition 1.1 A Euclidean space \mathbb{E} is a finite dimensional vector space over the reals, \mathbb{R}, equipped with an inner product, $\langle\cdot, \cdot\rangle$.

Include definitions and basic results on: linear manifold, polyhedral set, hyperplanes and halfspaces, affine hull, span, linear transformation, adjoint, relative interior, closure, boundary, Bolzano-Weierstrass Theorem.

1.1 Basics for Background

- Unit ball in $\mathbb{E} . B=\{x \in \mathbb{E}:\|x\| \leq 1\}$
- Open set $S \subseteq \mathbb{E} . \forall x \in S, \exists \delta>0,\{x\}+\delta B \subseteq S$
- Interior of $S \subseteq \mathbb{E} . \operatorname{int}(S)=\{x \in \mathbb{E}:\{x\}+\delta B \subseteq S$ for some $\delta>0\}=$ union of all open sets contained in S
- Closed set $S \subseteq \mathbb{E} . \forall x \notin S, \exists \delta>0,(\{x\}+\delta B) \cap S=\emptyset$
- Closure of $S \subseteq \mathbb{E} . \operatorname{cl}(S)=\{x \in \mathbb{E}: \forall \delta>0,(\{x\}+\delta B) \cap S \neq \emptyset\}=$ intersection of all closed sets containing S
- Linear subspace $S \subseteq \mathbb{E} . \forall x, y \in S, \forall \lambda, \mu \in \mathbb{R}, \lambda x+\mu y \in S$
- Linear function $f: \mathbb{E} \rightarrow(-\infty,+\infty] . \forall x, y \in \operatorname{dom}(f), \forall \lambda, \mu \in \mathbb{R}, f(\lambda x+\mu y)=\lambda f(x)+\mu f(y)$
- Linear map $L: \mathbb{E} \rightarrow \mathbb{Y} . \forall x, y \in \mathbb{E}, \forall \lambda, \mu \in \mathbb{R}, \mathrm{~L}(\lambda x+\mu y)=\lambda \mathrm{L}(x)+\mu \mathrm{L}(\mathrm{y})$
- Adjoint of linear map $A: \mathbb{E} \rightarrow \mathbb{Y}$. Linear map $A^{\text {adj }}: \mathbb{Y} \rightarrow \mathbb{E}$ satisfying $\forall x \in \mathbb{E}, \forall y \in$ $\mathbb{Y},\left\langle A^{\text {adj }} y, x\right\rangle_{\mathbb{E}}=\langle y, A x\rangle_{\mathbb{Y}}$
- Affine subspace $S \subseteq \mathbb{E}$. (1) $\forall x, y \in S, \forall \lambda \in \mathbb{R}, \lambda x+(1-\lambda) y \in S$
(2) $S=V+\{x\}$ for some linear subspace V and vector x
- Affine function $a: \mathbb{E} \rightarrow(-\infty,+\infty]$. (1) $\forall x, y \in \operatorname{dom}(a), \forall \lambda \in \mathbb{R}, a(\lambda x+(1-\lambda) y)=\lambda a(x)+(1-\lambda) a(y)$
(2) $a: x \mapsto f(x)+r$ for some linear function f and real number r
- Affine map $A: \mathbb{E} \rightarrow \mathbb{Y}$. (1) $\forall x, y \in \mathbb{E}, \forall \lambda \in \mathbb{R}, \mathcal{A}(\lambda x+(1-\lambda) y)=\lambda A(x)+(1-\lambda) A(y)$
(2) $A: x \mapsto L(x)+b$ for some linear map L and vector b
- Affine hull of $S \subseteq \mathbb{E}$. $\operatorname{Aff}(S)=\{\lambda x+(1-\lambda) y: x, y \in S, \lambda \in \mathbb{R}\}=$ intersection of all affine subspaces containing S
- Cone $K \subseteq \mathbb{E} . \forall x \in K, \forall \lambda>0, \lambda x \in K$
- Positively-homogeneous function $f: \mathbb{E} \rightarrow[-\infty,+\infty]$. (1) $\forall x \in \mathbb{E}, \forall \lambda>0, f(\lambda x)=\lambda f(x)$
(2) epi(f) is a cone
- Relatively open set $S \subseteq \mathbb{E} . \forall x \in S, \exists \delta>0,(\{x\}+\delta B) \cap \operatorname{Af}(S) \subseteq S$
- Relative interior of $S . \operatorname{ri}(S)=\{x \in \operatorname{Af}(S):(\{x\}+\delta B) \cap \operatorname{Af}(S) \subseteq S$ for some $\delta>0\}$
- Domain of $\mathrm{f}: \mathbb{E} \rightarrow[-\infty,+\infty] . \operatorname{dom}(f)=\{x \in \mathbb{E}: f(x)<+\infty\}$
- Proper function $f: \mathbb{E} \rightarrow[-\infty,+\infty]$. $\operatorname{dom}(f) \neq \emptyset$ and $f(x)>-\infty$ for all $x \in \mathbb{E}$
- Epigraph of $\mathrm{f}: \mathbb{E} \rightarrow[-\infty,+\infty]$. epi $(\mathrm{f})=\{(\mathrm{x}, \mathrm{r}) \in \mathbb{E} \oplus \mathbb{R}: f(x) \leq r\}$
- Sub-level set of $f: \mathbb{E} \rightarrow[-\infty,+\infty]$ at level $r \in \mathbb{R}$. $S_{r}(f)=\{x \in \mathbb{E}: f(x) \leq r\}$
- Closure of $f: \mathbb{E} \rightarrow[-\infty,+\infty]$. cl(f) : $x \in \mathbb{E} \mapsto \liminf _{y \rightarrow x} f(y)$
- Infimum convolution of $f, g: \mathbb{E} \rightarrow(-\infty,+\infty] . f \odot g: x \in \mathbb{E} \mapsto \inf \{f(y)+g(x-y)\}$
- Indicator function of $S \subseteq \mathbb{E}$. $\delta_{S}: x \in \mathbb{E} \mapsto 0$ if $x \in S,+\infty$ otherwise

2 Convex Sets and Functions

2.1 Convex Sets

Definition 2.1 The set $\mathrm{S} \subset \mathbb{E}$ is a convex set if

$$
\lambda x+(1-\lambda) y \in S, \forall \lambda \in(0,1), \forall x, y \in S .
$$

Proposition 2.2 For a nonempty convex set C:

1. We have relint $\mathrm{C} \neq \emptyset$ and the affine hulls aff $\mathrm{C}=$ aff relint (C). Moreover, for any $x \in \operatorname{relint} \mathrm{C}$ and $\mathrm{y} \in \mathrm{cl} \mathrm{C}$, the line segment $[\mathrm{x}, \mathrm{y}) \subset$ relint C and thus relint C is convex. Furthermore,

$$
\mathrm{cl} \mathrm{C}=\mathrm{cl} \text { relint } \mathrm{C}, \quad \text { relint } \mathrm{C}=\text { relint } \mathrm{cl} \mathrm{C} .
$$

2. relint $\mathrm{C} \subset \mathrm{C} \subset \mathrm{clC}$.

Include definitions and basic results on: Basic (strong, strict) separation theorems, convex hull, convex combination, recession cones, Caratheodory Theorem.

2.2 Convex Functions

Definition 2.3 The epigraph of a function $\mathrm{f}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is defined as

$$
\operatorname{epi}(f)=\{(x, r): f(x) \leq r\}
$$

Definition 2.4 The function $\mathrm{f}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ is a convex function if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y), \forall x, y \in \mathbb{R}^{n}, \forall \lambda \in[0,1]
$$

Definition 2.5 The convex hull or convex envelope of a function $\mathrm{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\operatorname{conv}(f)(x)=\inf \{t:(x, t) \in \operatorname{conv} \text { epi } f\}
$$

Proposition 2.6 A convex function f is locally Lipschitz on the interior of its domain.
Include definitions and basic results on: composing convex functions, convex growth conditions, locally Lipschitz

2.3 Basics for Convex Functions and Convex Sets

- Convex set. $\forall x, y \in S, \forall \lambda \in(0,1), \lambda x+(1-\lambda) y \in S$
- Convex function $f: \mathbb{E} \rightarrow[-\infty,+\infty]$. epi(f) is convex
- Sublinear function $f: \mathbb{E} \rightarrow[-\infty,+\infty]$. f is positively-homogeneous and convex
- Subadditive function $f: \mathbb{E} \rightarrow[-\infty,+\infty] . \forall x, y \in \operatorname{dom}(f), f(x+y) \leq f(x)+f(y)$
- Convex hull of $S \subseteq \mathbb{E} \cdot \operatorname{conv}(S)=\{\lambda x+(1-\lambda) y: x, y \in S, \lambda \in(0,1)\}$
- Convex hull of $f: \mathbb{E} \rightarrow[-\infty,+\infty]$. $\operatorname{conv}(f): x \mapsto \inf \{r:(x, r) \in \operatorname{conv}(e p i(f))\}$
- Locally Lipschitz f at $x \in \operatorname{dom}(f) . \exists K>0, \exists \delta>0, \forall y, z \in\{x\}+\delta B,|f(y)-f(z)| \leq K\|y-z\|$

3 Duality of Functions and Sets

3.1 Conjugate, Positively Homogeneous, Sublinear Functions

Definition 3.1 The Fenchel conjugate of $\mathrm{h}: \mathbb{E} \rightarrow[-\infty,+\infty]$ is

$$
h^{*}(\phi):=\sup _{x \in \mathbb{E}}\{\langle\phi, x\rangle-h(x)\} .
$$

Proposition 3.2 1. $\mathrm{f} \geq \mathrm{g} \Rightarrow \mathrm{f}^{*} \leq \mathrm{g}^{*}$
Include definitions and basic results on: positively homogeneous, subadditive, sublinear,

3.2 Indicator Functions, Support Functions and Sets, Closures

Definition 3.3 The indicator function of a set $S \subset \mathbb{E}$ is

$$
\delta_{S}(x):=\left\{\begin{array}{cc}
0 & \text { if } x \in S \\
\infty & \text { otherwise }
\end{array}\right.
$$

Definition 3.4 The support function of a set $S \subset \mathbb{E}$ is

$$
\sigma_{S}(\phi):=\sup _{x \in S}\{\langle\phi, x\rangle\} .
$$

Definition 3.5 A function f is positively homogeneous if

$$
f(\lambda x)=\lambda f(x), \forall \lambda>0, \forall x \in \mathbb{E} .
$$

Remark 3.6 Equivalently, the function f is positively homogeneous if

$$
f(\lambda x) \leq \lambda f(x), \forall \lambda>0, \forall x \in \mathbb{E}
$$

And, a support function is positively homogeneous.
Definition 3.7 A function is sublinear if it is subadditive and positively homogeneous, equivalently, if

$$
f(\alpha x+\beta y) \leq \alpha f(x)+\beta f(y), \forall \alpha>0, \beta>0, \forall x, y \in \mathbb{E} .
$$

Definition 3.8 The set $S_{f}:=\{\phi:\langle\phi, x\rangle \leq f(x), \forall x\}$ is the set supported by f.
Proposition 3.9 Suppose that the function f is positively homogeneous. Then the conjugate function

$$
f^{*}=\delta_{S_{f}} .
$$

3.2.1 Closures of Sets and Functions

Proposition $3.10 \delta_{\mathrm{S}}^{* *}=\delta_{\mathrm{S}}$ iff S is closed and convex.
Proposition 3.11 The second conjugate function $\mathrm{f}^{* *}=\mathrm{f}$ iff f is a closed and convex function.
Definition 3.12 The closure of a function f is defined as

$$
\operatorname{cl}(f)(x)=\inf \left\{\lim _{k \rightarrow \infty} f\left(x^{k}\right): x^{k} \rightarrow x\right\}
$$

Proposition 3.13 The second conjugate functions:

$$
\begin{aligned}
\delta_{S}^{* *} & =\delta_{\mathrm{cl}(\operatorname{conv}(\mathrm{~S}))} \\
\sigma_{S}^{* *} & =\sigma_{\mathrm{cl}(\operatorname{conv}(\mathrm{~S}))} \\
\mathrm{f}^{* *} & =\mathrm{cl}(\operatorname{conv}(\mathrm{f}))
\end{aligned}
$$

Proposition 3.14 The second polar $S^{\circ \circ}=\operatorname{cl}(\operatorname{conv}(S \cup\{0\}))$.

3.2.2 Convex Cones

Proposition 3.15 If K is a nonempty cone, then $\mathrm{K}^{--}=\operatorname{cl}(\operatorname{conv}(\mathrm{K}))$.

3.2.3 More on Support Functions

Theorem 3.16 1. If $\emptyset \neq S \subset \mathbb{E}$ is a closed, convex set, then the support function σ_{S} is a proper, closed, sublinear function.
2. Moreover, if f is a proper, closed and sublinear function, then

$$
f=\sigma_{S_{f}},
$$

i.e. it is the support function of the set supported by f .
3. Thus $S \leftrightarrow \sigma_{S}$ is a bijection between \{closed, convex sets\} and \{closed, sublinear functions $\}$.

3.3 Gauge Functions, Polar of a Function, Norms and Dual Norms

Definition 3.17 The function defined by $\gamma_{S}(x):=\inf \{\lambda \geq 0: x \in \lambda S\}$ is called the gauge of S.
Definition 3.18 The polar of a function g is

$$
g^{\circ}(\phi):=\inf \{\lambda>0:\langle\phi, x\rangle \leq \lambda g(x), \forall x\}
$$

Proposition 3.19 1. The support function of the polar set of $S, \sigma_{s^{\circ}}$, is majorized by the gauge function of $\mathrm{S}, \gamma_{\mathrm{S}}$.
2. $\gamma_{S} \geq 0$ and $\gamma(0)=0$.
3. γ_{S} is positively homogeneous.
4. If S is convex, then γ_{S} is sublinear.
5. If S is closed and convex, then γ_{S} is closed and sublinear.
6.

$$
\gamma_{\mathrm{S}}=\gamma_{\mathrm{S}^{* *}}^{* *}=\delta_{\mathrm{S}^{\circ}}^{*}=\sigma_{\mathrm{S}^{\circ}} .
$$

7. A gauge function is a non-negative sublinear function which maps the origin to 0 .
8. A norm is a gauge function. Conversely, the gauge function of a closed, convex set containing 0 is a norm.

Proposition 3.20 Given a norm $\|\cdot\|$, then the polar function $\|\cdot\|^{\circ}$, is also a norm, called the dual norm. Moreover,

$$
S_{\|\cdot\|}=\left\{\phi:\|\phi\|^{\circ} \leq 1\right\}, \quad S_{\|\cdot\|^{\circ}}=\{x:\|x\| \leq 1\}=S_{\|\cdot\|}^{\circ}
$$

3.4 Subdifferentials, Directional Derivatives, Set Constrained Optimization

3.4.1 Subdifferentials and Directional Derivatives

Theorem 3.21 Let f be a differentiable function on an open convex subset $\mathrm{S} \subset \mathbb{E}$. Each of the following conditions is necessary and sufficient for f to be convex on S :

1. $f(x)-f(y) \geq\langle x-y, \nabla f(y)\rangle, \forall x, y \in S$.
2. $\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0, \forall x, y \in S$.
3. $\nabla^{2} \mathrm{f}(\mathrm{x})$ is positive semidefinite for all $\mathrm{x} \in \mathrm{S}$ whenever f is twice differentiable on S .

To extend results as in Theorem 3.21 to the nondifferentiable case, we use the following.
Definition 3.22 The vector ϕ is called a subgradient of f at x if

$$
f(y)-f(x) \geq\langle\phi, y-x\rangle, \forall y \in \mathcal{E}
$$

The subdifferential of f at x is

$$
\partial f(x)=\{\phi: f(y)-f(x) \geq\langle\phi, y-x\rangle, \forall y \in \mathcal{E}
$$

$\partial f(x)=\emptyset$, if $x \notin \operatorname{dom}(f)$.

Proposition 3.23 Suppose that f is convex. Then $\partial \mathrm{f}(\mathrm{x})$ is a closed convex set. And, $\mathrm{x} \in$ $\operatorname{argmin}_{x} f(x)$ if and only if $0 \in \partial f(x)$.

Proposition 3.24 Suppose that $\mathrm{f}: \mathbb{E} \rightarrow(-\infty,+\infty]$ is convex. Let

$$
g(t):=\frac{f(x+t d)-f(x)}{t} .
$$

Then for all $\mathrm{x}, \mathrm{d} \in \mathbb{E}, \mathrm{x} \in \operatorname{dom}(\mathrm{f})$, the function g is monotonically nondecreasing for $\mathrm{t}>0$ (and for $\mathrm{t}<0$).

Definition 3.25 The directional derivative of f at x (in $\operatorname{dom}(\mathrm{f})$) along d is

$$
f^{\prime}(x ; d):=\lim _{t \downarrow 0} \frac{1}{t} f(x+t d)-f(x)
$$

if it exists.
Theorem 3.26 Suppose that f is convex. Then for all $\mathrm{x}, \mathrm{d} \in \mathbb{E}, \mathrm{x} \in \operatorname{dom}(\mathrm{f})$, the directional derivative

$$
f^{\prime}(x ; d)=\lim _{t \leq 0} \frac{f(x+t d)-f(x)}{t}
$$

exists in $[-\infty,+\infty]$.
3.4.2 Properties of $f^{\prime}(x ; d), \partial f(x)$

Proposition 3.27 Let f be convex and $\mathrm{x} \in \operatorname{dom}(\mathrm{f})$. Then ϕ is a subgradient of f at x iff $\mathrm{f}^{\prime}(\mathrm{x} ; \mathrm{d}) \geq$ $\langle\phi, \mathrm{d}\rangle, \forall \mathrm{d} \in \mathbb{E}$.

Proposition 3.28 Let f,g be proper convex functions.

1. $f^{\prime}(x ; \cdot)$ is positively homogeneous.
2. If f is convex, then $\mathrm{f}^{\prime}(\mathrm{x} ; \cdot \cdot)$ is convex; hence it is sublinear.
3. If f is convex, then $\forall \mathrm{x} \in \operatorname{dom}(\mathrm{f})$ we have

$$
\partial f(x)=S_{f^{\prime}\left(x_{i}^{\prime}\right)} .
$$

4.

$$
\partial(f+g)(x) \supset \partial f(x)+\partial g(x)
$$

5. With $\mathrm{f}(\mathrm{x})$ finite:
(a) $\partial \mathrm{f}(\mathrm{x}) \neq \emptyset \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}^{* *}(\mathrm{x})$.
(b) $f(x)=f^{* *}(x) \Rightarrow \partial f(x)=\partial f^{* *}(x)$.
(c) $\mathrm{y} \in \partial \mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{x} \in \partial \mathrm{f}(\mathrm{y})$.

Example 3.29 Let $\mathrm{X} \in \mathbb{S}^{n}, f(\mathrm{X}):=\lambda_{\max }(\mathrm{X})$ denote the largest eigenvalue of X , and let V be the corresponding eigenspace, i.e. the subspace of eigenvectors $\mathrm{V}=\left\{v: \mathrm{Xv}=\lambda_{\max }(\mathrm{X}) v\right\}$. Then the directional derivative in the direction $\mathrm{D} \in \mathbb{S}^{n}$ is

$$
f^{\prime}(X ; D)=\max _{\|v\|=1, v \in V} v^{\top} D v=\sigma_{\partial f(X)}
$$

Therefore, f is differentiable if $\partial \mathrm{f}(\mathrm{X})$ is a singleton, i.e. if the eigenvalue $\lambda_{\max }(\mathrm{X})$ is a singleton so the dimension of the eigenspace V is 1 .

3.5 Basics for Duality of Functions and Sets

- Polar set of $S \subseteq \mathbb{E} . S^{\circ}=\bigcap_{x \in S}\{\phi \in \mathbb{E}:\langle\phi, x\rangle \leq 1\}$
- Polar cone of $K \subseteq \mathbb{E} . K^{-}=\bigcap_{x \in K}\{\phi \in \mathbb{E}:\langle\phi, x\rangle \leq 0\}$
- Fenchel conjugate of $\mathrm{f}: \mathbb{E} \rightarrow[-\infty,+\infty]$. $\mathrm{f}^{*}: \phi \in \mathbb{E} \mapsto \sup _{x \in \operatorname{dom}(f)}\{\langle\phi, x\rangle-f(x)\}$
- Support function of $S \subseteq \mathbb{E} . \sigma_{S}=\delta_{S}^{*}: \phi \mapsto \sup \{\langle\phi, x\rangle: x \in S\}$
- Set supported by $\mathrm{f}: \mathbb{E} \rightarrow[-\infty,+\infty]$. $\mathrm{S}_{\mathrm{f}}=\{\phi \in \mathbb{E}: \forall x \in \mathbb{E},\langle\phi, x\rangle \leq \mathrm{f}(\mathrm{x})\}$

4 Optimization

4.1 Set Constrained Optimization and Normal Cones

Proposition 4.1 Suppose that f is a differentiable convex function and S is an open convex set. Then $\bar{x} \in \operatorname{argmin}_{x \in S} f(x)$ iff $\nabla f(\bar{x})=0$.

Definition 4.2 The normal cone to the convex set C in \mathbb{E} at $\bar{x} \in \mathrm{C}$ is

$$
\mathrm{N}_{\mathrm{C}}(\bar{x}):=\{\mathrm{d} \in \mathbb{E}:\langle\mathrm{d}, \mathrm{x}-\overline{\mathrm{x}}\rangle \leq 0, \forall \mathrm{x} \in \mathrm{C}\} .
$$

Definition 4.3 The (convex) tangent cone to the convex set C in \mathbb{E} at $\bar{x} \in \mathrm{C}$ is

$$
\mathrm{T}_{\mathrm{C}}(\bar{x}):=\operatorname{cl} \text { cone }(\mathrm{C}-\bar{x}) .
$$

Definition 4.4 The set of feasible directions to the convex set C in \mathbb{E} at $\bar{x} \in \mathrm{C}$ is

$$
\mathcal{D}_{\mathrm{C}}(\bar{x}):=\operatorname{cone}(\mathrm{C}-\bar{x}) .
$$

Proposition 4.5 Suppose that C is a convex set and $\mathrm{f}: \mathrm{C} \rightarrow \mathbb{R}$. If \bar{x} is a local minimum of f on C, then

$$
\begin{equation*}
f^{\prime}(\bar{x} ; x-\bar{x}) \geq 0, \forall x \in C . \tag{4.1}
\end{equation*}
$$

If f is differentiable, this is equivalent to $\nabla \mathrm{f}(\overline{\mathrm{x}}) \in-\mathrm{N}_{\mathrm{C}}(\overline{\mathrm{x}})$.
If, in addition, f is convex on C , then the condition (4.1) is sufficient for $\overline{\mathrm{x}}$ to be a minimum of f on C , i.e. we get (if f is lsc on S) that

$$
\bar{x} \in \underset{x \in C}{\operatorname{argmin}} f(x) \text { iff } \exists \phi \in\left(-N_{C}(\bar{x})\right) \cap \partial f(\bar{x}) .
$$

4.2 Basics for Optimization

- Subdifferential of f at $x \in \operatorname{dom}(f) . \partial f(x)=\{\phi \in \mathbb{E}: \forall y \in \operatorname{dom}(f),\langle\phi, y-x\rangle \leq f(y)-f(x)\}$
- Subgradient of f at $x \in \operatorname{dom}(f) . \phi \in \partial f(x)$
- Directional derivative of f at $x \in \operatorname{dom}(f)$ in direction $d \in \mathbb{E} . f^{\prime}(x ; d)=\lim _{t \downarrow 0} \frac{1}{t}[f(x+$ $t d)-f(x)]$, if exists
- Differentiability of f at $x \in \operatorname{dom}(f) . \exists \nabla f(x) \in \mathbb{E}, \forall d \in \mathbb{E}, f^{\prime}(x ; d)=\langle\nabla f(x), d\rangle ; \nabla f(x)$ is called the gradient
- Normal cone to convex set S at $x \in S . N_{S}(x)=\bigcap_{y \in S}\{\phi \in \mathbb{E}:\langle\phi, y-x\rangle \leq 0\}=\partial \delta_{S}(x)$

5 Theorems

5.1 Convexity

- Relative interior.
S convex $\Longrightarrow \emptyset \neq \operatorname{ri}(S)=\{x \in S: \forall y \in S, \exists \delta>0, x+\delta(x-y) \in S\}=\left\{x \in S: \bigcup_{t \geq 0} t(S-\right.$ $\{x\}$) is a linear subspace $\}$
- Convexity preserving operations. Suppose that $\left\{S_{t}: t \in T\right\}$ is a collection of convex sets, $\left\{f_{t}: t \in T\right\}$ is a collection of convex functions, and A is an affine map. Then the following are convex:

$$
\begin{array}{llll}
-: \bigcap_{t \in T} S_{t} & -\bigoplus_{t \in T} S_{t}(T \text { finite }) & -: \sum_{t \in T} S_{t}(T \text { finite }) & \\
-: A\left(S_{t}\right)(t \in T) & -A^{-1}\left(S_{t}\right)(t \in T) & -r i\left(S_{t}\right)(t \in T) & -\operatorname{cl}\left(S_{t}\right)(t \in T) \\
-: \sup _{t \in T} f_{t} & -\sum_{t \in T} f_{t}(T \text { finite }) & -: \bigodot_{t \in T} f_{t}(T \text { finite }) & -f_{t} \circ A(t \in T)
\end{array}
$$

- Monotonicity of gradient. Suppose f continuous over dom(f) and differentiable over $\operatorname{int}(\operatorname{dom}(f))$, $\operatorname{dom}(f)$ convex, and $\operatorname{int}(\operatorname{dom}(f)) \neq \emptyset$.
$-: f$ convex $\Longleftrightarrow \forall x, y \in \operatorname{int}(\operatorname{dom}(f)),\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0$
$-: f$ strictly convex over $\operatorname{int}(\operatorname{dom}(f)) \Longleftrightarrow \forall x, y \in \operatorname{int}(\operatorname{dom}(f)),\langle\nabla f(x)-\nabla f(y), x-y\rangle>0$
- Interior representation of convexity. $-: S \subseteq \mathbb{E}$ is convex $\Longleftrightarrow S=\operatorname{conv}(S)$

$$
-: f: \mathbb{E} \rightarrow[-\infty,+\infty] \text { is convex } \Longleftrightarrow \mathrm{f}=\operatorname{conv}(\mathrm{f})
$$

- Basic separation. S is a closed, convex set and $x \notin S \Longrightarrow \exists a \in \mathbb{E}, \exists b \in \mathbb{R}, \forall y \in S,\langle a, x\rangle>$ $\mathrm{b} \geq\langle\mathrm{a}, \mathrm{y}\rangle$.
If S is a cone, we may take $b=0$.
- Characterization of sublinearity. f is sublinear $\Longleftrightarrow f$ is positively-homogeneous and subadditive.
f is proper, closed and sublinear $\Longleftrightarrow \mathrm{S}_{\mathrm{f}} \neq \emptyset$ and $\mathrm{f}=\sigma_{\mathrm{S}_{\mathrm{f}}}$
- Continuity of convex functions. f is proper and convex, and $x \in \operatorname{int}(\operatorname{dom}(f)) \Longrightarrow f$ is locally Lipschitz at x

5.2 Duality

- Exterior representation of convexity.
$-: S \subseteq \mathbb{E}$ is closed, convex and contains $0 \Longleftrightarrow S=\left(S^{\circ}\right)^{\circ}$
$-: f: \mathbb{E} \rightarrow[-\infty,+\infty]$ is closed and convex $\Longleftrightarrow f=\left(f^{*}\right)^{*}$
- Fenchel-Young inequality. $\forall \phi, x \in \mathbb{E}, f(x)+f^{*}(\phi) \geq\langle\phi, x\rangle$, with equality iff $\phi \in \partial f(x)$
- Polar Calculus. Suppose S, T are nonempty sets, K a nonempty cone.
$-:\left(S^{\circ}\right)^{\circ}=\operatorname{cl}(\operatorname{conv}(S \cup\{0\}))$
$-:\left(\mathrm{K}^{-}\right)^{-}=\operatorname{cl}(\operatorname{conv}(\mathrm{K}))$
$-:(S \cup T)^{\circ}=S^{\circ} \cap T^{\circ}$
$-:(S \cap T)^{\circ} \supseteq \operatorname{cl}\left(\operatorname{conv}\left(S^{\circ} \cup T^{\circ}\right)\right)$, with equality when S, T are closed, convex and contain 0
- Conjugate calculus. Suppose $f, g, f_{1}, \ldots, f_{m}$ are proper.
$-:\left(f^{*}\right)^{*}=\operatorname{cl}(\operatorname{conv}(f))$
$-: f, g$ convex $\Longrightarrow(f \odot g)^{*}=f^{*}+g^{*}$
$-: f, g$ convex $\Longrightarrow(f+g)^{*} \leq f^{*} \odot g^{*}$. Equality holds when $\operatorname{int}(\operatorname{dom}(f)) \cap \operatorname{dom}(g) \neq \emptyset$
$-: f$ convex, and A a linear map $\Longrightarrow(f \circ A)^{*}(\phi) \leq \inf \left\{f^{*}(\psi): A^{\text {adj }} \psi=\phi\right\}$.
Equality holds when $\exists y, A y \in \operatorname{int}(\operatorname{dom}(f))$, in which case infimum is attained when finite
$-: f_{1}, \ldots, f_{m}$ convex with common domain $\Longrightarrow\left(\max _{i} f_{i}\right)^{*}(\phi) \leq \inf \left\{\sum_{i=1}^{m} \lambda_{i} f_{i}^{*}\left(\phi^{i}\right): \sum_{i=1}^{m} \lambda_{i}\left(\phi^{i}, 1\right)=\right.$ $\left.(\phi, 1), \lambda_{i} \geq 0\right\}$.
Equality holds when $\operatorname{int}\left(\operatorname{dom}\left(f_{i}\right)\right) \neq \emptyset$, in which case the infimum is attained when finite
- Fenchel duality. Suppose f, g are proper and convex
$-: \inf \{f(x)+g(x)\} \geq \sup \left\{-f^{*}(-\phi)-g^{*}(\phi)\right\}$
-: Equality holds when $\operatorname{int}(\operatorname{dom}(\mathrm{f})) \cap \operatorname{dom}(\mathrm{g}) \neq \emptyset$, in which case the supremum is attained when finite
- Convex conic duality. Suppose K is a convex cone, and A, D are linear maps
$-: \inf _{x}\{\langle c, x\rangle: b-A x \in K, D x=e\} \geq \sup _{\phi, \eta}\left\{\langle b, \phi\rangle+\langle e, \eta\rangle: A^{a d j} \phi+D^{a d j} \eta=c, \phi \in K^{-}\right\}$
-: Equality holds when $\exists x, \mathrm{D} x=e, \mathrm{~b}-\mathrm{Ax} \in \operatorname{int}(\mathrm{K})$, in which case the supremum is attained if finite
- Lagrange duality. Suppose f, g_{1}, \ldots, g_{m} are proper, $L:(x, \lambda) \in \mathbb{E} \oplus \mathbb{R}^{m} \mapsto f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)$, and $D=\operatorname{dom}(f) \cap\left(\bigcap_{i=1}^{m} \operatorname{dom}\left(g_{i}\right)\right)$.
$-: \inf \left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m\right\} \geq \sup _{\lambda \geq 0} \inf _{x} L(x, \lambda)$
$-: \exists x \in D, \lambda \geq 0,\left(g_{i}(x) \leq 0, i=1, \ldots, m\right) \wedge(x$ minimizes $y \mapsto L(y, \lambda)$ over $D) \wedge\left(\lambda_{i} g_{i}(x)=\right.$ $0, i=1, \ldots, m)$
\Longrightarrow equality holds with x and λ attaining the infimum and supremum respectively
$-:\left(f, g_{1}, \ldots, g_{\mathfrak{m}}\right.$ convex $) \wedge\left(\exists y \in \operatorname{dom}(f), \forall i \in\left\{1, \ldots, m g_{i}(y)<0\right) \wedge(x\right.$ attains the infimum $)$ \Longrightarrow equality holds and $\exists \lambda \geq 0,(x$ minimizes $y \mapsto L(y, \lambda)$ over $D) \wedge\left(\lambda_{i} g_{i}(x)=0, i=\right.$ $1, \ldots, m)$
$-:\left(f, g_{1}, \ldots, g_{m}\right.$ closed and convex $) \wedge(\exists \lambda \geq 0, x \mapsto L(x, \lambda)$ has bounded sub-level sets \Longrightarrow equality holds and the infimum is attained if finite

5.3 Optimization

- Convex optimality conditions. Suppose f, g_{1}, \ldots, g_{m} are proper and convex, and S is nonempty and convex
$-: x$ minimizes $f \Longleftrightarrow 0 \in \partial f(x)$
$-: 0 \in \partial f(x)+N_{S}(x) \Longrightarrow x$ minimizes f over S. The converse is true when $\operatorname{int}(\operatorname{dom}(f)) \cap S \neq \emptyset$
$-:\left(\right.$ KKT condition) Suppose $S=\left\{y: g_{i}(y) \leq 0, i=1, \ldots, m\right\}, x \in S$ and f, g_{1}, \ldots, g_{m} are differentiable at x.
$\exists \lambda \geq 0,\left(\nabla f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla g(x)=0\right) \wedge\left(\lambda_{i} g_{i}(x)=0, i=1, \ldots, m\right) \Longrightarrow x$ minimizes f over S.
The converse is true when $\exists y \in \operatorname{dom}(f), \forall i \in\{1, \ldots, m\}, g_{i}(y)<0$
- Subdifferential calculus. Suppose $f, g, f_{1}, \ldots, f_{m}$ are proper and convex with f_{1}, \ldots, f_{m} sharing same domain, and A is a linear map.
$-: \forall x \in \operatorname{dom}(f) \cap \operatorname{dom}(g), \partial(f+g)(x) \supseteq \partial f(x)+\partial g(x)$. Equality holds when $\operatorname{int}(\operatorname{dom}(f)) \cap$ $\operatorname{dom}(\mathrm{g}) \neq \emptyset$
$-: \forall x \in \operatorname{dom}(f \circ A)), \partial(f \circ A)(x) \supseteq A^{\operatorname{adj}} \partial f(A x)$. Equality holds when $\exists y, A y \in \operatorname{int}(\operatorname{dom}(f))$
$-: \forall x \in \operatorname{dom}\left(f_{i}\right), \partial\left(\max _{i} f_{i}\right)(x)=\bigcup\left\{\partial\left(\sum_{i \in I} \lambda_{i} f_{i}\right)(x): \sum_{i \in I} \lambda_{i}=1, \lambda_{i} \geq 0\right\} \supseteq \operatorname{conv}\left(\bigcup_{i \in I} \partial f_{i}(x)\right)$, where $I=\left\{i: f_{i}(x)=f(x)\right\}$. Equality holds when $\operatorname{int}\left(\operatorname{dom}\left(f_{i}\right)\right) \neq \emptyset$.
- Sublinearity of directional derivatives. Suppose f is proper and convex.
$-: x \in \operatorname{dom}(f) \Longrightarrow f^{\prime}(x ; \cdot): d \in \mathbb{E} \mapsto f^{\prime}(x ; d)$ is sublinear and $\partial f(x)=S_{f^{\prime}(x ;)}$ is closed and convex
$-: x \in \operatorname{int}(\operatorname{dom}(f)) \Longrightarrow \partial f(x)$ is closed, convex and bounded, and $f^{\prime}(x ; \cdot)=\max _{\phi \in \partial f(x)}\langle\phi, \cdot\rangle$ is closed.
$-: x \in \operatorname{dom}(f) \backslash \operatorname{int}(\operatorname{dom}(f)) \Longrightarrow \partial f(x)$ is either empty or unbounded.
- Directional derivatives of max-function. f_{1}, \ldots, f_{m} are proper and convex, $x \in \bigcap_{i=1}^{m} \operatorname{int}\left(\operatorname{dom}\left(f_{i}\right)\right)$ and $I=\left\{i: f_{i}(x)=f(x)\right\} \Longrightarrow \forall d \in \mathbb{E}, f^{\prime}(x ; d)=\max _{i \in I}\left\{f_{i}^{\prime}(x ; d)\right\}$
- Unique subgradient. Suppose f is proper and convex and $x \in \operatorname{dom}(f)$
$-: f$ is differentiable at $x \Longleftrightarrow \partial f(x)$ is a singleton

Acknowledgement ${ }^{1}$

6 Bibliography

1. The main source of the content is from the course textbook on Convex Analysis [3] and the classic book by Rockafellar [5].
2. Another good source for information are the two books on Convex Analysis and Optimization: [2] and [4]; and the book on variational inequalities [1].

References

[1] A. AUSLANDER and M. TEBOULLE. Asymptotic cones and functions in optimization and variational inequalities. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.
[2] D.P. BERTSEKAS. Convex analysis and optimization. Athena Scientific, Belmont, MA, 2003. With Angelia Nedić and Asuman E. Ozdaglar.
[3] J.M. BORWEIN and A.S. LEWIS. Convex analysis and nonlinear optimization. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 3. Springer, New York, second edition, 2006. Theory and examples.
[4] S. BOYD and L. VANDENBERGHE. Convex Optimization. Cambridge University Press, Cambridge, 2004.
[5] R.T. ROCKAFELLAR. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

[^0]
[^0]: ${ }^{1}$ Thanks to Chek Beng Chua, National Technological University of Singapore, for parts of this document.

