CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination

24th June 2005

Recap

The perturbation method

$$\begin{array}{cccc} & \max & c^T x \\ (P) & \text{s.t.} & Ax & = & b \\ & x & > & 0 \end{array}$$

Assumption: B is a feasible basis with $A_B = I$.

Perturb the right hand side to $b' = b + [\varepsilon, \varepsilon^2, \dots, \varepsilon^m]^T$ to get

$$(P')$$
 $\max c^T x$ $s.t.$ $Ax = b'$ $x \geq 0$

We showed that B is also a feasible basis of (P').

Tableaux for (P') and (P) differ in right hand side only \implies choices of leaving variables are affected.

Lemma 8.2

If ε is positive and sufficiently small, then

$$\alpha_0 + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2 + \dots + \alpha_m \varepsilon^m < \beta_0 + \beta_1 \varepsilon + \beta_2 \varepsilon^2 + \dots + \beta_m \varepsilon^m$$

$$\iff (\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_m) \stackrel{L}{<} (\beta_0, \beta_1, \beta_2, \dots, \beta_m)$$

Example (cycling example on pg 107)

Initial tableau:

$$z - 2x_1 - 3x_2 + x_3 + 12x_4 = 0$$

$$- 2x_1 - 9x_2 + x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{3}x_1 + x_2 - \frac{1}{3}x_3 - 2x_4 + x_6 = 0$$

Tableau for perturbed problem:

$$z - 2x_1 - 3x_2 + x_3 + 12x_4 = 0$$

$$- 2x_1 - 9x_2 + x_3 + 9x_4 + x_5 = \varepsilon$$

$$\frac{1}{3}x_1 + x_2 - \frac{1}{3}x_3 - 2x_4 + x_6 = \varepsilon^2$$

 \bar{c}_2 is largest positive reduced cost, so x_2 enters. $\min\{-, \varepsilon^2/1\} = \varepsilon^2$, so x_6 leaves. Pivot on (6, 2):

$$z - x_1 + 6x_4 + 3x_6 = 3\varepsilon^2$$

$$x_1 - 2x_3 - 9x_4 + x_5 + 9x_6 = \varepsilon + 9\varepsilon^2$$

$$\frac{1}{3}x_1 + x_2 - \frac{1}{3}x_3 - 2x_4 + x_6 = \varepsilon^2$$

 \overline{c}_1 is only positive reduced costs, so x_1 enters. $\min\{(\varepsilon+9\varepsilon^2)/1, \varepsilon^2/\frac{1}{3}\} = 3\varepsilon^2$, so x_2 leaves. Pivot on (2,1):

$$z + 3x_{2} - x_{3} + 6x_{6} = 6\varepsilon^{2}$$

$$- 3x_{2} - x_{3} - 3x_{4} + x_{5} + 6x_{6} = \varepsilon + 6\varepsilon^{2}$$

$$x_{1} + 3x_{2} - x_{3} - 6x_{4} + 3x_{6} = 3\varepsilon^{2}$$

The perturbed problem is unbounded.

Same pivots on original problem gives same conclusion.

Theorem 8.3 (pg 111)

- (a) (P') is nondegenerate.
- (b) B is a feasible basis of (P') $\implies B$ is a feasible basis of (P).
- (c) B is an optimal basis of (P') $\implies B$ is an optimal basis of (P).
- (d) x_k can enter and x_r can leave in tableau for (P') corresponding to B \Longrightarrow same for tableau for (P) corresponding to B.
- (e) Tableau for (P') corresponding to B detects unboundedness
 - \implies same for tableau for (P) corresponding to B.

(a) (P') is nondegenerate.

Proof: (Contradiction)

Suppose (P') has degenerate basis B.

Let x^* be basic solution of (P') determined by B.

So x^* solves $A_B x_B^* = b'$ and $x_N^* = 0$.

I.e., $x_B^* = A_B^{-1}b' \text{ and } x_N^* = 0.$

 $B \text{ degenerate} \implies x_B^* \text{ has a zero component}$ (say the h-th component is zero).

$$0 = h\text{-th component of } x_B^*$$

$$= (h\text{-th row of } A_B^{-1})b'$$

$$= [\alpha_1, \alpha_2, \dots, \alpha_m] \begin{pmatrix} b + \varepsilon^2 \\ \varepsilon^2 \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

$$= \alpha_0 + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2 + \dots + \alpha_m \varepsilon^m$$

So by Lemma 8.2, $\alpha_i=0$ for $i=0,1,2,\ldots,m$. Hence $[\alpha_1,\alpha_2,\ldots,\alpha_m]=(h\text{-th row of }A_B^{-1})$ is a zero row.

This contradicts A_B^{-1} is nonsingular.

(b) B is a feasible basis of (P') $\implies B$ is a feasible basis of (P).

Proof:

Let x^* be the basic solution of (P') determined by B.

Let \hat{x} be the basic solution of (P) determined by B.

B feasible for $(P') \implies x_i^* \ge 0$ for all $i \in B$.

Part (a) \implies B is nondegenerate \implies $x_i^* > 0$ for all $i \in B$

 $\hat{\boldsymbol{x}}_i = (h\text{-th row of } A_B^{-1})b$

$$egin{aligned} oldsymbol{x_i^*} &= (h ext{-th row of } A_B^{-1}) \left(b + \left[egin{array}{c} arepsilon \\ arepsilon \end{array}
ight) \\ &= \hat{oldsymbol{x}}_i + lpha_1 arepsilon + \cdots + lpha_m arepsilon^m \end{aligned}$$

For all
$$i \in B$$
, $x_i^* > 0 \implies (\hat{x}_i, \alpha_1, \dots, \alpha_m) \stackrel{L}{>} (0, 0, \dots, 0)$ $\implies \hat{x}_i \ge 0$

Thus $\hat{x}_i \geq 0$ for all $i \in B \implies B$ feasible for (P).

(c) B is an optimal basis of (P') $\implies B$ is an optimal basis of (P).

Proof:

Let (T') be the tableau for (P') corresponding to B. Let (T) be the tableau for (P) corresponding to B.

B optimal for (P') $\implies B$ feasible for (P') and all \bar{c}_i in (T') are ≤ 0 .

Part (b) \implies B feasible for (P).

 $ar{c}_j$ are the same in both (T') and (T)

 \implies all \bar{c}_j in (T) are ≤ 0 .

B feasible for (P) and all \bar{c}_j in (T) are ≤ 0

 $\implies B$ optimal for (P).

(d) x_k can enter and x_r can leave in tableau for (P') corresponding to B

 \implies same for tableau for (P) corresponding to B.

Proof:

Let (T') be the tableau for (P') corresponding to B. Let (T) be the tableau for (P) corresponding to B.

 x_k can enter in (T')

 $\implies \bar{c}_k > 0 \text{ in } (T')$

 $\implies \bar{c}_k > 0 \text{ in } (T)$

 $\implies x_k$ can enter in (T)

 x_r can leave in (T')

 $\implies \bar{a}_{rk} > 0$ in (T') and $\bar{b}_r/\bar{a}_{rk} = \min$. ratio

 $\implies \bar{a}_{rk} > 0$ in (T') and new basis is feasible for (P')

 $\implies \bar{a}_{rk} > 0$ in (T) and new basis is feasible for (P)

 $\implies x_r$ can leave in (T)

(e) Tableau for (P') corresponding to B detects unboundedness

 \implies same for tableau for (P) corresponding to B.

Proof:

Let (T') be the tableau for (P') corresponding to B. Let (T) be the tableau for (P) corresponding to B.

(T') detects unboundedness

 $\implies \bar{c}_k > 0 \text{ in } (T')$

and \bar{a}_{ik} in (T') are ≤ 0 for all $i \in B$

 $\implies \bar{c}_k > 0 \text{ in } (T) \text{ (from part (d))}$

and \bar{a}_{ik} in (T) are ≤ 0 for all $i \in B$

 \implies (T) detects unboundedness

We have proved

Theorem 8.3 (pg 111)

- (a) (P') is nondegenerate.
- (b) B is a feasible basis of (P') $\implies B$ is a feasible basis of (P).
- (c) B is an optimal basis of (P') $\implies B$ is an optimal basis of (P).
- (d) x_k can enter and x_r can leave in tableau for (P') corresponding to B \implies same for tableau for (P) corresponding to B.
- (e) Tableau for (P') corresponding to B detects unboundedness \implies same for tableau for (P) corresponding to B.

Corollary 8.3 (pg 112)

The simplex method applied to the perturbed problem (P') starting from a feasible basis B with $A_B = I$ will terminate after a finite number of iterations. Moreover, B' optimal for $(P') \implies B'$ optimal for (P), and (P') unbounded $\implies (P)$ unbounded.

The Lexicographical Simplex Method

It is an implementation of the simplex method on the perturbed problem (P').

We established that

the difference between (P) and (P') is the choice of leaving variables.

Moreover

all pivots on (P') can be performed on (P).

Conclusion:

Simplex method on (P') is the same as simplex method on (P) with a special choice rule for leaving variables.

This special rule is called the lexicographical rule.

The resulting simplex method is called the <u>lexicographical</u> simplex method.

Lexicographical rule

R.h.s. of x_i -row (T') is

$$\overline{b}_i' = \overline{b}_i + \beta_{i1}\varepsilon + \beta_{i2}\varepsilon^2 + \dots + \beta_{im}\varepsilon^m$$

where $[\beta_{i1}, \beta_{i2}, \dots, \beta_{im}]$ is the h-th row of the matrix A_B^{-1} and i is the h-th index in the basis B.

In choosing leaving variable, we pick r such that

$$ar{a}_{rk} > 0$$
 and $rac{ar{b}'_r}{ar{a}_{rk}} = \min\left\{rac{ar{b}'_i}{ar{a}_{ik}}: ar{a}_{ik} > 0
ight\}$

I.e., we pick the minimum of

$$\frac{\bar{b}_i + \beta_{i1}\varepsilon + \beta_{i2}\varepsilon^2 + \dots + \beta_{im}\varepsilon^m}{\bar{a}_{ik}} \quad \text{over} \quad \{i \in B : \bar{a}_{ik} > 0\}$$

I.e., we pick the lexicographical minimum of

$$\frac{(\bar{b}_i, \beta_{i1}, \beta_{i2}, \dots, \beta_{im})}{\bar{a}_{ik}} \quad \text{over} \quad \{i \in B : \bar{a}_{ik} > 0\}$$

All we need are

$$ar{A}$$
, $ar{b}$ and A_B^{-1} .

Note: This always give a unique choice:

Otherwise the next tableau is degenerate (but we know that (P') is nondegenerate).

A_B^{-1} appears in the tableau!

We assumed initial basis B' has $A_{B'} = I$.

In the tableau corresponding to current basis B,

the
$$x_i$$
-rows are $A_B^{-1}Ax = A_B^{-1}b$

i.e.
$$ar{A}=A_{B}^{-1}A$$
 and $ar{b}=A_{B}^{-1}b$

Magically,
$$\bar{A}_{B'} = A_{B}^{-1} A_{B'} = A_{B}^{-1}$$

i.e., A_B^{-1} appears in the tableau corresponding to B as columns indexed by B'.

Example (Not in notes)

Solve using lexicographical simplex method.

Initial tableau:

$$z - x_1 - 2x_2 = 0$$

 $2x_1 + 4x_2 + 6x_3 + x_4 = 6$
 $x_1 + 3x_2 + 3x_3 + x_5 = 3$

 \overline{c}_2 is the largest positive reduced cost, so x_2 enters. $\min\left\{\frac{(6,1,0)}{4},\frac{(3,0,1)}{3}\right\}=\left(1,0,\frac{1}{3}\right)$, so x_5 leaves.

Pivot on (5,2):

$$z - \frac{1}{3}x_1 + 2x_3 + \frac{2}{3}x_5 = 2$$

$$\frac{2}{3}x_1 + 2x_3 + x_4 - \frac{4}{3}x_5 = 2$$

$$\frac{1}{3}x_1 + x_2 + x_3 + \frac{1}{3}x_5 = 1$$

 \bar{c}_1 is the only positive reduced cost, so x_1 enters.

$$\min\left\{\frac{(2,1,-4/3)}{2/3},\frac{(1,0,1/3)}{1/3}\right\}=(3,0,1)$$
, so x_2 leaves.

Pivot on (2,1):

This tableau is optimal.