Review of Part III: Solving LP problems

We learned how to solve LP problems using

- the simplex method and
- the two-phase method.

We also studied

- basic feasible solutions and
- extreme points.

By now, you should be able to

- give the definitions of basis, basic solutions, b.f.s., convex sets, extreme points and tableau,
- prove the relation between b.f.s. and extreme points,
- explain why we focus on b.f.s.,
- determine optimal solution or unboundedness,
- prove optimality and unboundedness algebraically,
- construct auxiliary problems and determine feasibility of LP problems,
- prove infeasibility algebraically.

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination

20th June 2005

Motivation

In the next 2 weeks, we aim at proving

Fundamental Theorem of Linear Programming.

For any LP problem, exactly one of the following is true:

- 1. it has an optimal solution;
- 2. it is infeasible;
- 3. it is unbounded.

The main tool: two-phase method.

Upon successful completion of the two-phase method, we have one of the above three conclusions [Moreover, we have algebraic proofs of each of them.]

We only need to ensure the successful completion of simplex method.

We shall see that

- degeneracy may prevent the successful completion of simplex method;
- perturbing the LP can remove degeneracy;
- using appropriate choice rules for leaving variables can ensure successful completion.

Degeneracy

A simple proof that the simplex method will stop:

- There are a finite number of feasible bases (at most n choose m).
- Every feasible basis determines a b.f.s. with an objective value.
- IF we strictly increase the objective value at each step, then we never use a feasible basis twice.
- ullet Conclusion: after at most n choose m steps, simplex method will stop.

Note: the proof requires that we strictly increase the objective value.

Change in objective value after each pivot $= \bar{v} + \bar{c}_k t$, where $t = \min$ ratio $= \bar{b}_r/\bar{a}_{rk}$.

Increase in obj. value is strict

$$\iff \bar{c}_k t > 0$$

$$\iff$$
 $t = \bar{b}_r/\bar{a}_{rk} > 0$ (because $\bar{c}_k > 0$)

$$\iff \bar{b}_r > 0$$
 (because $\bar{a}_{rk} > 0$)

So, $\bar{b}_r = 0$ in any pivot will invalidate our proof.

 $\bar{b}_r=0$ means the basic solution is degenerate.

Definitions

Bad case: $\bar{b}_r = 0$ (or equivalently, t = 0).

(Defn) Degenerate iteration (or step, or pivot)

An iteration (or step, or pivot) where the objective value is not strictly increased;

i.e. $\bar{b}_r = 0$, or equivalently, t = 0.

(Defn) Degenerate basic solution (defined in Chapter 5, pg 62)

A basic solution that has less than m non-zeros.

i.e., $x_i = 0$ for some $i \in B$.

(Defn) Degenerate basis

A basis that determines a degenerate basic solution.

(Defn) Degenerate tableau

A tableau corresponding to a degenerate basis.

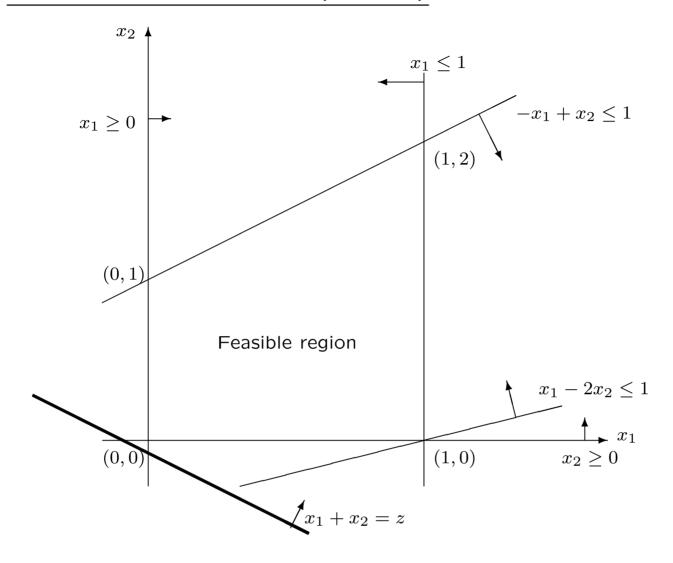
i.e., $\bar{b}_i = 0$ for some $i \in B$.

An iteration/basic solution/basis/tableau is <u>nondegenerate</u> if it is not degenerate.

(Def<u>n</u>) Degenerate linear programming problem

An LP problem that does not have any degenerate basis.

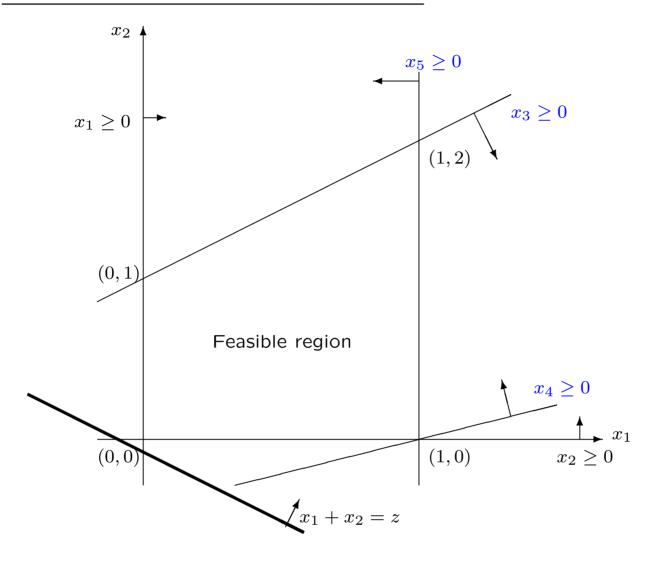
[Note: This is actually a property of its feasible region.]



LP problem:

max
$$z = x_1 + x_2$$

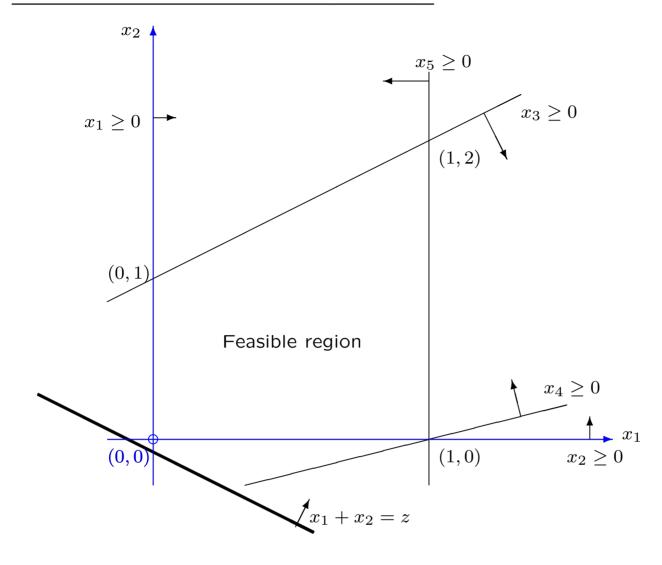
s.t. $-x_1 + x_2 \le 1$
 $x_1 - 2x_2 \le 1$
 $x_1 \le 1$
 $x_1 , x_2 \ge 0$



Adding slack variables:

max
$$z = x_1 + x_2$$

s.t. $-x_1 + x_2 + x_3 = 1$
 $x_1 - 2x_2 + x_4 = 1$
 $x_1 + x_5 = 1$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 0$

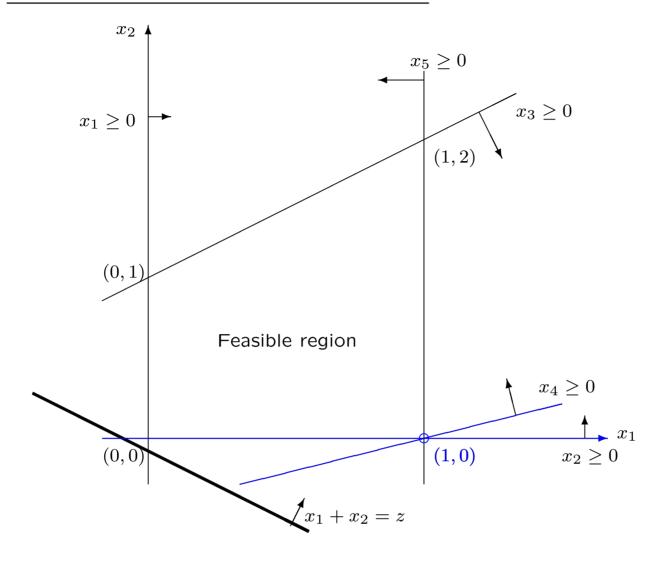


Initial tableau:

$$z - x_1 - x_2 = 0$$
 $-x_1 + x_2 + x_3 = 1$
 $x_1 - 2x_2 + x_4 = 1$
 $x_1 + x_5 = 1$

 $\bar{c}_1=1>0$, so x_1 enters.

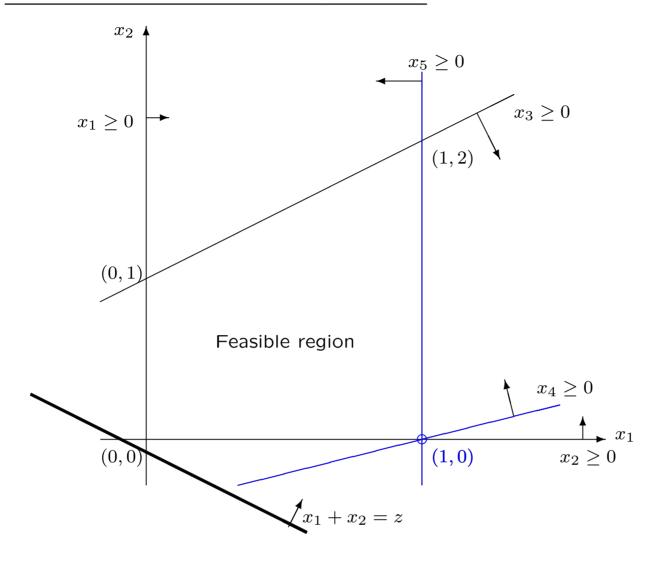
 $t = \min\{-, 1/1, 1/1\} = 1$, so x_4 leaves. $(x_5 \text{ may also leave})$.



Pivot on (4,1):

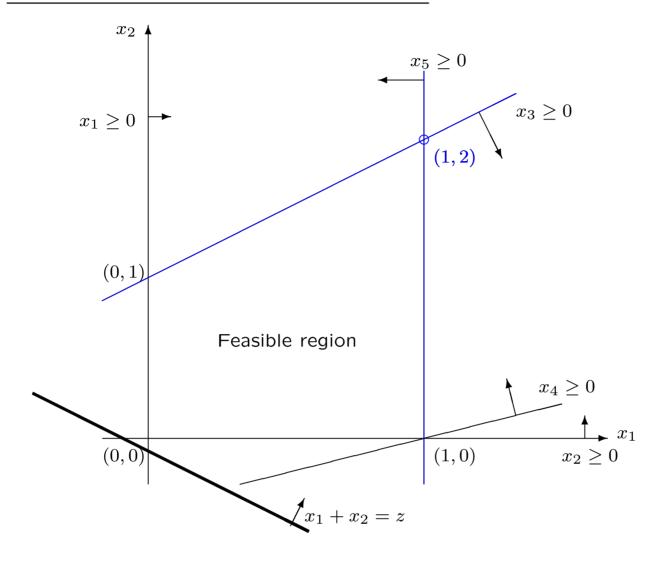
$$z$$
 - $3x_2$ + x_4 = 1
- x_2 + x_3 = 2
 x_1 - $2x_2$ + x_4 = 1
 $2x_2$ - x_4 + x_5 = 0

 $ar{c}_2=3>0$, so x_2 enters. $t=\min\{-,-,0/2\}=0$, so x_5 leaves.



Pivot on (5,2):

 $ar{c}_4 = rac{1}{2} > 0$, so x_4 enters. $t = \min\{2/rac{1}{2}, -, -\} = 4$, so x_3 leaves.



Pivot on (3,4):

This tableau is optimal.

Initial tableau:

Iteration 1:

Iteration 2:

$$z - \frac{1}{2}x_4 + \frac{3}{2}x_5 = 1$$

$$x_3 + \frac{1}{2}x_4 + \frac{1}{2}x_5 = 2$$

$$x_1 + x_5 = 1$$

$$x_2 - \frac{1}{2}x_4 + \frac{1}{2}x_5 = 0$$

Iteration 3:

$$z$$
 + x_3 + $2x_5 = 3$
 $2x_3 + x_4 + x_5 = 4$
 x_1 + $x_5 = 1$
 $x_2 + x_3$ + $x_5 = 2$

Observations:

1. Iteration degenerate \implies old tableau degenerate.

Proof: Iteration degenerate $\implies \bar{b}_r = 0$

 $\implies x_r$ is basic in old basis, and $x_r = \overline{b}_r = 0$.

Converse is not true (e.g., iteration 3).

2. Iteration degenerate \implies new tableau degenerate.

Proof: Iteration degenerate $\implies t = 0$

 $\implies x_k$ is basic in new basis, and $x_k = t = 0$.

Converse is not true (e.g., iteration 1).

3. More than one choice of leaving variable \implies new basis degenerate.

Proof: Suppose $\bar{b}_{r'}/\bar{a}_{r'k} = \bar{b}_r/\bar{a}_{rk} = t$.

Then new $x_{r'}=$ old $x_{r'}-\bar{a}_{r'k}t=\bar{b}_{r'}-\bar{a}_{r'k}(\bar{b}_{r'}/\bar{a}_{r'k})=0$

 $\implies x_{r'}$ basic in new basis, and $x_{r'} = 0$.

Converse is not true (e.g., iteration 2).

4. Iteration is degenerate \iff basic solution remains the same.

Proof: Iteration degenerate $\implies t = 0$

 \implies basic solution unchanged.

Basic solution unchanged \implies obj. value unchanged

 \implies iteration degenerate.

Theorem 8.1 (pg 104) If an LP problem is nondegenerate, then the simplex method applied to the problem starting from a feasible basis will terminate after a finite number of iterations.

Proof (similar to before)

- There are at most n choose m feasible bases.
- Nondegenerate LP
 - ⇒ no degenerate basis (by definition)
 - \implies no degenerate iteration (by observation 1 (or 2))
- Conclusion: after at most n choose m steps, simplex method will stop.