CO350 Linear Programming Chapter 4: Introduction to Duality

20th May 2005

Recap

LP in SEF: maximize
$$c^T x$$

$$(P)$$
 subject to $Ax = b$

$$x \geq 0$$

Dual LP:

 $\begin{array}{ccc} & & & & \\ & & & \\ (D) & & & & \\ \end{array}$ subject to $A^Ty \geq c$

Complementary Slackness (CS) Condition

$$x_j^* = 0$$
 or $\sum_{i=1}^m a_{ij} y_i^* = c_j$ (or both) for each j

A more useful form:

$$x_j^* \neq 0 \implies \sum_{i=1}^m a_{ij} y_i^* = c_j$$
 for each j

Theorem 4.7 (CS Theorem) Suppose x^* feasible for (P)and y^* feasible for (D).

 x^* optimal for (P) and y^* optimal for (D) \iff CS condition holds for x^*, y^* .

Theorem 4.8 (CS Theorem restated) Suppose x^* is feasible for (P).

 x^* optimal for (P)

 \iff there exists y^* feasible for (D) such that CS condition holds for x^*, y^* .

Complementary Slackness for Other Forms

CS condition for general LP (pg 47)

AND

$$x_j^*=0$$
 or $\sum_{i=1}^m a_{ij}y_i^*=c_j$ for each j $y_i^*=0$ or $\sum_{j=1}^m a_{ij}x_j^*=b_i$ for each i

Interpretation for SEF

In SEF, we have Ax = b as constraints.

For any feasible x^* , we always have $\sum_{j=1}^{m} a_{ij}x_j^* = b_i$.

Therefore, the above CS condition reduces to

$$x_j^* = 0$$
 or $\sum_{i=1}^m a_{ij} y_i^* = c_j$ for each j

Similarly,

 x_j is a free variable

$$\Longrightarrow \sum_{i=1}^m a_{ij} y_i^* = c_j$$
 is a constraint for dual LP

$$\implies x_j^* = 0 \text{ or } \sum_{i=1}^m a_{ij} y_i^* = c_j \text{ is redundant}$$

Theorem 4.9 [Important]

Suppose x^* feasible for an LP and y^* feasible for dual LP.

 x^* and y^* optimal for their resp. LPs

 \iff CS condition holds for x^*, y^*

Proof for SIF: (Proof for general form is similar)

Important:

Know how to prove for LP problems in general form.

$$x^* \text{ is } \begin{cases} \text{feasible} \\ \text{optimal} \end{cases} \text{ for } (P)$$

$$\implies \begin{bmatrix} x^* \\ s^* \end{bmatrix} = \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix} \text{ is } \begin{cases} \text{feasible} \\ \text{optimal} \end{cases} \text{ for } (\widehat{P}).$$

Proof for SIF (cont'd):

 x^* and y^* feasible for (P) and (D) resp.

$$\implies \begin{vmatrix} x^* \\ b - Ax^* \end{vmatrix} \text{ and } y^* \text{ feasible for } (\widehat{P}) \text{ and } (\widehat{D}) \text{ resp.}$$

 x^* and y^* optimal for (P) and (D) resp.

$$\iff \begin{vmatrix} x^* \\ b - Ax^* \end{vmatrix} \text{ and } y^* \text{ optimal for } (\widehat{P}) \text{ and } (\widehat{D}) \text{ resp.}$$

Apply Theorem 4.7 (CS theorem) on (\widehat{P}) and (\widehat{D}) :

$$\begin{bmatrix} x^* \\ s^* \end{bmatrix} = \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix} \text{ and } y^* \text{ optimal for } (\widehat{P}) \text{ and } (\widehat{D}) \text{ resp.}$$

$$\Rightarrow \qquad x_j^* = 0 \text{ or } \sum_{i=1}^m a_{ij} y_i^* = c_j \text{ for each } j \\ (b-Ax^*)_i = 0 \text{ or } y_i^* = 0 \text{ for each } i$$

$$\overset{\cdot}{\Longleftrightarrow} \qquad x_j^* = 0 \; ext{or} \; \sum_{i=1}^m a_{ij} y_i^* = c_j \; ext{for each} \; j$$

$$\sum_{j=1}^m a_{ij} x_j^* = b_i$$
 or $y_i^* = 0$ for each i

Application of CS Thm for other forms (Example) (Read pg 48 for additional example)

maximize
$$x_1 + 3x_2 + x_3$$
 subject to $-2x_1 + 4x_2 + x_3 = -2$ $5x_1 - 5x_2 - x_3 \le 10$ x_1 , x_2 , $x_3 \ge 0$ (P')

Question: Check optimality of each solution.

(i)
$$x^1 = [2, 0, 2]^T$$
 (ii) $x^2 = [\frac{8}{3}, 0, \frac{10}{3}]^T$ (iii) $x^3 = [\frac{14}{5}, \frac{2}{5}, 2]^T$

General approach:

- 1. Check x^* feasible for (P).
- 2. Write down equations for y^* from CS condition.
- 3. Try to solve for y^* .
- 4. Check y^* feasible for dual.

Dual problem:

minimize
$$-2y_1+10y_2$$
 subject to $-2y_1+5y_2\geq 1$ $4y_1-5y_2\geq 3$ (D') $y_1-y_2\geq 0$

Application of CS Thm for other forms (Example)

maximize
$$x_1 + 3x_2 + x_3$$
 subject to $-2x_1 + 4x_2 + x_3 = -2$ (P') $5x_1 - 5x_2 - x_3 \le 10$ x_1 , x_2 , $x_3 \ge 0$

Question: Check optimality of each solution.

(i)
$$x^1 = [2, 0, 2]^T$$
 (ii) $x^2 = [\frac{8}{3}, 0, \frac{10}{3}]^T$ (iii) $x^3 = [\frac{14}{5}, \frac{2}{5}, 2]^T$

Dual problem:

minimize
$$-2y_1+10y_2$$
 subject to $-2y_1+5y_2\geq 1$ $4y_1-5y_2\geq 3$ (D') $y_1-y_2\geq 0$

CS condition:
$$\left[\begin{array}{l} x_j^*=0 \text{ or } (A^Ty^*-c)_j=0 \text{ for each } j \\ y_i^*=0 \text{ or } (Ax^*-b)_i=0 \text{ for each } i \end{array}\right]$$

$$x_1^* = 0$$
 or $-2y_1^* + 5y_2^* = 1$ $x_2^* = 0$ or $4y_1^* - 5y_2^* = 3$ $x_3^* = 0$ or $y_1^* - y_2^* = 1$ $y_2^* = 0$ or $5x_1^* - 5x_2^* - x_3 = 10$

Application of CS Thm for other forms (Example)

Primal constraints:

$$-2x_1 + 4x_2 + x_3 = -2$$
 — (P1)
 $5x_1 - 5x_2 - x_3 \le 10$ — (P2)
 $x_1 , x_2 , x_3 \ge 0$ — (P3)

Dual constraints:

$$-2y_1 + 5y_2 \ge 1$$
 — (D1)
 $4y_1 - 5y_2 \ge 3$ — (D2)
 $y_1 - y_2 \ge 1$ — (D3)
 $y_2 \ge 0$ — (D4)

CS condition:

$$x_1^* \neq 0 \implies -2y_1^* + 5y_2^* = 1$$
 — (CS1)
 $x_2^* \neq 0 \implies 4y_1^* - 5y_2^* = 3$ — (CS2)
 $x_3^* \neq 0 \implies y_1^* - y_2^* = 1$ — (CS3)
 $5x_1^* - 5x_2^* - x_3 \neq 10 \implies y_2^* = 0$ — (CS4)

Question: Check optimality of each solution.

$$\underline{\text{(i)}} \ x^1 = [2,0,2]^T \qquad \text{(ii)} \ x^2 = [\tfrac{8}{3},0,\tfrac{10}{3}]^T \qquad \text{(iii)} \ x^3 = [\tfrac{14}{5},\tfrac{2}{5},2]^T$$

- 1. $x^1 = [2, 0, 2]^T$ satisfies (P1) (P3), so it is feasible.
- 2. From CS condition,

$$-2y_1^* + 5y_2^* = 1$$
 — (CS1)
 $y_1^* - y_2^* = 1$ — (CS3)
 $y_2^* = 0$ — (CS4)

The above system has no solution.

Conclusion: x^1 is not optimal.

Question: Check optimality of each solution.

(i)
$$x^1 = [2, 0, 2]^T$$
 (ii) $x^2 = [\frac{8}{3}, 0, \frac{10}{3}]^T$ (iii) $x^3 = [\frac{14}{5}, \frac{2}{5}, 2]^T$

- 1. $x^2 = \left[\frac{8}{3}, 0, \frac{10}{3}\right]^T$ satisfies (P1) (P3), so it is feasible.
- 2. From CS condition,

$$-2y_1^* + 5y_2^* = 1$$
 — (CS1)
 $y_1^* - y_2^* = 1$ — (CS3)

- 3. The above system has unique solution $y^* = [2, 1]^T$.
- 4. $y^* = [2, 1]^T$ satisfies (D1) (D4), so it is feasible.

Conclusion: x^2 is optimal.

Question: Check optimality of each solution.

(i)
$$x^1 = [2, 0, 2]^T$$
 (ii) $x^2 = [\frac{8}{3}, 0, \frac{10}{3}]^T$ (iii) $x^3 = [\frac{14}{5}, \frac{2}{5}, 2]^T$

- 1. $x^3 = \left[\frac{14}{5}, \frac{2}{5}, 2\right]^T$ satisfies (P1) (P3), so it is feasible.
- 2. From CS condition,

$$-2y_1^* + 5y_2^* = 1$$
 — (CS1)
 $4y_1^* - 5y_2^* = 3$ — (CS2)
 $y_1^* - y_2^* = 1$ — (CS3)

- 3. The above system has unique solution $y^* = [2, 1]^T$.
- 4. $y^* = [2, 1]^T$ satisfies (D1) (D4), so it is feasible.

Conclusion: x^3 is optimal.