Recap

Definition of LP problem: (Pg 9)

minimizing or maximizing a linear function subject to finite number of linear equalities and/or linear inequalities.

Examples

maximize
$$2x_1+3x_2$$
 subject to
$$2x_1+x_2\leq 10$$

$$x_1+x_2\leq 6$$

$$-x_1+x_2\leq 4$$

$$x_1, x_2\geq 0$$

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $(i=1,2,\ldots,m)$ $x_j \geq 0$ $(j=1,2,\ldots,n)$

More examples of LP: See page 9 of notes.

Terminology (Pg 10)

Example: The Orange Factory Problem

maximize

$$2x_1 + 3x_2$$

← Objective function

subject to

← Constraints

(Defn) Feasible solution

Assignment of values to x_j 's that satisfies <u>ALL</u> constraints.

E.g., $[4,1]^T$, $[2.1,3]^T$, $[1,5]^T$.

(Defn) Feasible region: Set of feasible solutions.

(Defn) Objective value

Value of objective function at given solution.

E.g., obj. value of $[4,1]^T$ is 11.

(Defn) Optimal solution

Feasible solution with best objective value.

(Defn) Optimal value

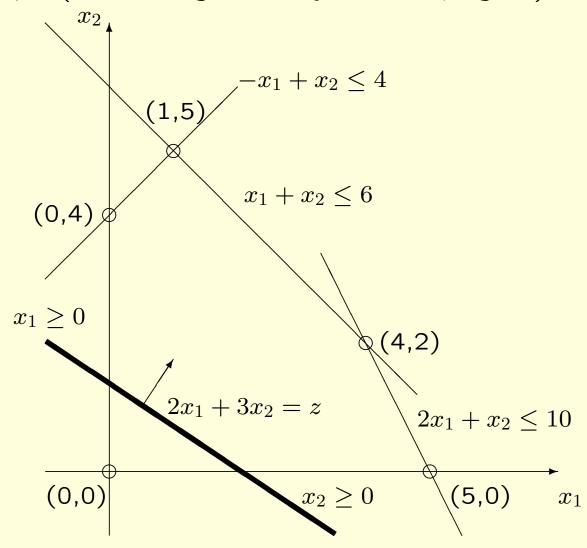
Objective value of an optimal solution (if exists).

E.g., $[1,5]^T$ is an opt. solution.

Opt. value of the LP is 17.

Geometry

Example (The Orange Factory Problem, Pg 11)



Geometrically the problem is

find the largest value of z so that the line $2x_1 + 3x_2 = z$ intersects the feasible region, and find a point of intersection.

Some More Examples

A transportation problem

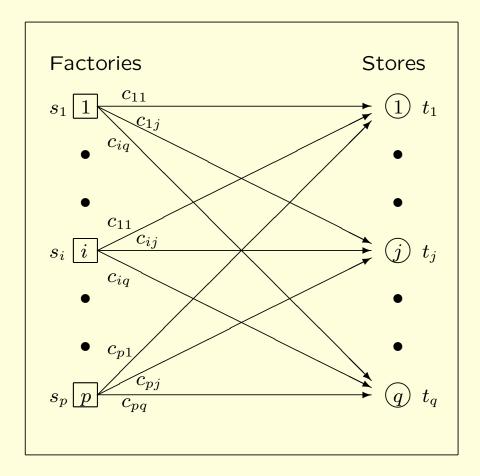
One product is made in p factories and sold in q stores.

Factory i produces s_i units/month.

Store j orders t_j units/month.

Cost c_{ij} dollars to ship a unit from factory i to store j.

Problem: Find least expensive way to transport product.



Picture NOT in notes

Decision variables:

 $x_{ij} =$ amount to ship from factory i to store j

Objective: minimize $\cos t = \sum_{i=1}^p \sum_{j=1}^q c_{ij} x_{ij}$

Constraints:

(Factory
$$i$$
) $\sum_{j=1}^q x_{ij} = s_i$ $(i=1,2,\ldots,p)$
(Store j) $\sum_{i=1}^p x_{ij} = t_i$ $(j=1,2,\ldots,q)$
(Route (i,j)) $x_{ij} \geq 0$ $\begin{pmatrix} i=1,2,\ldots,p,\\ j=1,2,\ldots,q \end{pmatrix}$

Mathematical model

minimize
$$\sum_{i=1}^p \sum_{j=1}^q c_{ij} x_{ij}$$
 subject to $\sum_{j=1}^q x_{ij} = s_i \quad (i=1,2,\ldots,p)$ $\sum_{i=1}^p x_{ij} = t_i \quad (j=1,2,\ldots,q)$ $x_{ij} \geq 0 \quad \left(\begin{array}{c} i=1,2,\ldots,p,\\ j=1,2,\ldots,q \end{array}\right)$

This LP problem does not have any feasible solution unless

$$\sum_{i=1}^{p} s_i = \sum_{j=1}^{q} t_j$$

Exercise: Show that the LP problem has a feasible solution when the above equation holds.