Beginning With an Example

The Orange Factory Problem

Factory produces two products:

Frozen concentrate and Orange juice.

Each unit of	requires and produce	
Frozen concentrate	2 units electricity	\$2 profit
	1 unit orange	1 unit water
Orange juice	1 unit electricity	\$3 profit
	1 unit orange	
	1 unit water	

How much <u>frozen concentrate</u> and <u>orange juice</u> should we produce to maximize profit?

Daily available resources:

- 10 units electricity;
- 6 units oranges;
- 4 units water.

Decision variables

 $\left\{ \begin{array}{c} x_1 \\ x_2 \end{array} \right\}$ denote daily production of $\left\{ \begin{array}{c} \text{frozen concentrate} \\ \text{orange juice} \end{array} \right\}$

In summary,

	Frozen	Orange	Resource
	concentrate	juice	limit
Decision	<i>(</i> 7.4	œ _o	
variable	x_1	x_2	
Profit	2	3	
Electricity	2	1	10
Oranges	1	1	6
Water	-1	1	4

Mathematical model (Eq (1.1) on Pg 8)

 $\begin{array}{llll} \text{maximize} & 2x_1 & + & 3x_2 \\ \text{subject to} & & & \end{array}$

 x_1 and x_2 need not be integers.

Solving the mathematical model (NOT in notes)

maximize $2x_1 + 3x_2$ subject to

$$2x_1 + x_2 \le 10 - (1)$$
 $x_1 + x_2 \le 6 - (2)$
 $-x_1 + x_2 \le 4 - (3)$
 $x_1 , x_2 \ge 0$

$$(2) + (3) : 2x_2 \le 10 \implies x_2 \le 5$$
 — (4)

So, profit = $2x_1 + 3x_2 = 2(x_1 + x_2) + x_2$.

From (2), $2(x_1 + x_2) \le 2(6) = 12$.

From (4), $x_2 \le 5$.

Thus, profit $\leq 12 + 5 = 17$.

 $x_1 = 1$ and $x_2 = 5$ satisfy all inequalities and achieves a profit of 17.

i.e., $(x_1, x_2) = (1, 5)$ is an optimal solution.

General Production Problem

A factory makes n products from m resources. Each unit of product j requires a_{ij} units of resource i and makes a profit of c_j dollars. Each day, the factory has b_i units of resource i available.

How much of each product should the factory make each day to maximize profit?

Decision variables: $x_j = \text{daily production level of product } j$.

Objective: maximize profit $=\sum_{j=1}^{n}c_{j}x_{j}$.

Resource limit: total resource i used $=\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}$.

Implicit restriction: $x_j \geq 0$.

Mathematical model

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $(i=1,2,\ldots,m)$ $x_j \geq 0$ $(j=1,2,\ldots,n)$

This is a linear programming problem or a linear program.

LP means linear programming or linear program.

Chek Beng Chua

Definition: LP Problem

Basic ingredients

Linear function:

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Linear equation:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Linear inequality:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le b$$

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$$

Definition of LP problem: (Pg 9)

minimizing or maximizing a linear function subject to finite number of linear equalities and/or linear inequalities. Examples of LP: See page 9 of notes.

Examples that are not LP problems (Pg 9)

maximize
$$x_1 + (x_2)^2$$
 subject to $x_1 + x_2 = 2$ $x_1 \geq 0$

maximize
$$x_1 + x_2$$
 subject to $2x_1 + x_2 \le 6$ $e^{x_1} \le 2$

maximize
$$x_1 + x_2$$
 subject to $x_1 + 2x_2 = 3$ $x_1 - x_2 \leq 1$ $x_1 > 0$