A set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbf{R}^{n} is called an orthogonal set if $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ whenever $i \neq j$.

EXAMPLE: Is $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ an orthogonal set?
Solution: Label the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} respectively. Then
$\mathbf{u}_{1} \cdot \mathbf{U}_{2}=$
$\mathbf{u}_{1} \cdot \mathbf{u}_{3}=$
$\mathbf{u}_{2} \cdot \mathbf{u}_{3}=$

Therefore, $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal set.

THEOREM 4

Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbf{R}^{n} and $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$. Then S is a linearly independent set and is therefore a basis for W.

Partial Proof: Suppose

$$
\begin{gathered}
c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}=\mathbf{0} \\
\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \quad=\mathbf{0} \cdot \\
\left(c_{1} \mathbf{u}_{1}\right) \cdot \mathbf{u}_{1}+\left(c_{2} \mathbf{u}_{2}\right) \cdot \mathbf{u}_{1}+\cdots+\left(c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1}=\mathbf{0} \\
c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)+c_{2}\left(\mathbf{u}_{2} \cdot \mathbf{u}_{1}\right)+\cdots+c_{p}\left(\mathbf{u}_{p} \cdot \mathbf{u}_{1}\right)=\mathbf{0} \\
c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)=\mathbf{0}
\end{gathered}
$$

Since $\mathbf{u}_{1} \neq \mathbf{0}, \mathbf{u}_{1} \cdot \mathbf{u}_{1}>0$ which means $c_{1}=$ \qquad

In a similar manner, c_{2}, \ldots, c_{p} can be shown to by all 0 . So S is a linearly independent set.■

An orthogonal basis for a subspace W of \mathbf{R}^{n} is a basis for W that is also an orthogonal set.

EXAMPLE: Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for a subspace W of \mathbf{R}^{n} and suppose \mathbf{y} is in W. Find c_{1}, \ldots, c_{p} so that

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}
$$

Solution:

$$
\begin{gathered}
\mathbf{y} \cdot=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \\
\mathbf{y} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{y} \cdot \mathbf{u}_{1}=c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)+c_{2}\left(\mathbf{u}_{2} \cdot \mathbf{u}_{1}\right)+\cdots+c_{p}\left(\mathbf{u}_{p} \cdot \mathbf{u}_{1}\right) \\
\mathbf{y} \cdot \mathbf{u}_{1}=c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right) \\
c_{1}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}
\end{gathered}
$$

Similarly, $c_{2}=$

$$
, c_{3}=
$$

$c_{p}=$

THEOREM 5

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbf{R}^{n}. Then each \mathbf{y} in W has a unique representation as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}$. In fact, if

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}
$$

then

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} \quad(j=1, \ldots, p)
$$

EXAMPLE: Express $\mathbf{y}=\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ as a linear combination of the
orthogonal basis

$$
\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\} .
$$

Solution:

$$
\frac{y \cdot u_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}=\quad \frac{y \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}=\quad \frac{\mathbf{y \cdot \mathbf { u } _ { 3 }}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}}=
$$

Hence

$$
\mathbf{y}=\ldots \quad \mathbf{u}_{1}+\ldots \quad \mathbf{u}_{2}+\ldots \quad \mathbf{u}_{3}
$$

Orthogonal Projections

For a nonzero vector \mathbf{u} in \mathbf{R}^{n}, suppose we want to write \mathbf{y} in \mathbf{R}^{n} as the the following

$$
\mathbf{y}=(\text { multiple of } \mathbf{u})+(\text { multiple a vector } \perp \text { to } \mathbf{u})
$$

$$
(\mathbf{y}-\alpha \mathbf{u}) \cdot \mathbf{u}=0
$$

$$
\mathbf{y} \cdot \mathbf{u}-\alpha(\mathbf{u} \cdot \mathbf{u})=0 \quad \Rightarrow \quad \alpha=
$$

$$
\widehat{\mathbf{y}}=\frac{y \cdot u}{u \cdot u} \mathbf{u} \quad(\text { orthogonal projection of } \mathbf{y} \text { onto } \mathbf{u})
$$

and

$$
\mathbf{z}=\mathbf{y}-\frac{y \cdot u}{u \cdot u} \mathbf{u} \quad(\text { component of } \mathbf{y} \text { orthogonal to } \mathbf{u})
$$

EXAMPLE: Let $\mathbf{y}=\left[\begin{array}{c}-8 \\ 4\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Compute the distance from \mathbf{y} to the line through $\mathbf{0}$ and \mathbf{u}.

Solution:

$$
\widehat{\mathbf{y}}=\frac{y \cdot u}{u \cdot u} \mathbf{u}=
$$

Distance from \mathbf{y} to the line through $\mathbf{0}$ and $\mathbf{u}=$ distance from $\widehat{\mathbf{y}}$ to y

$$
=\|\widehat{y}-\mathbf{y}\|=
$$

Orthonormal Sets

A set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbf{R}^{n} is called an orthonormal set if it is an orthogonal set of unit vectors.

If $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$, then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W.

Recall that \mathbf{v} is a unit vector if $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{\mathbf{v}^{T} \mathbf{v}}=1$.
Suppose $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$ where $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set.

Then $U^{T} U=\left[\begin{array}{l}\mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T}\end{array}\right]\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]=$

It can be shown that $U U^{T}=I$ also. So $U^{-1}=U^{T}$ (such a matrix is called an orthogonal matrix).

THEOREM 6 An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.

THEOREM 7 Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbf{R}^{n}. Then
a. $\|U \mathbf{x}\|=\|\mathbf{x}\|$
b. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
c. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Proof of part b: $(U \mathbf{x}) \cdot(U \mathbf{y})=$

