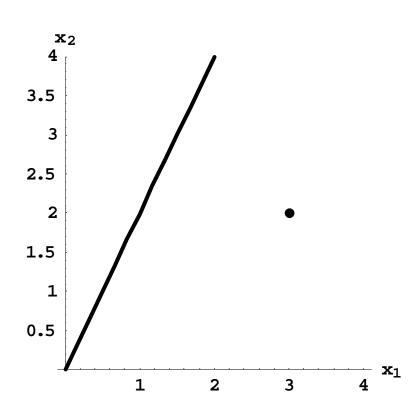
6.1 Inner Product, Length & Orthogonality

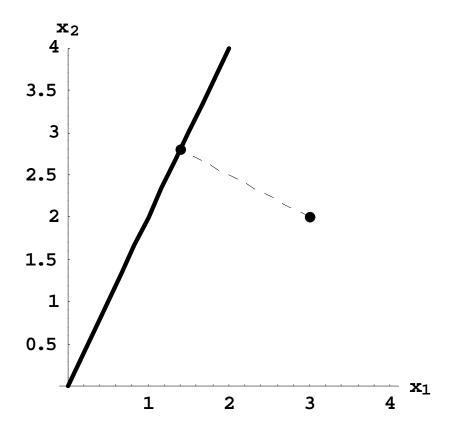
Not all linear systems have solutions.

EXAMPLE: No solution to $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ exists. Why?

A**x** is a point on the line spanned by $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ and **b** is not on the line. So A**x** \neq **b** for all **x**.



Instead find $\hat{\mathbf{x}}$ so that $A\hat{\mathbf{x}}$ lies "closest" to \mathbf{b} .



Using information we will learn in this chapter, we will find that

$$\hat{\mathbf{x}} = \begin{bmatrix} 1.4 \\ 0 \end{bmatrix}$$
, so that $A\hat{\mathbf{x}} = \begin{bmatrix} 1.4 \\ 2.8 \end{bmatrix}$.

Segment joining $A\hat{\mathbf{x}}$ and **b** is *perpendicular* (or *orthogonal*) to the set of solutions to $A\mathbf{x} = \mathbf{b}$.

Need to develop fundamental ideas of *length*, *orthogonality* and *orthogonal projections*.

The Inner Product

Inner product or dot product of

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} :$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Note that

$$\mathbf{V} \cdot \mathbf{u} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n$$
$$= u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \mathbf{u} \cdot \mathbf{V}$$

THEOREM 1

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbf{R}^n , and let c be any scalar. Then

a.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

b.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

c.
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$$

d.
$$\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$$
, and $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$ if and only if $\mathbf{u} = \mathbf{0}$.

Combining parts b and c, one can show

$$(c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{w} = c_1(\mathbf{u}_1 \cdot \mathbf{w}) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{w})$$

Length of a Vector

For
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
, the **length** or **norm of v** is the nonnegative

scalar ||v|| defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \quad \text{and} \quad \|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}.$$
 For example, if $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$, then $\|\mathbf{v}\| = \sqrt{a^2 + b^2}$ (distance between $\mathbf{0}$ and \mathbf{v})

Picture:

For any scalar c,

$$||c\mathbf{V}|| = |c|||\mathbf{V}||$$

Distance in R^n

The distance between \mathbf{u} and \mathbf{v} in \mathbf{R}^n :

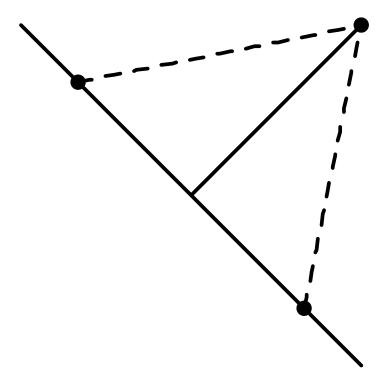
$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

This agrees with the usual formulas for \mathbb{R}^2 and \mathbb{R}^3 . Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$.

Then
$$\mathbf{u} - \mathbf{v} = (u_1 - v_1, u_2 - v_2)$$
 and

dist(
$$\mathbf{u}, \mathbf{v}$$
) = $\|\mathbf{u} - \mathbf{v}\| = \|(u_1 - v_1, u_2 - v_2)\|$
= $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$

Orthogonal Vectors



$$[\operatorname{dist}(\mathbf{u}, \mathbf{v})]^{2} = \|\mathbf{u} - \mathbf{v}\|^{2} = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$= (\mathbf{u}) \cdot (\mathbf{u} - \mathbf{v}) + (-\mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) =$$

$$= \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} + -\mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} - 2\mathbf{u} \cdot \mathbf{v}$$

$$\Rightarrow \quad [\operatorname{dist}(\mathbf{u}, \mathbf{v})]^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}$$

Similarly,

$$[dist(\mathbf{u}, -\mathbf{v})]^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v}$$

Since
$$[dist(\mathbf{u}, -\mathbf{v})]^2 = [dist(\mathbf{u}, \mathbf{v})]^2$$
, $\mathbf{u} \cdot \mathbf{v} = \underline{\hspace{1cm}}$.

Two vectors \mathbf{u} and \mathbf{v} are said to be **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

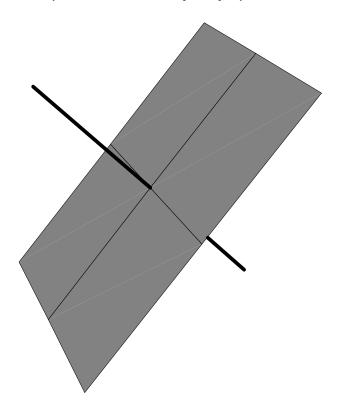
Also note that if \mathbf{u} and \mathbf{v} are orthogonal, then $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

THEOREM 2 THE PYTHAGOREAN THEOREM

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Orthogonal Complements

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal to** W. The set of vectors \mathbf{z} that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (read as "W perp").



Row, Null and Columns Spaces

THEOREM 3

Let A be an $m \times n$ matrix. Then the orthogonal complement of the row space of A is the nullspace of A, and the orthogonal complement of the column space of A is the nullspace of A^T :

$$(\operatorname{\mathsf{Row}} A)^{\perp} = \operatorname{\mathsf{Nul}} A, \qquad (\operatorname{\mathsf{Col}} A)^{\perp} = \operatorname{\mathsf{Nul}} A^{T}.$$

Why? (See complete proof in the text) Consider Ax = 0:

$$\begin{bmatrix}
* & * & \cdots & * \\
* & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{bmatrix}
\begin{bmatrix}
\star \\
\star \\
\vdots \\
\star
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

Note that
$$A\mathbf{x} = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \\ \mathbf{r}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{r}_m \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 and so \mathbf{x} is orthogonal to

the row A since \mathbf{x} is orthogonal to $\mathbf{r}_1, \ldots, \mathbf{r}_m$.

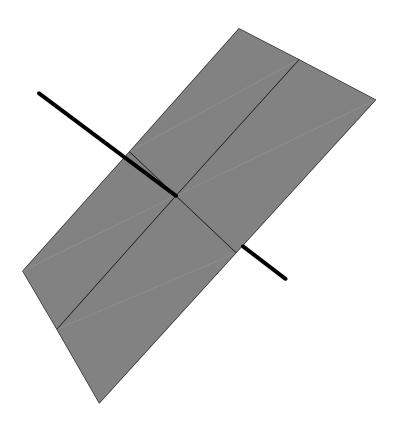
EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 2 \end{bmatrix}$$
.

Basis for Nul
$$A = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 and therefore Nul A is a plane in \mathbf{R}^3 .

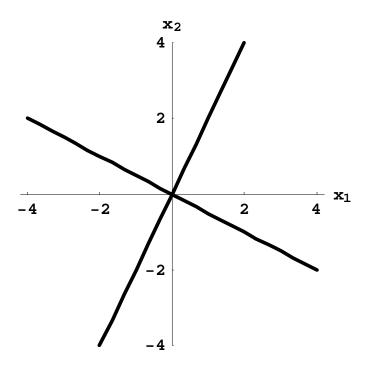
Basis for Row
$$A=\left\{\begin{bmatrix} 1\\0\\-1\end{bmatrix}\right\}$$
 and therefore Row A is a line in \mathbf{R}^3 .

Basis for Col
$$A = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
 and therefore Col A is a line in \mathbb{R}^2 .

Basis for Nul
$$A^T = \left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$$
 and therefore Nul A^T is a line in \mathbf{R}^2 .



Subspaces $\operatorname{Nul} A$ and $\operatorname{Row} A$



Subspaces Nul A^T and Col A