6.1 Inner Product, Length \& Orthogonality

Not all linear systems have solutions.
EXAMPLE: No solution to $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ exists.
Why?
$A \mathbf{x}$ is a point on the line spanned by $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ and \mathbf{b} is not on the line. So $A \mathbf{x} \neq \mathbf{b}$ for all \mathbf{x}.

Instead find $\widehat{\mathbf{x}}$ so that $A \widehat{\mathbf{x}}$ lies "closest" to \mathbf{b}.

Using information we will learn in this chapter, we will find that $\hat{\mathbf{x}}=\left[\begin{array}{r}1.4 \\ 0\end{array}\right]$, so that $A \hat{\mathbf{x}}=\left[\begin{array}{l}1.4 \\ 2.8\end{array}\right]$.

Segment joining $A \widehat{\mathbf{x}}$ and \mathbf{b} is perpendicular (or orthogonal) to the set of solutions to $A \mathbf{x}=\mathbf{b}$.

Need to develop fundamental ideas of length, orthogonality and orthogonal projections.

The Inner Product

Inner product or dot product of

$$
\begin{gathered}
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]: \\
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=
\end{gathered}
$$

Note that

$$
\begin{gathered}
\mathbf{v} \cdot \mathbf{u}=v_{1} u_{1}+v_{2} u_{2}+\cdots+v_{n} u_{n} \\
=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\mathbf{u} \cdot \mathbf{v}
\end{gathered}
$$

THEOREM 1

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbf{R}^{n}, and let c be any scalar. Then
a. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
b. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
c. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$
d. $\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$, and $\mathbf{u} \cdot \mathbf{u}=\mathbf{0}$ if and only if $\mathbf{u}=\mathbf{0}$.

Combining parts b and c, one can show

$$
\left(c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{w}=c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{w}\right)+\cdots+c_{p}\left(\mathbf{u}_{p} \cdot \mathbf{w}\right)
$$

Length of a Vector

For $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$, the length or norm of \mathbf{v} is the nonnegative
scalar $\|\mathbf{v}\|$ defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \quad \text { and } \quad\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}
$$

For example, if $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$, then $\|\mathbf{v}\|=\sqrt{a^{2}+b^{2}} \quad$ (distance between $\mathbf{0}$ and \mathbf{v})

Picture:

For any scalar c,

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

Distance in \mathbf{R}^{n}
The distance between \mathbf{u} and \mathbf{v} in \mathbf{R}^{n} :

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\| .
$$

This agrees with the usual formulas for \mathbf{R}^{2} and \mathbf{R}^{3}. Let $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$.

Then $\mathbf{u}-\mathbf{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}\right)$ and

$$
\begin{aligned}
\operatorname{dist}(\mathbf{u}, \mathbf{v}) & =\|\mathbf{u}-\mathbf{v}\|=\left\|\left(u_{1}-v_{1}, u_{2}-v_{2}\right)\right\| \\
= & \sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}}
\end{aligned}
$$

Orthogonal Vectors

$[\operatorname{dist}(\mathbf{u}, \mathbf{v})]^{2}=\|\mathbf{u}-\mathbf{v}\|^{2}=(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})$

$$
=(\mathbf{u}) \cdot(\mathbf{u}-\mathbf{v})+(-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=
$$

$$
=\mathbf{U} \cdot \mathbf{U}-\mathbf{U} \cdot \mathbf{V}+-\mathbf{V} \cdot \mathbf{U}+\mathbf{V} \cdot \mathbf{V}
$$

$$
=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}
$$

$$
\Rightarrow \quad[\operatorname{dist}(\mathbf{u}, \mathbf{v})]^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}
$$

Similarly,

$$
[\operatorname{dist}(\mathbf{u},-\mathbf{v})]^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}
$$

Since $[\operatorname{dist}(\mathbf{u},-\mathbf{v})]^{2}=[\operatorname{dist}(\mathbf{u}, \mathbf{v})]^{2}, \mathbf{u} \cdot \mathbf{v}=$
Two vectors \mathbf{u} and \mathbf{v} are said to be orthogonal (to each other) if $\mathbf{u} \cdot \mathbf{v}=\mathbf{0}$.

Also note that if \mathbf{u} and \mathbf{v} are orthogonal, then $\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.

THEOREM 2 THE PYTHAGOREAN THEOREM

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Orthogonal Complements

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbf{R}^{n}, then \mathbf{z} is said to be orthogonal to W. The set of vectors \mathbf{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (read as "W perp").

Row, Null and Columns Spaces

THEOREM 3

Let A be an $m \times n$ matrix. Then the orthogonal complement of the row space of A is the nullspace of A, and the orthogonal complement of the column space of A is the nullspace of A^{T} :

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A, \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T} .
$$

Why? (See complete proof in the text) Consider $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{cccc}
* & * & \cdots & * \\
* & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{array}\right]\left[\begin{array}{c}
\star \\
\star \\
\vdots \\
\star
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Note that $A \mathbf{x}=\left[\begin{array}{c}\mathbf{r}_{1} \cdot \mathbf{x} \\ \mathbf{r}_{2} \cdot \mathbf{x} \\ \vdots \\ \mathbf{r}_{m} \cdot \mathbf{x}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ and so \mathbf{x} is orthogonal to
the row A since \mathbf{x} is orthogonal to $\mathbf{r}_{1} \ldots, \mathbf{r}_{m}$.

EXAMPLE: Let $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 2 & 0 & 2\end{array}\right]$.
Basis for $\operatorname{Nul} A=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and therefore $\operatorname{Nul} A$ is a plane in \mathbf{R}^{3}.

Basis for Row $A=\left\{\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\right\}$ and therefore Row A is a line in \mathbf{R}^{3}.

Basis for $\operatorname{Col} A=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ and therefore $\operatorname{Col} A$ is a line in \mathbf{R}^{2}.
Basis for $\operatorname{Nul} A^{T}=\left\{\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ and therefore $\operatorname{Nul} A^{T}$ is a line in \mathbf{R}^{2}.

Subspaces Nul A and Row A

Subspaces $\operatorname{Nul} A^{T}$ and $\operatorname{Col} A$

