4.4 Coordinate Systems

In general, people are more comfortable working with the vector space \mathbf{R}^n and its subspaces than with other types of vectors spaces and subspaces. The goal here is to *impose* coordinate systems on vector spaces, even if they are not in \mathbf{R}^n .

THEOREM 7 The Unique Representation Theorem

Let $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space *V*. Then for each **x** in *V*, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{X} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

DEFINITION

Suppose $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for a vector space *V* and **x** is in *V*. The coordinates of **x** relative to the basis β (or the β - coordinates of **x**) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

In this case, the vector in \mathbf{R}^n

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is called the **coordinate vector of x** (relative to β), or the β – **coordinate vector of x**.

EXAMPLE: Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Solution:

If
$$[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, then
 $\mathbf{x} = - \begin{bmatrix} 3 \\ 1 \end{bmatrix} + - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.
If $[\mathbf{x}]_{E} = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$, then
 $\mathbf{x} = - \begin{bmatrix} 1 \\ 0 \end{bmatrix} + - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 β – graph paper

From the last example,

$$\begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

For a basis $\beta = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, let

$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix} \text{ and } \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Г

Then

$$\mathbf{X} = P_{\beta}[\mathbf{X}]_{\beta}.$$

We call P_{β} the **change-of-coordinates matrix** from β to the standard basis in \mathbb{R}^{n} . Then

$$[\mathbf{X}]_{\beta} = P_{\beta}^{-1}\mathbf{X}$$

and therefore P_{β}^{-1} is a **change-of-coordinates matrix** from the standard basis in **R**^{*n*} to the basis β .

EXAMPLE: Let $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$. Find the change-of-coordinates matrix P_β from β to

the standard basis in \mathbf{R}^2 and change-of-coordinates matrix P_{β}^{-1} from the standard basis in \mathbf{R}^2 to β .

Solution
$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$
 and so
 $P_{\beta}^{-1} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{bmatrix}$

(b) If
$$\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
, then use P_{β}^{-1} to find $[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$.

Solution:
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = P_{\beta}^{-1}\mathbf{x} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Coordinate mappings allow us to introduce coordinate systems for unfamiliar vector spaces.

Standard basis for \mathbf{P}_2 : { $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ } = {1, *t*, *t*²}

Polynomials in \mathbf{P}_2 behave like vectors in \mathbf{R}^3 . Since $a + bt + ct^2 = \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3$,

$$\left[a+bt+ct^{2}\right]_{\beta} = \left[\begin{array}{c}a\\b\\c\end{array}\right]$$

We say that the vector space \mathbf{R}^3 is *isomorphic* to \mathbf{P}_2 .

Informally, we say that vector space *V* is **isomorphic** to *W* if every vector space calculation in *V* is accurately reproduced in *W*, and vice versa.

Assume β is a basis set for vector space *V*. Exercise 25 (page 254) shows that a set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in *V* is linearly independent if and only if $\{[\mathbf{u}_1]_{\beta}, [\mathbf{u}_2]_{\beta}, \dots, [\mathbf{u}_p]_{\beta}\}$ is linearly independent in \mathbf{R}^n .

EXAMPLE: Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set, where $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, and $\mathbf{p}_3 = 2t + 3t^2$.

Solution: The standard basis set for \mathbf{P}_2 is $\beta = \{1, t, t^2\}$. So

$$[\mathbf{p}_1]_{\beta} = \begin{bmatrix} & \\ & \\ & \end{bmatrix}, \ [\mathbf{p}_2]_{\beta} = \begin{bmatrix} & \\ & \\ & \end{bmatrix}, \ [\mathbf{p}_3]_{\beta} = \begin{bmatrix} & \\ & \\ & \end{bmatrix}$$

Then

1	2	0		1	2	0	
-1	-1	2	~ … ~	0	1	2	
0	1	3		0	0	1	

By the IMT, $\left\{ [\mathbf{p}_1]_{\beta}, [\mathbf{p}_2]_{\beta}, [\mathbf{p}_3]_{\beta} \right\}$ is

linearly _____ and therefore

 $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is linearly _____.

Coordinate vectors also allow us to associate vector spaces with subspaces of other vectors spaces.

EXAMPLE Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$ and
 $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$ and let $H = \operatorname{span}\{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\beta}$, if $\mathbf{x} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$

Solution: (a) Find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$$

Corresponding augmented matrix:

$$\begin{bmatrix} 3 & 0 & 9 \\ 3 & 1 & 13 \\ 1 & 3 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore $c_1 = _$ and $c_2 = _$ and so $[\mathbf{x}]_{\beta} = \begin{bmatrix} \\ \end{bmatrix}$.

H is isomorphic to \mathbf{R}^2