4.4 Coordinate Systems

In general, people are more comfortable working with the vector space \mathbf{R}^{n} and its subspaces than with other types of vectors spaces and subspaces. The goal here is to impose coordinate systems on vector spaces, even if they are not in \mathbf{R}^{n}.

THEOREM 7 The Unique Representation Theorem

Let $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} .
$$

DEFINITION

Suppose $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for a vector space V and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis β (or the $\boldsymbol{\beta}$ - coordinates of \mathbf{x}) are the weights c_{1}, \ldots, c_{n} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$.

In this case, the vector in \mathbf{R}^{n}

$$
[\mathbf{x}]_{\beta}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

is called the coordinate vector of x (relative to β), or the β coordinate vector of \mathbf{x}.

EXAMPLE: Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ where $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and
$\mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and let $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ where $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and
$\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Solution:
If $[\mathbf{x}]_{\beta}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, then

$$
\mathbf{x}=-\left[\begin{array}{l}
3 \\
1
\end{array}\right]+-\left[\begin{array}{l}
0 \\
1
\end{array}\right]=[\quad .
$$

If $[\mathbf{x}]_{E}=\left[\begin{array}{l}6 \\ 5\end{array}\right]$, then

$$
\mathbf{x}=-\left[\begin{array}{l}
1 \\
0
\end{array}\right]+-\left[\begin{array}{l}
0 \\
1
\end{array}\right]=[\quad .
$$

Standard graph paper

β - graph paper

From the last example,

$$
\left[\begin{array}{l}
6 \\
5
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

For a basis $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, let

$$
P_{\beta}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} \cdots \mathbf{b}_{n}
\end{array}\right] \text { and }[\mathbf{x}]_{\beta}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Then

$$
\mathbf{x}=P_{\beta}[\mathbf{x}]_{\beta} .
$$

We call P_{β} the change-of-coordinates matrix from β to the standard basis in \mathbf{R}^{n}. Then

$$
[\mathbf{x}]_{\beta}=P_{\beta}^{-1} \mathbf{x}
$$

and therefore P_{β}^{-1} is a change-of-coordinates matrix from the standard basis in \mathbf{R}^{n} to the basis β.

EXAMPLE: Let $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathbf{x}=\left[\begin{array}{l}6 \\ 8\end{array}\right]$. Find the change-of-coordinates matrix P_{β} from β to the standard basis in \mathbf{R}^{2} and change-of-coordinates matrix P_{β}^{-1} from the standard basis in \mathbf{R}^{2} to β.

Solution

$$
P_{\beta}=\left[\begin{array}{ll}
\mathbf{b}_{1} & \mathbf{b}_{2}
\end{array}\right]=[\quad] \text { and so }
$$

$P_{\beta}^{-1}=\left[\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{rr}\frac{1}{3} & 0 \\ -\frac{1}{3} & 1\end{array}\right]$
(b) If $\mathbf{x}=\left[\begin{array}{l}6 \\ 8\end{array}\right]$, then use P_{β}^{-1} to find $[\mathbf{x}]_{\beta}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$.

Solution: $\quad[\mathbf{x}]_{\beta}=P_{\beta}^{-1} \mathbf{x}=\left[\begin{array}{rr}\frac{1}{3} & 0 \\ -\frac{1}{3} & 1\end{array}\right]\left[\begin{array}{l}6 \\ 8\end{array}\right]=[\square$

Coordinate mappings allow us to introduce coordinate systems for unfamiliar vector spaces.

FIGURE 5 The coordinate mapping from V onto \mathbb{R}^{n}.

Standard basis for $\mathbf{P}_{2}:\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}=\left\{1, t, t^{2}\right\}$

Polynomials in \mathbf{P}_{2} behave like vectors in \mathbf{R}^{3}. Since $a+b t+c t^{2}=_\quad \mathbf{p}_{1}+\ldots \quad \mathbf{p}_{2}+\ldots \quad \mathbf{p}_{3}$,

$$
\left[a+b t+c t^{2}\right]_{\beta}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

We say that the vector space \mathbf{R}^{3} is isomorphic to \mathbf{P}_{2}.

EXAMPLE: Parallel Worlds of \mathbf{R}^{3} and \mathbf{P}_{2}.

Informally, we say that vector space V is isomorphic to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Assume β is a basis set for vector space V. Exercise 25 (page 254) shows that a set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ in V is linearly independent if and only if $\left\{\left[\mathbf{u}_{1}\right]_{\beta},\left[\mathbf{u}_{2}\right]_{\beta}, \ldots,\left[\mathbf{u}_{p}\right]_{\beta}\right\}$ is linearly independent in \mathbf{R}^{n}.

EXAMPLE: Use coordinate vectors to determine if $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a linearly independent set, where $\mathbf{p}_{1}=1-t, \mathbf{p}_{2}=2-t+t^{2}$, and $\mathbf{p}_{3}=2 t+3 t^{2}$.

Solution: The standard basis set for \mathbf{P}_{2} is $\beta=\left\{1, t, t^{2}\right\}$. So

$$
\left[\mathbf{p}_{1}\right]_{\beta}=[],\left[\mathbf{p}_{2}\right]_{\beta}=[],\left[\mathbf{p}_{3}\right]_{\beta}=[]
$$

Then

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & 2 \\
0 & 1 & 3
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

By the IMT, $\left\{\left[\mathbf{p}_{1}\right]_{\beta},\left[\mathbf{p}_{2}\right]_{\beta},\left[\mathbf{p}_{3}\right]_{\beta}\right\}$ is linearly \qquad and therefore
$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is linearly \qquad .

Coordinate vectors also allow us to associate vector spaces with subspaces of other vectors spaces.

EXAMPLE Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ where $\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 3 \\ 1\end{array}\right]$ and
$\mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ and let $H=\operatorname{span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\beta}$, if $\mathbf{x}=\left[\begin{array}{c}9 \\ 13 \\ 15\end{array}\right]$.
Solution: (a) Find c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
13 \\
15
\end{array}\right]
$$

Corresponding augmented matrix:

$$
\left[\begin{array}{ccc}
3 & 0 & 9 \\
3 & 1 & 13 \\
1 & 3 & 15
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore $c_{1}=\ldots$ and $c_{2}=\ldots$ and so $[\mathbf{x}]_{\beta}=[\quad$.

H is isomorphic to \mathbf{R}^{2}

