4.3 Linearly Independent Sets; Bases

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V is said to be linearly independent if the vector equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution $c_{1}=0, \ldots, c_{p}=0$.
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists weights c_{1}, \ldots, c_{p}, not all 0 , such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

The following results from Section 1.7 are still true for more general vectors spaces.

A set containing the zero vector is linearly dependent.

A set of two vectors is linearly dependent if and only if one is a multiple of the other.

A set containing the zero vector is linearly independent.

EXAMPLE: $\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}3 & 2 \\ 3 & 0\end{array}\right]\right\}$ is a
linearly \qquad set.

EXAMPLE: $\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{cc}3 & 6 \\ 9 & 11\end{array}\right]\right\}$ is a linearly $工$ set since $\left[\begin{array}{cc}3 & 6 \\ 9 & 11\end{array}\right]$ is not a multiple of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

Theorem 4
An indexed set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors, with $\mathbf{v}_{1} \neq \mathbf{0}$, is linearly dependent if and only if some vector \mathbf{v}_{j} $(j>1)$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

EXAMPLE: Let $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ be a set of vectors in \mathbf{P}_{2} where $\mathbf{p}_{1}(t)=t, \mathbf{p}_{2}(t)=t^{2}$, and $\mathbf{p}_{3}(t)=4 t+2 t^{2}$. Is this a linearly dependent set?
Solution: Since $\mathbf{p}_{3}=\ldots \mathbf{p}_{1}+\ldots \quad \mathbf{p}_{2},\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is
a linearly \qquad set.

A Basis Set

Let H be the plane illustrated below. Which of the following are valid descriptions of H ?
(a) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{V}_{2}\right\}$
(b) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$
(c) $H=\operatorname{Span}\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
(d) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{V}_{2}, \mathbf{v}_{3}\right\}$

A basis set is an "efficient" spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$ to both be examples of basis sets or bases (plural for basis) for H .

DEFINITION

Let H be a subspace of a vector space V. An indexed set of vectors $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis for H if
(i) β is a linearly independent set, and
(ii) $H=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$.

EXAMPLE: Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Show that $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis for \mathbf{R}^{3}. The set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is called a standard basis for \mathbf{R}^{3}.

Solutions: (Review the IMT, page 129) Let
$A=\left[\begin{array}{lll}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Since A has 3 pivots, the columns of A are linearly \qquad by
the IMT and the columns of A
by IMT. Therefore, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis for \mathbf{R}^{3}.

EXAMPLE: Let $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$. Show that S is a basis for \mathbf{P}_{n}.

Solution: Any polynomial in \mathbf{P}_{n} is in span of S. To show that S is linearly independent, assume $c_{0} \cdot 1+c_{1} \cdot t+\cdots+c_{n} \cdot t^{n}=\mathbf{0}$

Then $c_{0}=c_{1}=\cdots=c_{n}=0$. Hence S is a basis for \mathbf{P}_{n}.

EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$.
Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ a basis for \mathbf{R}^{3} ?
Solution: Again, let $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$. Using row reduction,

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 5
\end{array}\right]
$$

and since there are 3 pivots, the columns of A are linearly independent and they span \mathbf{R}^{3} by the IMT. Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbf{R}^{3}.

EXAMPLE: Explain why each of the following sets is not a basis for \mathbf{R}^{3}.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 7\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$

Bases for Nul A

EXAMPLE: Find a basis for $\operatorname{Nul} A$ where

$$
A=\left[\begin{array}{rrrrr}
3 & 6 & 6 & 3 & 9 \\
6 & 12 & 13 & 0 & 3
\end{array}\right]
$$

Solution: Row reduce $\left[\begin{array}{ll}A & 0\end{array}\right]$:

$$
\begin{gathered}
{\left[\begin{array}{llllll}
1 & 2 & 0 & 13 & 33 & 0 \\
0 & 0 & 1 & -6 & -15 & 0
\end{array}\right] \begin{array}{l}
x_{1}=-2 x_{2}-13 x_{4}-33 x_{5} \\
x_{3}=6 x_{4}+15 x_{5} \\
x_{2}, x_{4} \text { and } x_{5} \text { are free }
\end{array}} \\
\\
x_{2}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}-13 x_{4}-33 x_{5} \\
x_{2} \\
6 x_{4}+15 x_{5} \\
x_{4} \\
x_{5} \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-\left[\begin{array}{c}
-13 \\
0 \\
6 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-33 \\
0 \\
15 \\
0 \\
\mathbf{u} \\
1 \\
\mathbf{u}
\end{array}\right] \\
\mathbf{v}
\end{array}\right]
\end{gathered}
$$

Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for $\mathrm{Nul} A$. In the last section we observed that this set is linearly independent. Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for $\operatorname{Nul} A$. The technique used here always provides a linearly independent set.

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

EXAMPLE: Suppose $\mathbf{v}_{1}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$.

Solution: If \mathbf{x} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, then

$$
\begin{gather*}
\mathbf{X}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3}\left(\ldots \mathbf{v}_{1}+\ldots\right. \tag{2}\\
=\ldots
\end{gather*}
$$

Therefore,

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} .
$$

THEOREM 5 The Spanning Set Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set in V and let $H=$ $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
a. If one of the vectors in S - say \mathbf{v}_{k} - is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_{k} still spans H.
b. If $H \neq\{\mathbf{0}\}$, some subset of S is a basis for H.

Bases for Col A

EXAMPLE: Find a basis for $\operatorname{Col} A$, where

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 2 & 0 & 4 \\
2 & 4 & -1 & 3 \\
3 & 6 & 2 & 22 \\
4 & 8 & 0 & 16
\end{array}\right]
$$

Solution: Row reduce:

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}
\end{array}\right] \sim \cdots \sim\left[\begin{array}{llll}
1 & 2 & 0 & 4 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4}
\end{array}\right]
$$

Note that

$$
\begin{aligned}
& \mathbf{b}_{2}=\ldots \mathbf{b}_{1} \quad \text { and } \quad \mathbf{a}_{2}=\ldots \mathbf{a}_{1} \\
& \mathbf{b}_{4}=4 \mathbf{b}_{1}+5 \mathbf{b}_{3} \quad \text { and } \quad \mathbf{a}_{4}=4 \mathbf{a}_{1}+5 \mathbf{a}_{3} \\
& \mathbf{b}_{1} \text { and } \mathbf{b}_{3} \text { are not multiples of each other } \\
& \mathbf{a}_{1} \text { and } \mathbf{a}_{3} \text { are not multiples of each other }
\end{aligned}
$$

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore Span $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$ and $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$ is a basis for $\mathrm{Col} A$.

THEOREM 6

The pivot columns of a matrix A form a basis for $\operatorname{Col} A$.

EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ -4 \\ 6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$.
Find a basis for Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
Solution: Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & -4 & 6 \\ -3 & 6 & 9\end{array}\right]$ and note that
Col $A=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
By row reduction, $A \sim\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Therefore a basis
for $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is $\{[[]\}$.

Review:

1. To find a basis for $\operatorname{Nul} A$, use elementary row operations to transform $\left[\begin{array}{ll}A & 0\end{array}\right]$ to an equivalent reduced row echelon form $\left[\begin{array}{ll}B & 0\end{array}\right]$. Use the reduced row echelon form to find parametric form of the general solution to $A \mathbf{x}=\mathbf{0}$. The vectors found in this parametric form of the general solution form a basis for Nul A.
2. A basis for $\mathrm{Col} A$ is formed from the pivot columns of A. Warning: Use the pivot columns of A, not the pivot columns of B, where B is in reduced echelon form and is row equivalent to A.
