4.2 Null Spaces, Column Spaces, \& Linear Transformations

The null space of an $m \times n$ matrix A, written as $\operatorname{Nul} A$, is the set of all solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
$\operatorname{Nul} A=\left\{\mathbf{x}: \mathbf{x}\right.$ is in \mathbf{R}^{n} and $\left.A \mathbf{x}=\mathbf{0}\right\} \quad$ (set notation)

THEOREM 2

The null space of an $m \times n$ matrix A is a subspace of \mathbf{R}^{n}. Equivalently, the set of all solutions to a system $A \mathbf{x}=\mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbf{R}^{n}.

Proof: $\operatorname{Nul} A$ is a subset of \mathbf{R}^{n} since A has n columns. Must verify properties a, b and c of the definition of a subspace.

Property (a) Show that $\mathbf{0}$ is in Nul A. Since \qquad , 0 is in
\qquad .

Property (b) If \mathbf{u} and \mathbf{v} are in $\operatorname{Nul} A$, show that $\mathbf{u}+\mathbf{v}$ is in $\operatorname{Nul} A$. Since \mathbf{u} and \mathbf{v} are in $\operatorname{Nul} A$,
\qquad .

Therefore

$$
A(\mathbf{u}+\mathbf{v})=__{-}+\ldots+\ldots
$$

Property (c) If \mathbf{u} is in $\operatorname{Nul} A$ and c is a scalar, show that $c \mathbf{u}$ in Nul A :

$$
A(c \mathbf{u})=\ldots A(\mathbf{u})=c \mathbf{0}=\mathbf{0} .
$$

Since properties a, b and c hold, A is a subspace of \mathbf{R}^{n}.

Solving $A \mathbf{x}=\mathbf{0}$ yields an explicit description of $\operatorname{Nul} A$.
EXAMPLE: Find an explicit description of $\operatorname{Nul} A$ where

$$
A=\left[\begin{array}{rrrrr}
3 & 6 & 6 & 3 & 9 \\
6 & 12 & 13 & 0 & 3
\end{array}\right]
$$

Solution: Row reduce augmented matrix corresponding to $A \mathbf{x}=\mathbf{0}$:

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccc}
3 & 6 & 6 & 3 & 9 & 0 \\
6 & 12 & 13 & 0 & 3 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & 13 & 33 \\
0 \\
0 & 0 & 1 & -6 & -15
\end{array}\right.} \\
0
\end{array}\right] .\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}-13 x_{4}-33 x_{5} \\
x_{2} \\
6 x_{4}+15 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

$$
=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-13 \\
0 \\
6 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-33 \\
0 \\
15 \\
0 \\
1
\end{array}\right]
$$

Then
$\operatorname{Nul} A=\operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$

Observations:

1. Spanning set of $\operatorname{Nul} A$, found using the method in the last example, is automatically linearly independent:

$$
c_{1}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-13 \\
0 \\
6 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-33 \\
0 \\
15 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

\Rightarrow

$$
c_{1}=
$$

\qquad

$$
c_{3}=
$$

2. If $\operatorname{Nul} \mathrm{A} \neq\{\mathbf{0}\}$, the the number of vectors in the spanning set for Nul A equals the number of free variables in $A \mathbf{x}=\mathbf{0}$.

The column space of an $m \times n$ matrix $A(\operatorname{Col} A)$ is the set of all linear combinations of the columns of A.

If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}
$$

THEOREM 3

The column space of an $m \times n$ matrix A is a subspace of \mathbf{R}^{m}.

Why? (Theorem 1, page 221)

Recall that if $A \mathbf{x}=\mathbf{b}$, then \mathbf{b} is a linear combination of the columns of A. Therefore

$$
\operatorname{Col} A=\left\{\mathbf{b}: \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \text { in } \mathbf{R}^{n}\right\}
$$

EXAMPLE: Find a matrix A such that $W=\operatorname{Col} A$ where $W=\left\{\left[\begin{array}{c}x-2 y \\ 3 y \\ x+y\end{array}\right]: x, y\right.$ in $\left.\mathbf{R}\right\}$.
Solution:

$$
\begin{gathered}
{\left[\begin{array}{c}
x-2 y \\
3 y \\
x+y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+y\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]} \\
=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\text { Therefore } A=\left[\begin{array}{l}
\\
\end{array}\right]
\end{gathered}
$$

By Theorem 4 (Chapter 1),

The column space of an $m \times n$ matrix A is all of \mathbf{R}^{m} if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbf{R}^{m}.

The Contrast Between Nul A and $\operatorname{Col} A$
EXAMPLE: Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1\end{array}\right]$.
(a) The column space of A is a subspace of \mathbf{R}^{k} where $k=$
(b) The null space of A is a subspace of \mathbf{R}^{k} where $k=$ \qquad .
(c) Find a nonzero vector in $\mathrm{Col} A$. (There are infinitely many possibilities.)

$$
-\left[\begin{array}{c}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
3 \\
0 \\
10 \\
1
\end{array}\right][\square]\left[\begin{array}{l}
]
\end{array}\right]
$$

(d) Find a nonzero vector in $\operatorname{Nul} A$. Solve $A \mathbf{x}=\mathbf{0}$ and pick one solution.

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 0 \\
2 & 4 & 7 & 0 \\
3 & 6 & 10 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \text { row reduces to }\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}=-2 x_{2} \\
& x_{2} \text { is free } \\
& x_{3}=0
\end{aligned}
$$

Let $x_{2}=\ldots$ and then

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right]
$$

Contrast Between Nul A and Col A where A is $m \times n$ (see page 232)

A subspace of a vector space V is a subset H of V that has three properties:
a. The zero vector of V is in H.
b. For each \mathbf{u} and \mathbf{v} in $H, \mathbf{u}+\mathbf{v}$ is in H. (In this case we say H is closed under vector addition.)
c. For each \mathbf{u} in H and each scalar $c, c \mathbf{u}$ is in H. (In this case we say H is closed under scalar multiplication.)
If the subset H satisfies these three properties, then H itself is a vector space.

THEOREM 1, 2 and 3 (Sections 4.1 \& 4.2)

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.
The null space of an $m \times n$ matrix A is a subspace of \mathbf{R}^{n}.
The column space of an $m \times n$ matrix A is a subspace of \mathbf{R}^{m}.

EXAMPLE: Determine whether each of the following sets is a vector space or provide a counterexample.
(a) $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x-y=4\right\}$

Solution: Since___ $=[\quad$ is not in H, H is not a vector space.
(b) $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: \begin{array}{l}x-y=0 \\ y+z=0\end{array}\right\}$

Solution: Rewrite $\begin{aligned} & x-y=0 \\ & y+z=0\end{aligned}$ as

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So $V=\operatorname{Nul} A$ where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1\end{array}\right]$. Since $\operatorname{Nul} A$ is a subspace of \mathbf{R}^{2}, V is a vector space.
(c) $S=\left\{\left[\begin{array}{r}x+y \\ 2 x-3 y \\ 3 y\end{array}\right]: x, y, z\right.$ are real $\}$

One Solution: Since

$$
\left[\begin{array}{r}
x+y \\
2 x-3 y \\
3 y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+y\left[\begin{array}{r}
1 \\
-3 \\
3
\end{array}\right],
$$

$S=$ span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -3 \\ 3\end{array}\right]\right\}$; therefore S is a vector space by
Theorem 1.

Another Solution: Since

$$
\left[\begin{array}{r}
x+y \\
2 x-3 y \\
3 y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+y\left[\begin{array}{r}
1 \\
-3 \\
3
\end{array}\right]
$$

$S=\operatorname{Col} A$ where $A=\left[\begin{array}{cc}1 & 1 \\ 2 & -3 \\ 0 & 3\end{array}\right]$; therefore S is a vector space,
since a column space is a vector space.

Kernal and Range of a Linear Transformation

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that
i. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in V;
ii. $T(c \mathbf{u})=c T(\mathbf{u})$ for all \mathbf{u} in tin V and all scalars c.

The kernel (or null space) of T is the set of all vectors \mathbf{u} in V such that $T(\mathbf{u})=\mathbf{0}$. The range of T is the set of all vectors in W of the form $T(\mathbf{u})$ where \mathbf{u} is in V.

So if $T(\mathbf{x})=A \mathbf{x}, \operatorname{col} A=$ range of T.

