2.3 Characterizations of Invertible Matrices

Theorem 8 (The Invertible Matrix Theorem)

Let A be a square $n \times n$ matrix. The the following statements are equivalent (i.e., for a given A, they are either all true or all false).
a. A is an invertible matrix.
b. A is row equivalent to I_{n}.
c. A has n pivot positions.
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ is one-to-one.
g. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbf{R}^{n}.
h. The columns of A span \mathbf{R}^{n}.
i. The linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ maps \mathbf{R}^{n} onto \mathbf{R}^{n}.
j. There is an $n \times n$ matrix C such that $C A=I_{n}$.
k. There is an $n \times n$ matrix D such that $A D=I_{n}$.
I. A^{T} is an invertible matrix.

EXAMPLE: Use the Invertible Matrix Theorem to determine if A is invertible, where

$$
A=\left[\begin{array}{rrr}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{array}\right]
$$

Solution

$$
A=\left[\begin{array}{rrr}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{array}\right] \sim \cdots \sim \underbrace{\left[\begin{array}{rrr}
1 & -3 & 0 \\
0 & -1 & 1 \\
0 & 0 & 16
\end{array}\right]}_{3 \text { pivots positions }}
$$

Circle correct conclusion: Matrix A is / is not invertible.

EXAMPLE: Suppose H is a 5×5 matrix and suppose there is a vector \mathbf{v} in \mathbf{R}^{5} which is not a linear combination of the columns of H. What can you say about the number of solutions to $H \mathbf{x}=\mathbf{0}$?

Solution \quad Since \mathbf{v} in \mathbf{R}^{5} is not a linear combination of the columns of H, the columns of H do not \qquad \mathbf{R}^{5}.

So by the Invertible Matrix Theorem, $H \mathbf{x}=\mathbf{0}$ has

Invertible Linear Transformations

For an invertible matrix A,

$$
\begin{aligned}
& A^{-1} A \mathbf{x}=\mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} \\
& \quad \text { and } \\
& A A^{-1} \mathbf{x}=\mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} .
\end{aligned}
$$

Pictures:

A linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is said to be invertible if there exists a function $S: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that

$$
\begin{aligned}
S(T(\mathbf{x}))= & \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} \\
& \quad \text { and } \\
T(S(\mathbf{x}))= & \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} .
\end{aligned}
$$

Theorem 9
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x})=A^{-1} \mathbf{x}$ is the unique function satisfying

$$
\begin{aligned}
S(T(\mathbf{x}))= & \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} \\
& \quad \text { and } \\
T(S(\mathbf{x}))= & \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} .
\end{aligned}
$$

