<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<!--Converted with LaTeX2HTML 99.1 release (March 30, 1999)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>syllabus</TITLE>
<META NAME="description" CONTENT="syllabus">
<META NAME="keywords" CONTENT="syllabus">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="Generator" CONTENT="LaTeX2HTML v99.1 release">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">

<LINK REL="STYLESHEET" HREF="syllabus.css">

<LINK REL="next" HREF="node1.html">
</HEAD>

<BODY >
<!--Navigation Panel-->
<A NAME="tex2html1"
 HREF="node1.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="http://www.math.uwaterloo.ca/latex2html-99/icons.gif/next_motif.gif"></A> 
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="http://www.math.uwaterloo.ca/latex2html-99/icons.gif/up_motif_gr.gif"> 
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="http://www.math.uwaterloo.ca/latex2html-99/icons.gif/previous_motif_gr.gif">   
<BR>
<B> Next:</B> <A NAME="tex2html2"
 HREF="node1.html">About this document ...</A>
<BR>
<BR>
<!--End of Navigation Panel-->

<P>
 
<DIV ALIGN="CENTER">
<FONT SIZE="+1"> <B> C&amp;O Comprehensive Exam Syllabus (for July/01 Only)
<BR>
Continuous Optimization
<BR>
</B></FONT>

</DIV>

<P>
 
<DL>
<DT><STRONG>  Examiners:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp;
              Mike Best and Henry Wolkowicz

<P>
 </DD>
<DT><STRONG>  Disclaimer:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp;  
The following is an attempt to outline the material specifically for the
comprehensive exam for July/97. This is only a rough outline for this
specific exam. 

<P>
The
questions on the exam emphasize breadth of knowledge, rather than depth.
An individual who has successfully
taken one of the two courses CO663 or CO666, and
who has done some additional reading, should do well.
  </DD>
<DT><STRONG>  References:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp;  
The  material is covered (with some overlap) in the two books:

<OL>
<li>
<A href="http://www.ece.nwu.edu/~nocedal/book/num-opt.html">
Numerical Optimization</A>, by
<A href="http://www.ece.nwu.edu/~nocedal/">
Jorge Nocedal</A>, and
<A href="http://www-unix.mcs.anl.gov/~wright/">
Stephen Wright</A>, 1999, 
<A href="http://www.springer-ny.com/">
Springer Verlag</A>.
<LI>Linear and Nonlinear Programming, D.G. Luenberger, Second Edition</LI>
<LI>The Mathematics of
Nonlinear Programming, Peressini, Sullivan, Uhl

<P></LI>
</OL>

<P>
 </DD>
<DT><STRONG>  Outline:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp; 
The exam covers the basic theory 
(e.g.  attainment, uniqueness
of optimal solutions, characterization of optimal solutions) and
fundamental algorithms (e.g. Newton's Method, Quasi-Newton Methods,
Steepest Descent).

<P>
 
<DL>
<DT><STRONG>Unconstrained Optimization:</STRONG></DT>
<DD>&nbsp;&nbsp;
Basic first and second order algorithms; steepest descent, Newton
method, quasi-Newton methods (no memorization of formulae of updates is
required), conjugate gradient methods; sufficient decrease criteria and
intervals of uncertainty; convergence theorems for Newton's method,
line search and trust region methods (global convergence analysis). 
  </DD>
<DT><STRONG>Linear Programming:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp; 
Simplex Method, Geometry, Duality and Sensitivity.
  </DD>
<DT><STRONG>  Constrained Optimization:</STRONG></DT>
<DD>&nbsp;&nbsp;
Equality and inequality constraints;
penalty (quadratic and <IMG
 WIDTH="19" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img1.gif"
 ALT="$\ell_1$">)
and barrier methods, gradient projection methods, sequential
quadratic programming methods, augmented Lagrangians; quadratic
programming. 
  </DD>
<DT><STRONG>  Convex Analysis:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp;  
Separating hyperplanes, polarity, subgradients, Lagrange multipliers,
duality, convex sets and functions.
  </DD>
<DT><STRONG>  Optimality Conditions:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp;  
First and second order optimality conditions, Karush-Kuhn-Tucker
theorem, local and global optimality, existence and uniqueness of optima
(e.g. coercive functions, strict convexity).</DD>
<DT><STRONG>  Complexity and NP-Completeness:</STRONG></DT>
<DD>&nbsp;&nbsp;&nbsp;  
  The classes P and NP, 
NP-completeness. Reference: Combinatorial Optimization, 
Cook-Cunningham-Pulleyblank-Schrijver, pages 309-323.
</DD>
</DL>

<P></DD>
</DL>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>

<UL>
<LI><A NAME="tex2html3"
 HREF="node1.html">About this document ...</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A NAME="tex2html1"
 HREF="node1.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="http://www.math.uwaterloo.ca/latex2html-99/icons.gif/next_motif.gif"></A> 
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="http://www.math.uwaterloo.ca/latex2html-99/icons.gif/up_motif_gr.gif"> 
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="http://www.math.uwaterloo.ca/latex2html-99/icons.gif/previous_motif_gr.gif">   
<BR>
<B> Next:</B> <A NAME="tex2html2"
 HREF="node1.html">About this document ...</A>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Henry Wolkowicz</I>
<BR><I>2000-11-03</I>
</ADDRESS>
</BODY>
</HTML>
