
Nonsmooth Newton Methods for
Solving the Best Approximation

Problem; with Applications to Linear
Programming

by

Tyler Weames

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2023

© Tyler Weames 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we study the effects of applying a modified Levenberg-Marquardt regularization
to a nonsmooth Newton method. We expand this application to exact and inexact nonsmooth
Newton methods and apply it to the best approximation constrained to a polyhedral set problem.
We also demonstrate that linear programs can be represented as a best approximation problem,
extending the application of nonsmooth Newton methods to linear programming. This application
provides us with insight into an external path following algorithm that, like the simplex method,
takes a finite number of steps on the boundary of the polyhedral set. However, unlike the simplex
method, these steps do not use basic feasible solutions.

iii

Acknowledgements

I would first like to thank my supervisor Henry Wolkowicz. He is a very kind, compassionate,
and patient teacher with a lot of wisdom to share. His incredible passion for Mathematics and
Optimization continues to push me to grow as a student. Henry is also great at leading by example,
he never asks you to do something that he could not do himself. I also appreciate Henry’s genuine
passion for life, and more specifically life in the Ontario area. He is constantly giving me ideas for
how to integrate mine and my partner’s life with the activities and people of Ontario.

I would also like to thank Professor Walaa Moursi and Professor Yair Censor for working with
Henry and I on this problem, as well as for their valuable company. Meeting with Walaa and Yair
has provided me with wonderful insight into the world outside of Canada. I am fortunate to count
them as colleagues and friends.

I would like to thank Professor Heinz Bauschke, Professor Warren Hare, and Professor Yves
Lucet of UBCO. I want to thank Heinz Bauschke for introducing me to convex optimization and
sparking my passion for optimization. I want to thank Warren Hare, and Yves Lucet for their
supervision during my directed studies at UBCO. They helped to foster my interests in numerical
and derivative-free optimization. From them I have learned many valuable skills that I still carry
with me at my studies at the University of Waterloo.

I am very grateful to my readers Professor Walaa Moursi and Professor Steve Vavasis for their
meaningful feedback on my thesis.

I especially want to thank my partner Victoria Lange. She has been nothing short of extraor-
dinarily supportive of me on my academic journey. Together we moved across Canada from our
home in British Columbia to settle in Ontario. She has helped make Ontario feel more like home
instead of like a home away from home. Words cannot express how grateful I am to have her in
my life.

I want to express special thanks to my friends and family that have helped to support me during
my studies. I am very grateful to my grandparents who moved out to Ontario around the same
time I did. I am very fortunate to have you both in my life, and I am always grateful for my
grandma’s wonderful cooking. I would also like to thank the many friends I have made while living
in Ontario. You have helped to make Kitchener-Waterloo feel like home. I would also like to give a
final thanks to my friends in British Columbia. Thank you for keeping in touch and reminding me
that even if we are 4000 kilometers apart that we can still laugh and revel in each others company.

I would like to give a final acknowledgment to everyone that has supported me on my journey
so far. While I acknowledge that this thesis is my work, I could not have done it without the
compassion and wisdom that everyone around me has shared.

iv

Table of Contents

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1

1.1 Notation . 2

1.2 Contributions and Organization . 2

2 Background 4

2.1 Convex Analysis Background . 4

2.1.1 Convex Sets . 4

2.1.2 Convex Functions . 5

2.1.3 Cones and Faces . 6

2.1.4 Projections . 7

2.1.5 Unconstrained Optimization . 8

2.1.6 Constrained Optimization . 9

2.2 Nonsmooth Analysis Background . 11

2.2.1 Generalized Gradient . 11

2.3 Linear Programming . 13

2.3.1 Extreme points and Basic Feasible Solutions 13

2.3.2 Degeneracy . 15

2.3.3 Duality . 15

2.3.4 Theorem of the Alternative . 15

2.4 Time Complexity . 19

v

3 Solving the BAP with a Regularized Nonsmooth Newton Method, RNNM 21

3.1 Basic theory of the BAP . 21

3.2 Nonlinear Least Squares . 24

3.3 Well Conditioned Generalized Jacobian . 25

3.4 Vertices and Dual Cones . 28

3.5 Projection and Free variables . 29

3.5.1 Projection with Free Variables . 29

4 Numerics for Best Approximation Problem 32

4.1 The Halpern-Lions-Wittmann-Bauschke method, HLWB 32

4.1.1 Time Complexity of RNNM and HLWB 33

4.2 Quadratic Programming Proximal Augmented Lagrangian method, QPPAL 34

4.3 Comparison of Algorithms for solving the BAP . 35

4.3.1 Numerical Comparisons . 36

5 Theoretical Background for Linear Programming 39

5.1 Optimality Conditions . 39

5.2 An External Path Following Algorithm for Solving Linear Programs 41

5.2.1 Exploiting Sensitivity Analysis to Warm Start the BAP 42

5.2.2 Upper and Lower Bounds for the LP Problem 46

5.3 Solving Large Sparse Linear Programs . 47

6 Conclusion 51

References . 55

A Pseudocodes for Generalized Simplex 56

B Additional Tables and Performance Profiles 58

B.1 Nondegenerate Solutions . 58

B.2 Degenerate Solutions . 61

Index 65

vi

List of Figures

4.1 Performance profiles for problems with varying m, n, and densities for nondegen-
erate vertex solutions. 38

5.1 Performance Profiles for LP application with respect to all problems. 48

5.2 Performance Profiles for LP application with respect to the Netlib problems. 50

B.2 Performance Profiles for varying m for nondegenerate vertex solutions. 59

B.4 Performance Profiles for varying n for nondegenerate vertex solutions. 60

B.6 Performance Profiles for varying density for nondegenerate vertex solutions. 61

B.7 Performance Profiles for varying m for degenerate vertex solutions. 62

B.8 Performance Profiles for varying n for degenerate vertex solutions. 63

B.9 Performance Profiles for varying density for degenerate vertex solutions. 64

vii

List of Tables

4.1 Varying problem sizes m; comparing computation time and relative residuals. . . . 37

4.2 Varying problem sizes n; comparing computation time and relative residuals. 38

4.3 Varying problem density; comparing computation time and relative residuals. . . . 38

5.1 LP application results averaged on 5 randomly generated problems per row. 48

5.2 Primal and Dual strict feasibility of NETLIB problems. 49

5.3 LP application results on the NETLIB problems. 49

B.1 Varying problem sizes m and comparing computation time with relative residual
for degenerate vertex solutions. 61

B.2 Varying problem sizes n and comparing computation time with relative residual for
degenerate vertex solutions. 61

B.3 Varying problem density and comparing computation time with relative residual
for degenerate vertex solutions. 61

viii

List of Algorithms

2.1 Generation of an LP where strict feasibility fails in the primal problem 17
2.2 Generation of an LP where strict feasibility fails in the dual problem 18
3.1 BAP of v for constraints Ax = b, x ≥ 0; exact Newton direction 27
4.1 Cyclic HLWB algorithm for linear inequalities . 33
A.1 BAP of v for constraints Ax = b, x ≥ 0, inexact Newton direction 56
A.2 Extended HLWB algorithm . 57

ix

Chapter 1

Introduction

In this thesis we apply a modified Levenberg-Marquardt regularization to a nonsmooth Newton
method to solve the best approximation constrained to a polyhedral set problem. We demonstrate
numerically that a nonsmooth Newton method applied to a Moreau decomposition of the optimality
conditions of the best approximation problem is highly competitive. We further show our method
to be more efficient than many other methods chosen from both academic and professional areas.
We also develop the novel approach of solving a linear program that exploits the sensitivity analysis
of a solution to the best approximation problem.

The best approximation problem, BAP, aims to find the nearest point x∗ to a given point v,
where x∗ belongs to a given feasible region. In general, we denote the feasible region as C and
represent the BAP as follows

x∗(v) = argmin
x∈C

∥x− v∥ . (1.1)

The BAP has a wide range of applications and arises naturally in many areas of industry,
optimization, and approximation theory. We now describe some of the fundamental problems in
this field with greater detail to motivate the discussion on how to solve the BAP more efficiently.

In intensity-modulated radiation therapy there are powerful energy beams that are shaped to
match the shape of cancer cells moving through an arc while they deliver the radiation. The
intensity of each beam is allowed to vary, making the precision to deliver the optimal amount of
radiation to treat each cancer cell paramount. By discretizing the irradiated body into voxels and
the external radiation field into beamlets, we can represent this problem as a feasibility-seeking
problem with polyhedral constraints as done in [53]. Since delivering an acceptable treatment plan
with minimal radiation intensities is preferable, this feasibility seeking problem can be replaced by
the BAP. In other words, it can be represented as (1.1) with C being a set of linear inequalities
intersected with the nonnegative orthant, and v being the zero-vector. This was examined in [52]
with a simultaneous version of Hildreth’s sequential algorithm for norm minimization

In fixed point theory, finding fixed points of nonexpansive mappings has been a growing field of
importance. In the case where the nonexpansive mappings are projections onto some closed convex
sets, then the fixed point problem becomes the convex feasibility problem [3]. The Halpern-Lions-
Wittmann-Bauschke method, (HLWB), which we will expand on in Section 4.1, is an algorithm
that solves the BAP using the common fixed points set of a family of firmly nonexpansive operators

1

as presented in [2]. As discussed above, intensity-modulated radiation therapy is one application
of this problem. Other applications of this nature can be found in [1]. In particular, a detailed
set of examples verifying the feasibility of a design drawn from Computer-Assisted-Design (CAD)
software.

Lastly, we discuss an application of BAP used to solve an LP. It was proven in [38, 48] that
linear programs can be equivalently expressed as a BAP constrained to a polyhedral set given a
sufficiently large parameter R. In [39] Mangasarian proposes a Newton-type method with a barrier
term on the objective. More discussion on how we approach solving the LP using the theory
developed for the BAP using a regularized nonsmooth Newton method as well as remarks on
Mangasarian’s approach are in Chapter 5.

1.1 Notation

We work in a Euclidean space, X, with inner product, ⟨·, ·⟩ and induced norm, ∥x∥ =
√
⟨x, x⟩. Let

C ⊆ X. Then we denote the interior of C, int(C), and the relative interior of C, relint(C). The
set B(x, ε) represents the open ball centered at x of radius ε.

Depending on context, we denote the vector of zeroes with length n as 0n, or an n by n matrix
of zeroes as 0n. Furthermore, we denote the identity matrix as I and In denotes the identity matrix
of size Rn×n. We denote the vector of all ones as e, where ei is the (unit) vector of all zeroes except
the ith entry, which has a one. Let x ∈ Rn. Then we denote the linear map Diag(x) : Rn → Rn×n

where the elements of x are placed on the diagonal of the n×n matrix, with the nondiagonal entries
equal to 0. Furthermore, let A ∈ Rn×n. Then the linear map diag(A) : Rn×n → Rn takes a square
matrix A to its diagonal in Rn.

For index sets I and J , we denote the submatrix of A using the columns indexed by I as AI ,
and the submatrix of A using the columns indexed by I and the rows indexed by J as A(J ,I).
Alternatively, when the index set I (or J) is not a subset of the possible indices, but the entire set,
we use the MATLAB notation A(J ,:) (or A(:,I)) to define the submatrix comprised of the rows of A
corresponding to J (or the columns of A corresponding to I). In the case where a subscript for A
exists, for example A1, we denote the submatrix of A1 using the columns indexed by I as A1(I),
and the submatrix of A1 using the columns indexed by I and the rows indexed by J as A1(J , I).

Let x ∈ Rn. Then we denote the projection of the vector x onto the nonnegative orthant as x+ =
(max{0, xi})ni=1. Furthermore, we denote the projection of the vector x onto the nonpositive orthant
as x− = (min{(0, xi})ni=1. Let A ∈ Rm×n. Then we denote the Moore-Penrose pseudoinverse of A
as A†.

1.2 Contributions and Organization

This thesis is separated into six chapters. In Chapter 2 we present the necessary background in
convex and nonsmooth analysis, linear optimization, and time complexity.

The main results of the thesis appear throughout Chapters 3 to 5. In Chapters 3 and 4 of the
thesis we discuss the BAP. We introduce a nonsmooth Newton method used to solve the BAP
as well as numerical results that we compare to HLWB. We have the following contributions in
Chapter 3 and Chapter 4:

2

1. We present basic theory for the BAP as well as its Lagrangian dual as shown in Theo-
rem 3.1.1. This includes an application of the Moreau decomposition that yields a single
equation capturing all three KKT optimality conditions (primal feasibility, dual feasibility,
and complementary slackness). This single equation, F (y), is in the dimension of the dual
variable y, and we examine applications where the dimension of the dual variable is far smaller
than the dimension of the primal variable x.

2. We present the regularized nonsmooth Newton method, RNNM, where no line search is
used for guaranteeing convergence. This is handled by introducing a robust regularization
of the constraint set to decrease the distance of the inital point to the optimal solution (See
Lemma 5.2.1).

3. We show that the regularization from a modified Levenberg-Marquardt, LM, method yields
a descent direction (See Lemma 3.2.1.)

4. We use MATLAB to present numerical results of RNNM that exactly and inexactly solves
for the search direction. These numerical results are for medium-sized problems, and com-
pare the performance of RNNM to HLWB [2], quadratic programming proximal augmented
Lagrangian method, (QPPAL) [35], and MATLAB’s commerical solver lsqlin. We conclude
that the performance of RNNM is surprisingly impressive for a simple code that does not
take advantage of .mex files. The code outperforms many other solvers on every problem.

In Chapter 5 we introduce some background on linear programming. The background presented
includes a brief history of linear programming, and examines how interior point methods are related
to Newton methods. We also have the following contributions in Chapter 5:

1. We consider solving the nearest point problem as a BAP subproblem of the LP to find a
sufficiently large R such that the BAP subproblem provides an optimal solution for the LP.
We do this by using sensitivity analysis to increase the parameter R in Lemma 5.2.1 until Rc
lies within the normal cone of the optimal face (See Theorem 5.2.3). We call this method the
stepping stones external path following method, SSEPF. When the optimal face is a vertex,
then we have found the unique optimal solution. Otherwise, we have found the minimum
norm solution for the LP. We prove this approach terminates in a finite number of iterations.

2. We present numerical results of SSEPF for solving large-scale linear programs. In our
application, we also use RNNM to solve the BAP subproblem, providing numerical results
for RNNM applied to the large-scale BAP. We compare the performance of SSEPF using
RNNM to solve the BAP subproblem to MATLAB’s linprog code, using both the dual
simplex and the interior-point method algorithms. We also compare with Mosek’s dual simplex
and interior-point method, and with the semismooth Newton inexact proximal augmented
Lagrangian method, SNIPAL [34].

3

Chapter 2

Background

2.1 Convex Analysis Background

We now present some background knowledge on convex analysis and convex optimization. We
start with introducing convex sets in Section 2.1.1, convex functions in Section 2.1.2, cones in Sec-
tion 2.1.3, projections in Section 2.1.4, and convex optimization theory in Sections 2.1.5 and 2.1.6.
Readers that are familiar with the basics of convex analysis can skip this section. For missing
results, see [9, 43,50] and the references therein.

2.1.1 Convex Sets

Definition 2.1.1 (Convex combination). Let xi ∈ X, λi ∈ [0, 1], and
∑k

i=1 λi = 1 for i = 1, . . . , k.
Then the vector sum λ1x1 + . . .+ λkxk is called a convex combination of the vectors.

Definition 2.1.2 (Convex set). A subset C ⊆ X is convex if

λ ∈ [0, 1], x, y ∈ C =⇒ λx+ (1− λ)y ∈ C.

Definition 2.1.3 (Affine set). A subset C ⊆ X is affine if

λ ∈ R, x, y ∈ C =⇒ λx+ (1− λ)y ∈ C.

Example 2.1.4 (Half-spaces and hyperplanes). Let a ∈ X and α ∈ R, then the following sets are
denoted as half-spaces and hyperplanes respectively

H≤,= := H≤,=(a, α) = {x ∈ X | ⟨a, x⟩ (≤,=)α}.

Both halfspaces and hyperplanes are examples of convex sets.

Theorem 2.1.5. The intersection of an arbitrary collection of convex sets in X is a convex set.

Remark 2.1.6. The intersection of half-spaces is a convex set.

Proof. See Example 2.1.4 and Theorem 2.1.5

4

Definition 2.1.7 (Convex hull). Let S ⊆ X. The convex hull of S, denoted by conv(S), is the
intersection of all convex sets containing S, i.e., the smallest convex set of X containing S.

Theorem 2.1.8. Let S ⊆ X. Then conv(S) consists of all the convex combinations of the elements
of S.

2.1.2 Convex Functions

Definition 2.1.9 (Epigraph of a function). Let f : X → [−∞,+∞]. The epigraph of f is

epi(f) = {(x, α) | f(x) ≤ α} ⊆ X × R.

Definition 2.1.10 (Proper function). Let f : X → [−∞,+∞]. Then dom f = {x ∈ X | f(x) <
+∞} and f is proper if dom f ̸= ∅ and f(x) > −∞,∀x ∈ X.

Theorem 2.1.11 (Jensen’s inequality). Let f : X → [−∞,+∞]. Then f is convex if and only if

x, y ∈ dom(f), λ ∈ (0, 1) =⇒ f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2.1)

Remark 2.1.12. If the inequality in (2.1) is strict, then the function f is called strictly convex.

Definition 2.1.13 (Lower semicontinuous). Let f : X → [−∞,+∞], and let x ∈ X. Then f is
lower semicontinuous, lsc , at x if

lim inf
xn→x

f(xn) ≥ f(x), for every sequence xn → x.

Remark 2.1.14. The following are well known properties of lower semicontinuity and lower semi-
continuous functions:

(1) f is lsc if f is lsc at every point in x.

(2) If f is continuous, then it is lsc .

(3) f is lsc if and only if epi(f) is closed.

Theorem 2.1.15. Let f : X →]−∞,+∞] be lsc and proper, and let ∅ ≠ C ⊆ X be compact such
that C ∩ dom f ̸= ∅. Then

(1) f is bounded below over C;

(2) f attains its minimum value over C.

Definition 2.1.16 (Subgradients). Let f : X →]−∞,+∞] be proper, and let x ∈ dom f , u ∈ X.
Then u is a subgradient of f at x if

f(y) ≥ f(x) + ⟨u, y − x⟩, for all y ∈ X.

The subdifferential of f at x is the set of all subgradients of f at x, i.e.,

∂f : X ⇒ X : x 7→ {u ∈ X | f(y) ≥ f(x) + ⟨u, y − x⟩}.

5

Definition 2.1.17 (Coercivity). Let f : X →]−∞,+∞]. Then f is coercive if

lim
∥x∥→+∞

f(x) = +∞.

2.1.3 Cones and Faces

We now define cones and faces with the intention of discussing the Moreau Decomposition in
Section 2.1.4, and the use of facial reduction in Section 2.3.4.

Definition 2.1.18 (Cone). Let K ⊆ X. Then K is a cone if for every k ∈ K and λ ≥ 0, we have
λk ∈ K.

In other words, a cone is a set that is nonnegative homogeneous. A cone K ⊆ X is a convex
cone if it satisfies the properties of a cone and convexity. We assume in the following definitions
that K ⊆ X is a cone.

Definition 2.1.19 (Pointed cone). A cone K is a pointed cone if it contains no line, i.e., if

x,−x ∈ K =⇒ x = 0.

Definition 2.1.20 (Proper cone). A cone K is a proper cone if K is convex, closed, pointed, and
has nonempty interior.

Proper cones can be used to describe generalized inequalities with a partial ordering in X.
In other words, let K be a proper cone, then the partial ordering on K, ⪰K , has the following
properties:

(1) ⪰K is reflexive: x ⪰K x.

(2) x ⪰K y =⇒ x− y ∈ K and x ≻K y =⇒ x− y ∈ intK.

(3) ⪰K is antisymmetric: x ⪰K y =⇒ x− y ∈ K and y ⪰K x =⇒ x = y.

(4) ⪰K is preserved under addition: if x ⪰K y and u ⪰K v, then x+ u ⪰K y + v.

(5) ⪰K is transitive: x ⪰K y and y ⪰K z implies x ⪰K z.

(6) ⪰K is preserved under nonnegative scaling: if x ⪰K y and α ≥ 0, then αx ⪰K αy.

We note that the above properties in items 4 and 5 hold for the strict partial ordering on K,
≻K , and ≻K is preserved under positive scaling. We note that in the case where K = R+, then
the partial ordering ⪰R+ is equivalent to the ordering ≥ in R.

Definition 2.1.21 (Dual cone). The dual cone of a cone K is the set

K∗ := {y ∈ X | ⟨x, y⟩ ≥ 0, ∀x ∈ K}.

If a cone is equal to its dual cone, K = K∗, then it is called a self-dual cone. Important examples
of proper self-dual cones are Rn

+ and Sn+.

6

Definition 2.1.22 (Polar cone). The polar cone of a cone K is the set

K◦ := {y ∈ X | ⟨x, y⟩ ≤ 0, ∀x ∈ K}.

Definition 2.1.23 (Normal cone). Let C be a nonempty convex subset of X and let x ∈ X. Then
the normal cone of C at x is

NC(x) =

{
u ∈ X | supc∈C⟨c− x, u⟩ ≤ 0 x ∈ C,

∅ x /∈ C.

We now discuss the decomposition of cones into faces for our discussion on facial reduction in
Section 2.3.4.

Definition 2.1.24 (Face). Let K be a convex cone. A convex cone F ⊆ K is called a face of K,
denoted F ⊴ K, if the following implication holds

x ∈ K, y ∈ K,x+ y ∈ F =⇒ x, y ∈ F.

A face F ⊴ K is a proper face if it is neither empty or all of K.

Definition 2.1.25 (Exposed face). Any set of the form F = v⊥ ∩K for some vector v ∈ K∗, is
called an exposed face of K. The vector v is called the exposing vector of F .

A convex cone K is called a facially exposed cone if all of its faces are exposed faces.

Definition 2.1.26 (Conjugate face). With any face F of a convex cone K, we denote the conjugate
face as F ◁ := K∗ ∩ F⊥.

We note that all x in the relative interior of F expose the conjugate face F ◁. Therefore, the
conjugate face is always an exposed face.

Definition 2.1.27 (Minimal face). The minimal face of a convex cone K containing a set S ⊆ K
is the intersection of all faces of K containing S. This is denoted as face(S,K).

2.1.4 Projections

Definition 2.1.28 (Distance function). Given a nonempty set C ⊆ X, the distance function to C,
dC(x), is defined by

dC(x) = inf
y∈C
∥x− y∥ .

Definition 2.1.29 (Projection). Let ∅ ̸= C ⊆ X, let x ∈ X and let p ∈ C. Then p is a projection
of x onto C if

dC(x) = ∥x− p∥ .

If every point in X has exactly one projection onto C, the projection operator onto C, denoted
by PC , is the operator that maps each point x ∈ C onto PCx.

7

Remark 2.1.30. Let C be nonempty closed convex subset of X. Then for every x ∈ X the
projection PCx exists and is unique.

Theorem 2.1.31 (Moreau Decomposition). Let K ⊆ X be a convex cone, and K◦ be the polar
cone of K. Then the following statements are equivalent:

(1) z = x+ y, x ∈ K, y ∈ K◦ and ⟨x, y⟩ = 0.

(2) x = PKz and y = PK◦z.

An interesting generalization of the Moreau Decomposition of polar cones to conjugate cones is
described as follows and can be found in [22].

Definition 2.1.32 (Conjugate Decomposition). Let K be a closed convex cone in Rn and A ∈
Rn×n. A point z ∈ Rn is said to have a conjugate decomposition with respect to K and A if there
exists x and y such that the following conditions hold:

(1) z = x+ y, x ∈ K, y ∈ KA := {s |xT (A+AT)s ≤ 0, ∀x ∈ K};

(2) xT (A+AT)y = 0.

The closed convex cone KA is called the conjugate cone.

For general A ∈ Rn×n and closed convex cone K, a conjugate decomposition of z does not
necessarily exist. We note that when A is the identity matrix, then the conjugate decomposition is
the Moreau Decomposition.

2.1.5 Unconstrained Optimization

For f : X →]−∞,+∞] and f is convex, the unconstrained convex optimization problem is

min
x

f(x).

We note that the minimizers of f are denoted as the set argmin f . Under the assumption that f
is a convex function the set of minimizers have the following property.

Theorem 2.1.33 (Fermat). Let f : X →]−∞,+∞] be proper. Then the minimizers of f are

argmin f = {x ∈ X | 0 ∈ ∂f(x)}.

Furthermore, since f is convex, the local minimizers are also global minimizers.

Proposition 2.1.34. If f is strictly convex, coercive, then there is a unique minimizer of f .

Definition 2.1.35 (Descent Direction). Consider the problem minx f(x) and f is convex. Then a
vector d ̸= 0 is called a descent direction at x if for some ε > 0 sufficiently small we have

f(x+ td) < f(x), for all 0 < t < ε.

8

The notion of a descent direction is important for algorithmic processes minimizing an objective
function. The outline of these processes can often be generalized to choosing a descent direction,
of which there are many, and an appropriate step length. There is an incredible amount of theory
for picking the descent direction and an appropriate step length. For missing results a reader may
refer to [9] and the references therein.

2.1.6 Constrained Optimization

We now study the following constrained optimization problem where we restrict the objective func-
tion f(x) to be a proper convex function, the inequality constraints gi(x) to be proper convex
functions, and the equality constraints hj(x) to be affine functions

minx f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p.
(2.2)

Since the domain of (2.2) is the intersection of convex sets, the feasible domain is convex by
Theorem 2.1.5. Therefore, we call the problem defined by (2.2) a convex optimization problem.
Furthermore, we assume the feasible domain of (2.2) is nonempty and denote it as C := dom f ∩⋂m

i=1 dom gi ∩
⋂p

j=1 domhj . Next we introduce the notion of a feasible descent direction. Recall
the definition of a descent direction,

f(x+ td) < f(x), ∀ 0 < t < ε.

Then we similarly define a feasible descent direction for (2.2).

Definition 2.1.36 (Feasible Descent Direction). Consider the convex problem with f : Ω → R,
∅ ≠ Ω ⊂ Rn a convex set, and

min f(x)
subject to x ∈ C.

A vector d ̸= 0 is called a feasible descent direction at x ∈ C if there exists ε > 0 such that
f(x+ εd) < f(x) and x+ td ∈ C for all t ∈ [0, ε].

We introduce the notion of Lagrange multipliers and duality with assumptions of convexity
on the objective function and the feasible domain. For the subsequent duality theory for convex
optimization we refer to [9]. We assume that the feasible domain of (2.2) is nonempty and denote
it as C := dom f ∩

⋂m
i=1 dom gi ∩

⋂p
j=1 domhj . We define (λ1, . . . , λm)× (µ1, . . . , µp) ∈ Rm × Rp

to be a vector of Lagrange multipliers or the dual variables if λi ≥ 0, ∀i ∈ {1, . . . ,m}. Then the
Lagrangian of (2.2) is the function L : Rn × Rm × Rp → R defined as follows

L(x, λ, µ) := f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x). (2.3)

We define the Lagrange dual function or dual functional g : Rm × Rp → R as the minimum
value of the Lagrangian over x for λ ∈ Rm, µ ∈ Rp

9

g(λ, µ) := inf
x∈C

L(x, λ, µ) = inf
x∈C

f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x)

 . (2.4)

The dual functional provides a lower bound on the optimal value p∗ of the problem (2.2) for every
feasible primal-dual pair (x̃, λ̃, µ̃), i.e.,

g(λ̃, µ̃) = inf
x∈C

L(x, λ̃, µ̃) ≤ L(x̃, λ̃, µ̃) ≤ f(x̃). (2.5)

The above inequality holds for every feasible primal-dual pair (x̃, λ̃, µ̃), but loses meaning when
g(λ̃, µ̃) = −∞. Therefore, we consider the dual variables feasible when λ̃ ≥ 0 and (λ̃, µ̃) ∈ dom g.
As mentioned previously, the inequality in (2.5) implies that for all feasible dual variables we have
g(λ̃, µ̃) ≤ f(x∗) = p∗. This notion is referred to as weak duality.

Since the dual functional provides a lower bound for p∗, it is natural to formulate an optimization
problem that finds the best lower bound, i.e.,

maxλ,µ g(λ, µ)
subject to λ ≥ 0.

(2.6)

The problem defined in (2.6) is called the Lagrangian dual problem of (2.2), and (2.2) is called
the primal problem. We refer to the optimal solution of (2.6), (λ∗, µ∗), as the dual optimal pair or
optimal Lagrange multipliers. The optimal value attained for (2.6) is denoted as d∗ and we note
that d∗ ≤ p∗. If d∗ = p∗, then we have a zero optimality gap. Furthermore, if the dual optimal value
is attainable, then we have dual attainment. If we have zero optimality gap and dual attainment,
then we say that strong duality holds.

In cases where d∗ ̸= p∗, we say we have an optimality gap of p∗ − d∗. Before discussing the
necessary conditions for strong duality to hold for convex optimization, we define the Slater point.

Definition 2.1.37 (Slater point). A point x̄ ∈ C of (2.2) is called a Slater point if

gi(x̄) < 0, ∀ i = {1, . . . ,m}.

The Slater point is also referred to as a strictly feasible point.

The conditions for strong duality to hold are dependent on the properties of (2.2). In the case
of linear programming, if the primal problem is feasible and has a finite optimal value, then strong
duality always holds. However, in convex optimization we require stronger conditions known as
constraint qualifications. An example of a constraint qualification for convex programming is the
existence of a Slater point, which is known as Slater’s condition.

Now that we have defined the Lagrangian, we define the KKT conditions.

Definition 2.1.38 (KKT Conditions). Let (x∗, λ∗, µ∗) be the optimal primal-dual pair for problem
(2.2). Assume that f, g1, . . . , gm, h1, . . . , hp are differentiable functions. Then the Karush-Kuhn-
Tucker, KKT, conditions are

10

∇f(x∗) +
∑m

i=1 λ
∗
i∇gi(x∗) +

∑p
j=1 µ

∗
j∇hj(x∗) = 0, (stationarity)

gi(x
∗) ≤ 0,

hj(x
∗) = 0,

}
(primal feasibility)

λ∗
i ≥ 0, (dual feasibility)

λ∗
i gi(x

∗) = 0. (complementary slackness)

(2.7)

Therefore, suppose that (2.2) is a convex optimization problem and there exists a Slater point
x̄ as described in Definition 2.1.37. Then the KKT conditions as described in Definition 2.1.38 are
both necessary and sufficient for guaranteeing the primal-dual pair (x∗, λ∗, µ∗) is optimal. In other
words, (x∗, λ∗, µ∗) is an optimal primal-dual solution for problems (2.2) and (2.6) with zero duality
gap and dual attainment if and only if (x∗, λ∗, µ∗) satisfies (2.7).

2.2 Nonsmooth Analysis Background

We now present some background knowledge on nonsmooth analysis. We introduce the generalized
gradient and generalized Jacobian in Section 2.2.1. These results are utilized in Chapter 3

2.2.1 Generalized Gradient

This section contains contents on nonsmooth analysis and generalized gradients from [14, Section
1, Section 2.1].

Definition 2.2.1 (Local Lipschitz continuity). Let f : Rn → R , and let x ∈ Rn. The function f
is said to be L-Lipschitz near x if there exists L > 0 and ε > 0 such that we have

|f(y)− f(x)| ≤ L ∥y − x∥ , ∀x, y ∈ B(x, ε).

Definition 2.2.2 (Generalized directional derivative). Let f : Rn → R be L-Lipschitz continuous
near x ∈ Rnand let d be a vector in Rn. Then for y ∈ Rn and t > 0, we define the generalized
directional derivative of f at x in the direction d, denoted f◦(x; d), as follows

f◦(x; d) = lim sup
y→x, t↓0

f(y + td)− f(y)

t
.

In general, a function can be Lipschitz continuous on its domain, but not differentiable. An
example of this is the function f(x) = |x|. We note that all future discussion of the generalized
directional derivative refers to the Clarke subdifferential or Clarke generalized derivative.

Corollary 2.2.3. Let f : Rn → R be L-Lipschitz continuous near x ∈ Rn, and let d ∈ Rn. Then

f(y + td)− f(y)

t
≤ L ∥d∥ .

11

Proof.
f(y + td)− f(y)

t
≤
∥∥∥∥f(y + td)− f(y)

t

∥∥∥∥
=
∥f(y + td)− f(y)∥

t

≤ L ∥y + td− y∥
t

=
tL ∥d∥

t
= L ∥d∥ .

Definition 2.2.4 (Generalized gradient). Let f : Rn → R be L-Lipschitz continuous near x ∈ Rn.
Then the generalized gradient of f at x is

∂◦f(x) := {z ∈ Rn | f◦(x; d) ≥ ⟨d, z⟩, ∀d ∈ Rn}.

The generalized gradient is a generalization of the gradient in the absence of smoothness; and
is a generalization of the subgradient in the absence of convexity.

Theorem 2.2.5 ([42, Rademacher’s therorem]). A locally Lipschitz function is differentiable almost
everywhere.

The following is another characterization of the generalized gradient defined in Definition 2.2.4
that takes advantage of locally Lipschitz functions that are differentiable almost everywhere.

Theorem 2.2.6. Let f : Rn → R be L-Lipschitz continuous near x ∈ Rn and Ωf be the set of
points where f fails to be locally Lipschitz, and suppose S ∈ Rn is any set of Lebesgue measure 0.
Then

∂◦f(x) = conv{lim∇f(xi) |xi → x, xi /∈ S, xi /∈ Ωf}.

In other words, ∂◦f(x) is the convex hull of all limit points of the form form lim∇f(xi), where
{xi} is any sequence which converges to x while avoiding S ∪ Ωf .

We now consider the vector valued function F : Rn → Rm. In other words, we express F
as the vector of component-wise functions, F := [f1(x), f2(x), . . . , fm(x)]. We assume that fi is
Lipschitz near x for all x ∈ Rn and for all i ∈ {1, . . . ,m}, and therefore F is by definition locally
Lipschitz. Thus, Rademacher’s theorem stipulates that all fi (and therefore F) are differentiable
almost everywhere on any neighborhood of x in which F is Lipschitz. We will denote the set of
points of which F fails to be differentiable as ΩF . We shall denote J(x) ∈ Rm×n as the Jacobian
of F whenever x is a point at which the necessary partial derivatives exist.

Definition 2.2.7 (Generalized Jacobian). The generalized Jacobian of F at x, denoted ∂◦F (x), is
the convex hull of all m×n matrices V obtained as the limit of a sequence of the form J(xi), where
xi → x and xi /∈ ΩF . In other words, we have

∂◦F (x) = conv(limJF (xi) |xi → x, xi /∈ ΩF).

Furthermore, we say that ∂◦F (x) is nonsingular if every V ∈ ∂◦F (x) is nonsingular.

12

2.3 Linear Programming

The purpose of this section is to present the necessary background knowledge of linear programming
that will be utilized in subsequent chapters of this thesis. The definitions and theorems referenced
in this section can be found in [7]. Readers that are familiar with the basics of linear programming
can skip this section. The contents of this section will not be be needed until Chapter 5. The
reader may want to revisit this section.

2.3.1 Extreme points and Basic Feasible Solutions

We start by formally defining a polyhedral set as an intersection of finitely many half-spaces and
hyperplanes.

Definition 2.3.1 (Polyhedron). A polyhedron is the set

P := {x ∈ Rn |Ax (≤,=,≥) b}, A ∈ Rm×n, b ∈ Rm.

The expression of the polyhedron above emphasizes that both inequality and equality constraints
are appropriate representations of polyhedra. When discussing the polyhedron P , we will always
assume A ∈ Rm×n, b ∈ Rm, and x ∈ Rn. Now that we have defined a polyhedral set, we provide
geometric definitions of a vertex and an extreme point.

Definition 2.3.2 (Vertex). Let P be a polyhedron. A point x ∈ P is a vertex of P if there exists
a vector c ∈ Rn such that cTx < cT y for all y satisfying y ∈ P and y ̸= x.

In other words, x is a vertex of P if and only if there exists a hyperplane, H= := {y | cT y = cTx},
such that the intersection of P and H= is x.

Definition 2.3.3 (Extreme Point). Let P be a polyhedron. A vector x ∈ P is an extreme point of
P if we cannot find two distinct vectors y, z ∈ P , both distinct from x, with scalar λ ∈ (0, 1) such
that

x = λy + (1− λ)z.

In other words, we cannot form a line segment from y to z that contains x.

The geometric definitions for vertices and extreme points are difficult to utilize algorithmically.
Intuitively, we want to provide an algebraic definition of an extreme point of a polyhedral set that
also lies in the nonnegative orthant. To do so, we need terminology about active sets.

Definition 2.3.4 (Active Constraint). If a vector x satisfies A(i,:)x = bi for some i ∈ {1, . . . ,m},
then we say the corresponding constraint is an active constraint.

If there are n constraints that are active at a vector x ∈ Rn, then x satisfies a system of n linear
equations in n variables. Therefore, this system of active constraints has a unique solution if and
only if the active constraints are linearly independent.

Theorem 2.3.5. Let x ∈ Rn and I = {i |A(i,:)x = bi} be the set of indices of the constraints that
are active at x. Then the following are equivalent:

13

1. There exists n vectors in in the set {A(i,:) | i ∈ I}, which are linearly independent.

2. The vectors A(i,:), i ∈ I, span Rn. In other words, every x̄ ∈ Rn can be expressed as a linear
combination of the vectors A(i,:).

3. The system of equations A(i,:)x = bi has a unique solution for all i ∈ I.

Therefore, as a consequence of Theorem 2.3.5, if there are at least n linearly independent active
constraints at a point x, then we can explicitly express x as the unique solution of AT

(i,:)x = bi. We
call this characterization of x a basic solution.

Definition 2.3.6 (Basic and basic feasible solution). Let P be a polyhedron, and let x ∈ Rn.

1. The vector x is a basic solution if at least n of the active constraints at x are linearly inde-
pendent.

2. If x is a basic solution that satisfies all of the constraints of P , we say it is a basic feasible
solution.

Theorem 2.3.7. Let P be a nonempty polyhedron and let x ∈ P . Then the following are equivalent:

1. x is a vertex of P .

2. x is an extreme point of P .

3. x is a basic feasible solution of P .

Definition 2.3.6 describes basic feasible solutions in the general polyhedral setting.

Now, we specialize to polyhedra in the standard equality form, P := {x ∈ Rn |Ax = b ∈ Rm},
and assume that the rows of A are linearly independent. Since the rows of A are in Rn, we will
assume that 0 < m ≤ n. We now define a linear program in standard equality form,

max cTx
subject to Ax = b

x ≥ 0.
(2.8)

Recall from our earlier discussion that there must be at least n active constraints. Since P is in
standard equality form, there are m equality constraints. Therefore, we have m active constraints
from Ax = b, and we must have n−m active nonnegativity constraints to obtain a basic solution.
In other words, there are at least n−m variables xi such that xi = 0, i ∈ {1, . . . , n}.

Theorem 2.3.8. Consider the constraints Ax = b and x ≥ 0 and assume that A ∈ Rm×n has
linearly independent rows. A vector x ∈ Rn is a basic solution if and only if Ax = b, and there
exists indices B := {B1, . . . , Bm} such that for all i ∈ B and j /∈ B we have:

(1) The columns Ai are linearly independent.

(2) If j /∈ B, then xj = 0.

We conclude the following from Definition 2.3.6 and Theorem 2.3.8. For i ∈ B and j /∈ B if the
columns Ai are linearly independent, xj = 0, and xi ≥ 0, then x is a basic feasible solution.

14

2.3.2 Degeneracy

Now that we have established what basic feasible solutions are, we can begin our discussion on
degeneracy, i.e., what happens when more than n constraints are active.

By Definition 2.3.6, we require n of the active constraints to be linearly independent. Therefore,
when degeneracy is present in the basic solution, the active set is not full rank. In this case, we
say we have a degenerate basic solution. When dealing with a linear program in standard equality
form as in (2.8), then we get the special case of a degenerate basic solution.

Definition 2.3.9 (Degenerate basic solution). Consider the standard form polyhedron P = {x ∈
Rn |Ax = b, x ≥ 0} and let x be a basic solution. The vector x is a degenerate basic solution if
more than n−m components of x are zero.

Furthermore, we say that x is a degenerate basic feasible solution if x ∈ Rn
+ and more than

n−m components of x are zero.

A notion of degeneracy that has been recently established in [26, 27] is that Definition 2.3.9
can be separated into two cases of degenerate basic feasible solutions depending on whether strict
feasibility fails or not. The first kind of degeneracy is observed when the linear program does not
have a Slater point. When strict feasibility fails in linear programming, then every basic feasible
solution is degenerate. We discuss this in more detail in Section 2.3.4.

2.3.3 Duality

We now describe duality in the linear programming setting with ideas from [7, Chapter 4] and
Section 2.1.6. We refer to (2.8) as the primal LP. The dual of (2.8) is derived from the dual
functional as discussed in (2.4). Therefore, we have the following dual LP

min bT y
subject to AT y ≥ c.

(2.9)

As discussed in Section 2.1.6, any feasible solution of the dual LP, (2.9), is a lower bound for
any feasible solution of the primal LP. Finally, we can guarantee strong duality holds without the
existence of a Slater point in the primal LP.

Theorem 2.3.10 (Strong duality in linear programming). Suppose that the optimal value p∗ for the
primal LP is finite. Then the optimal value for the dual is d∗, and we have d∗ = p∗. Furthermore,
both values for the primal LP and dual LP are attained.

2.3.4 Theorem of the Alternative

In this section, we examine the theorem of the alternative for the existence of a strictly feasible
point for the primal and dual LP. An example of a way to quantitatively measure the extent that
strict feasibility holds is by measuring the inconsistency of certain auxiliary systems with respect
to the primal and dual LP. This measurement provides an estimate of the problem’s stability. For

15

example, if a strictly feasible point does not exist in the primal LP, then for any tolerance ε one
can find a perturbation of ∥∆b∥ < ε such that the problem

max cTx
subject to Ax = b+∆b

x ≥ 0,

is infeasible.

The following results for linear programming can be found in [7, 19,50].

Theorem 2.3.11 (Separating hyperplane theorem). Let P and Q be nonempty convex sets such
that P ∩ Q = ∅, and either P or Q is compact. Then there exists a vector c ∈ Rn such that
sup{cTx |x ∈ P} < inf{cTx |x ∈ Q}.

We note that we are interested in a case of Theorem 2.3.11 where one set is a polyhedron, and
the other a cone. Therefore, when we consider one of the sets to be a closed convex cone, the
hyperplane separation theorem becomes the following theorem.

Theorem 2.3.12 (Homogeneous separation). Consider a nonempty closed convex set Q and a
closed convex cone K with nonempty interior. Then exactly one of the following holds

(1) The set Q intersects the interior of K.

(2) There exists a vector 0 ̸= v ∈ K∗ satisfying ⟨v, x⟩ ≤ 0 for all x ∈ Q.

Moreover, for any exposing vector v satisfying Item 2, the region Q ∩ K is contained in the
proper face v⊥ ∩ K.

We now discuss the main result of interest from Theorem 2.3.11 and Theorem 2.3.12, where the
cone we consider is K = Rn

+.

Theorem 2.3.13 (Theorem of the alternative for the primal). Consider the feasible polyhedron,
P = {x ∈ Rn |Ax = b, x ≥ 0}, for the primal LP. Then exactly one of the following holds

1. The primal LP is strictly feasible, i.e., P has a Slater point.

2. The auxiliary system is consistent:

0 ̸= AT y ≥ 0 and bT y ≤ 0. (2.10)

Assuming that the primal LP is feasible, then the auxiliary system in (2.10) is equivalent to

0 ̸= AT y ≥ 0 and bT y = 0. (2.11)

Therefore, any exposing vector v satisfying either of the systems, (2.10) and (2.11), yields a
proper face (AT y)⊥ ∩ Rn

+ containing P .

16

In Algorithm 2.1 we describe a pseudocode for generating a linear program that fails strict
feasibility in the primal LP problem. We note that we define the polyhedral constraints for the
primal LP problem as P := {x ∈ Rn |Ax = b, x ≥ 0}, and for the dual LP problem Q := {(y, z) ∈
Rm×n |AT y + z = c, z ≥ 0}. We then make the following assumptions: A ∈ Rm×n, A is full-row
rank, n− r is the dimension of the relative interior of P , and r < m < n. We take advantage of the
orthonormal columns of the QR decomposition to construct A1 such that AT

1 ŷ = 0, and construct
A2 such that AT

2 ŷ > 0. We note that the LP constructed by Algorithm 2.1 does not fail dual strict
feasibility by construction.

Algorithm 2.1 Generation of an LP where strict feasibility fails in the primal problem

Require: m,n, r ∈ Z, ŷ, y ∈ Rm, v̂ ∈ Rn−r
++ , z ∈ Rn

+, Â1 ∈ R(m−1)×(n−r), A2 ∈ Rm×r.
1: Output. A ∈ Rm×n, b ∈ Rm, c ∈ Rn

2: [Q,∼] = qr(ŷ)
3: Ã1 = Q(2:m)

4: A1 = Ã1Â1

5: inds = find(AT
2 ŷ = 0)

6: while length(inds) > 0 do
7: A2(:,inds) = randn(m,length(inds))
8: inds = find(AT

2 ŷ = 0)
9: end while

10: neginds = find(AT
2 ŷ < 0)

11: A2(:,neginds) = −A2(:,neginds)
12: A = [A1A2]

13: x̂ =

(
v̂
0r

)
14: b = Ax̂
15: c = AT y + z

There are two alterations that can be made to Algorithm 2.1. If it is desirable to know the
optimal solution for implementing warm-start strategies and guaranteeing dual strict feasibility,
then we need to find a basic feasible solution to the primal linear system P using Phase 1 simplex;
we will call this solution x̂. We then construct ẑ such that it satisfies strict complementarity with
x̂. It is then left to build c as we do in line 15 of Algorithm 2.1. Since we have constructed ẑ
such that strict complementarity is satisfied, we know the dual solution (y, ẑ) has exactly n active
constraints in Q. Therefore, by Theorem 3.1 and Corollary 3.6 of [27], we have guaranteed the
existence of a Slater point. It is important to note that if we want ẑ to be a degenerate optimal
dual solution, we simply include the desired degree of dual degeneracy and relax the condition that
ẑ needs to satisfy strict complementarity with x̂, but there is no guarantee of dual strict feasibility
by construction.

If we want to construct an LP that fails strict primal and strict dual feasibility simultaneously,
we can build ẑ such that it satisfies strict complementarity with x̂ as defined in line 13. We have
the following exposing vector d for the dual LP

0 ̸= d ∈ null

([
A
ẑT

])
. (2.12)

17

We will prove (2.12) in Remark 2.3.15 at the end of this section.

We now define the theorem of the alternative for the dual LP.

Theorem 2.3.14 (Theorem of the alternative for the dual). Consider the feasible polyhedron,
PD = {y ∈ Rm |AT y ≤ c}, for the dual LP. Then exactly one of the following holds

1. The dual LP is strictly feasible.

2. The auxiliary system is consistent:

0 ̸= x ≥ 0, Ax = 0, and cTx ≤ 0. (2.13)

Assuming that the dual LP is feasible, then the auxiliary system in (2.13) is equivalent to

0 ̸= x ≥ 0, Ax = 0, and cTx = 0. (2.14)

Therefore, any exposing vector x satisfying either of the systems, (2.13) and (2.14), yields a
proper face x⊥ ∩ Rn

+ containing PD.

In Algorithm 2.2 we describe a pseudocode for generating a linear program that fails strict
feasibility in the dual problem, and recall the definitions of P and Q. Then we make the following
assumptions: AT ∈ Rn×m, AT is full row rank, m − r is the dimension of the relative interior of
Q, and r < m < n. We take advantage of the orthonormal columns of the QR decomposition to
construct A such that Ax̂ = 0, and construct c such that cT x̂ = 0. We note that the LP constructed
by Algorithm 2.2 does not fail primal strict feasibility by construction.

Algorithm 2.2 Generation of an LP where strict feasibility fails in the dual problem

Require: m,n, r ∈ Z, x ∈ Rn
+, y ∈ Rm, û ∈ Rr

++, v̂ ∈ Rn−r
++ , Â ∈ Rm×n−1.

1: Output. A ∈ Rm×n, b ∈ Rm, c ∈ Rn

2: x̂ =

(
0n−r

û

)
3: [Q,∼] = qr(x̂)
4: Ã = Q(2:n)

5: A = ÂÃT

6: z =

(
û
0r

)
7: c = AT y + z
8: b = Ax

If it is desirable to know the optimal solution for implementing warm-start strategies and
guaranteeing primal strict feasibility, then we need to find a basic feasible solution to the dual
linear system Q using Phase 1 simplex; we will call this solution ẑ. We then construct x̂ such
that it satisfies strict complementarity with ẑ. It is then left to build b as we do in line 8 of
Algorithm 2.2. Since we have constructed x̂ such that strict complementarity is satisfied, we know
the primal solution x̂ has exactly n active constraints in P . Then similar to our discussion above,
by Theorem 3.1 and Corollary 3.6 of [27], we have guaranteed the existence of a Slater point. It

18

is important to note that if we want x̂ to be a degenerate optimal primal solution, we simply
include the desired degree of primal degeneracy and relax the condition that x̂ needs to satisfy
strict complementarity with ẑ, but there is no guarantee of primal strict feasibility by construction.

Remark 2.3.15. Consider an LP constructed by Algorithm 2.1 such that x̂ is defined in line 13,
ẑ satisfies strict complementarity with x̂, and c = AT y + ẑ. Then the exposing vector for the dual
LP is

0 ̸= d ∈ null

([
A
ẑT

])
.

Proof. Consider 0 ̸= d ∈ null

([
A
ẑT

])
and recall that d is an exposing vector of the dual LP if

it satisfies the auxiliary system (2.14) in Theorem 2.3.14. Then since d ∈ null

([
A
ẑT

])
, it is also

in the nullspace of A. Therefore, we have Ad = 0. It is left to show that cTd = 0. Recall that
c = AT y + ẑ. Then

cTd = (AT y + ẑ)Td
= yTAd+ ẑTd
= 0, by definition of d.

Thus, d satisfies the auxiliary system (2.14) in Theorem 2.3.14, and is therefore an exposing
vector of the dual LP.

2.4 Time Complexity

We now briefly define and describe the terminology on time complexity needed to discuss algorithmic
efficiency. The definitions referenced in this section can be found in [9, C.1] and [47]. The cost of
performing numerical linear algebra is usually expressed as the total number of flops or floating-point
operations required to perform the computation. In this thesis, we define a flop as one addition,
subtraction, multiplication, or division of two floating-point numbers. Therefore, to evaluate the
complexity of an algorithm, we count the total number of flops an algorithm performs and express it
as a function of the dimension of the vectors and matrices involved in the numerical linear algebra
computations. The most common expressions of flop counts as a function are polynomial and
exponential functions.

When discussing the efficiency of an algorithm from the perspective of flops and time complexity,
we will be using big-O notation.

Definition 2.4.1 (big-O notation). Let f and g be functions such that f, g : N → Rp. Then we
say that f(n) = O(g(n)) if there exists positive integers c and n0 such that for all n ≥ n0 we have

f(n) ≤ cg(n).

When f(n) = O(g(n)), we say that g(n) is an asymptotic upper bound for f(n).

19

In other words, if f(n) = O(g(n)), then f is less than or equal to g by a constant factor. To
better illustrate Definition 2.4.1 we provide an example of the relationship between total flops and
big-O notation from numerical linear algebra.

Example 2.4.2 (Matrix-vector multiplication). Let x ∈ Rn and A ∈ Rm×n. Then the matrix-
vector multiplication of Ax takes on the form

Ax =

A11x1 +A12x2 + · · ·+A1nxn
A21x1 +A22x2 + · · ·+A2nxn

...
Am1x1 +Am2x2 + · · ·+Amnxn

 .

We notice that A(1,:)x is an inner product of two vectors in Rn, and comprises of n multipli-
cations and n− 1 additions for a total of 2n− 1 flops. Therefore, the matrix-vector multiplication
of Ax takes m(2n − 1) = 2mn −m flops which is equivalent to O(mn) in big-O notation. This is
because 2mn−m ≤ 2mn ≤ cmn for c ≥ 2.

When the total flop count of an algorithm can be expressed or bounded above by a polynomial,
we consider that algorithm to be efficient. In other words, if f : N → Rp is a function of the number
of flops of an algorithm, and f(n) ≤ cg(n) where g is a polynomial, then we consider the algorithm
to be efficient. It is also common to call an algorithm that satisfies the conditions described as a
polynomial time algorithm or efficient algorithm.

20

Chapter 3

Solving the BAP with a Regularized
Nonsmooth Newton Method, RNNM

We now discuss the BAP and solving it in more detail. We start by explicitly defining the
constraint space and using the theory developed in Section 2.1 and Section 2.2 to take advantage
of our problem. Recall the BAP as defined in (1.1), then we define the BAP constrained to the
polyhedral set in standard form. Suppose we are given A ∈ Rm×n, A is full-row and no columns
of A are 0, b ∈ Rm, and v ∈ Rn. Then we define the projection onto the polyhedral set intersected
with the nonnegative cone as

x∗(v) := argminx
1
2 ∥x− v∥2

subject to Ax = b
x ∈ Rn

+.

(3.1)

In other words, x∗(v) is the unique optimal solution of (3.1), and p∗(v) := 1
2 ∥x

∗(v)− v∥2 is the
optimal value. In Section 3.1 we discuss the theory necessary to take advantage of the polyhedral
structure of (3.1). These results are from [12] and motivate the use of nonsmooth newton methods
to solve the BAP with polyhedral constraints.

In Section 3.1 we develop the theory of the BAP that can be taken advantage of using a
Moreau decomposition. In Section 3.2 we examine the properties of the Gauss-Newton descent
direction, and how we can use them to derive the descent properties of certain modified Levenberg-
Marquardt regularizations of the Jacobian. In Section 3.3 we derive the Jacobian of our nonsmooth
Newton direction and use an optimal diagonal scaling that provides the generalized Jacobian matrix,
V ∈ ∂F (y) with the smallest ω condition number. In Section 3.4 we provide the theory needed to
produce a known optimal solution of the BAP for our numerical testing. In Section 3.5 we derive
the Moreau decomposition for the case when (3.1) includes free variables in the set of decision
variables.

3.1 Basic theory of the BAP

We now discuss some theory of (3.1) which can be used to motivate the use of generalized Newton
methods. First, we assume that the problem in (3.1) has a nonempty feasible set with a Slater
point, i.e.,

21

P := {x ∈ Rn
+ |Ax = b} ≠ ∅ and ∃x ∈ Rn

++ ∩ P.

By assuming the above, we can conclude that the objective function of (3.1) is strictly convex,
coercive, and has a nonempty domain. Therefore, by Proposition 2.1.34 the optimal solution is
uniquely attained, and the optimal value finite. Furthermore, the constraint set is nonempty,
closed, and convex. Therefore, strong duality holds. Throughout the rest of this chapter, we will
refer to the functions F (y) and f(y) as follows

F (y) := A(v +AT y)+ − b, f(y) :=
1

2
∥F (y)∥2 . (3.2)

Theorem 3.1.1. Consider the generalized simplex best approximation problem (3.1) with optimal
solution and primal optimal value x∗(v) and p∗(v), respectively. Then the following hold:

(1) The optimal solution x∗(v) exists and is unique. Moreover, strong duality holds and the dual
problem of (3.1) is the maximization of the dual functional, ϕ(y, z):

p∗(v) = d∗(v) := max
z∈Rn

+
y∈Rm

ϕ(y, z) := −1

2

∥∥z +AT y
∥∥2 + yT (Av − b)− zT v.

(2) Let y ∈ Rm. Then

F (y) = 0 ⇐⇒ y ∈ argmin
u

f(u) and x∗(v) = (v +AT y)+. (3.3)

Proof. Recall the definition of the Lagrangian in (2.3), then the Lagrangian for (3.1) is

L(x, y, z) :=
1

2
∥x− v∥2 + yT (b−Ax)− zTx.

(1) Since the solution of (3.1) is a projection onto a nonempty closed convex set, then the optimal
solution exists and is unique by Remark 2.1.30. Furthermore, strong duality holds as the duality
gap is zero and the dual is attained.

We then find the stationary point of the Lagrangian to be

∇xL(x, y, z) = 0 ⇐⇒ x− v +AT y − z = 0 ⇐⇒ x = v +AT y − z.

Therefore, at its stationary point the Lagrangian is

L(x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Therefore, the best lower bound of the dual functional, g(y, z), is

22

d∗ = maxy∈Rm,z∈Rn
+
minx∈Rn

+
L(x, y, z) (= 1

2 ∥x− v∥2 + yT (b−Ax)− zTx)

= maxx∈Rn
+,y∈Rm,z∈Rn

+
{L(x, y, z) | ∇xL(x, y, z) = 0}

= maxx∈Rn
+,y∈Rm,z∈Rn

+
{L(x, y, z) |x = v +AT y + z}

= maxy∈Rm,z∈Rn
+

−1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Moreover, p∗ := p∗(v) = d∗ := d∗(v), and the dual value is attained.

(2) For sufficiency, we examine the KKT optimality conditions for the primal-dual variables (x, y, z)

∇xL(x, y, z) = x− v −AT y − z = 0, z ∈ Rn
+ (dual feasibility)

∇yL(x, y, z) = Ax− b = 0, x ∈ Rn
+, , (primal feasibility)

∇zL(x, y, z) ≡ x ∈ (Rn
+ − z)◦. (complementary slackness)

The above KKT conditions can be rewritten as the following:x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x, z ∈ Rn
+, y ∈ Rm. (3.4)

It follows from the dual feasibility condition that x−v−AT y−z = 0 ⇐⇒ v+AT y = x+(−z).
Consider this equality with the complementary slackness condition, then we have

xT z = 0, x, z ∈ Rn
+, −z ∈ Rn

− = (Rn
+)

◦,

and we learn that x− z forms the Moreau decomposition of v +AT y. That is,

x = (v +AT y)+ and − z = (v +AT y)− ⇐⇒ z = −(v +AT y)−.

Substituting x = (v+AT y)+ into (3.4) we obtain the following simplification of the optimality
conditions

x = (v+AT y)+ and A(v+AT y)+ = b =⇒ z = −(v+AT y)−, x
T z = 0, x, z ∈ Rn

+, x−v−AT y−z = 0.

Equivalently, F (y) = 0 for some y ∈ Rm.

For necessity, let y ∈ Rm be given and suppose that F (y) = 0. Let x̄ = (v + AT y)+, i.e., x̄ is
primal feasible. Let z̄ = −(v+AT y)−. Then we get nonnegative feasibility for the dual variable
z̄ and complementary slackness. In other words, we have z̄ ≥ 0 and x̄T z̄ = 0. Then from the
Moreau decomposition we have the following equation

(v +AT y) = x̄− z̄ ⇐⇒ x̄− v −AT y − z̄ = 0.

In other words, dual feasibility holds. Thus the KKT conditions are satisfied and we have
proven necessity. The KKT conditions now imply that x̄(v) is optimal. Moreover, F (y) = 0
implies that y ∈ argminu f(u). Therefore, y solves the nonlinear least squares problem.

23

3.2 Nonlinear Least Squares

The BAP as described in (3.1) is equivalent to the minimization of f(y) as defined in (3.2). In
other words, it is equivalent to solving a nonlinear least squares problem where the projection is
the source of nonlinearity.

This system can be recharacterized by introducing the potentially nonsmooth projection of a
vector x onto the nonnegative, respectively nonpositive, orthant, i.e., x+ and x− respectively. Note
that in the differentiable case, the gradient of the squared residual f(y) in (3.2) is

∇f(y) = J(y)TF (y),

where J(y) is the Jacobian matrix. We note that we have differentiability of the function P+(w) :=
w+ if and only if {i |wi = 0} = ∅. This is equivalent to saying w − w+ is in the relative interior of
the normal cone of Rn

+ at w+, see [44, Page 7], [20].

In the differentiable case, the Gauss-Newton direction is the solution of the (consistent) Gauss-
Newton equation and can be found in [40]

J(y)TJ(y)∆y = −J(y)TF (y). (3.5)

Recall that A† denotes the Moore-Penrose inverse of A, then solving for the best least squares
solution ∆y in (3.5) yields

∆y = −J(y)†F (y).

Therefore, the directional derivative of f in the direction ∆y satisfies the following inequality

∆yT∇f(y) = (J(y)†F (y))T (−(J(y)TF (y)))

= −
∥∥∥Prange(J(y)T)F (y)

∥∥∥2 , where P is the orthogonal projection

< 0, if F (y) /∈ null(J(y)T).

(3.6)

We conclude in the differentiable case that the Gauss-Newton direction ∆y is a descent direction
when F (y) ̸= 0. The Levenberg-Marquardt, LM , method is a popular and cheap way to handle the
singularity of J(y). To perform the LM regularization we do the following substitution for λ > 0

J(y)TJ(y)← J(y)TJ(y) + λI.

We can see that we maintain a descent direction with a similar approach if the assumption in
(3.7) holds. Furthermore, this approach avoids the product J(y)TJ(y). By avoiding the product
J(y)TJ(y), we do not unnecessarily introduce ill-conditioning nor do we lose sparsity.

Lemma 3.2.1. Consider the nonlinear least squares problem in (3.2). Let y ∈ Rm, with F differ-
entiable at y. Let λ > 0 and let ∆y be the unique solution of

(J(y) + λI)∆y = −F (y).

24

Then J(y) is positive semidefinite, and ∆y is the simplified LM direction and is a descent
direction if and only if

F (y) ̸= 0. (3.7)

Proof. By the feasibility and full-row rank assumptions for (3.1), we conclude that 0 = miny f(y)
and that the assumption satisfies

F (y) ̸= 0 ⇐⇒ JF (y) ̸= 0. (3.8)

We observe that for our application, J is symmetric positive semidefinite from (3.11) and (3.12).
Let J = UDUT denote the orthogonal spectral decomposition. The simplified regularization of
LM uses (J + λI)∆y = −F . Therefore, we get

∆y = −(J + λI)−1F = −U(D + λI)−1UTF.

Therefore, the directional derivative of f at y in the direction of ∆y is

∆yT∇f(y) = −
(
U(D + λI)−1UTF

)T
(UDUTF)

= −(UTF)T (D + λI)−1D(UT f)

= −(UTF)TD
1
2 (D + λI)−1D

1
2 (UTF)

= −(D
1
2 (UTF))T (D + λI)−1D

1
2 (UTF)

< 0 ⇐⇒ (D
1
2UT)F ̸= 0.

By (3.8), the latter is not zero if and only if (3.7) holds. This completes the proof.

3.3 Well Conditioned Generalized Jacobian

Recall that earlier we denoted the orthogonal projection operator onto the nonnegative orthant as
P+w = w+. Further recall the optimal conditions derived in (3.4). Then we can make the following
observation on where the projection is differentiable

Aw+ = A(P+w) = (AP+)w+ = (AP+)(P+w) =
∑
wi>0

wiAi.

Therefore, the columns of A correspond to the positive variables of w at points where the projection
is differentiable. We note that

v +AT y > 0 =⇒ J(∆y) = AIAT∆y = AAT∆y. (3.9)

We now define the following 3 index sets, I+, I0, I−, respectively

I+,0,− := I+,0,−(y) = {i | (v +AT y)(>,=, <) 0}.

Then for ∆y > 0 we have

25

F (y +∆y)− F (y) = A(v +AT (y +∆y))+ −A(v +AT y)+
=

∑
i∈I+(y+∆y)(v +AT (y +∆y))iAi −

∑
i∈I+(y)(v +AT y)iAi

=
∑

i∈I+(y)(v +AT (y +∆y))iAi +
∑

i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

+
∑

i∈I+(y+∆y)∩I−(y)(v +AT (y +∆y))iAi −
∑

i∈I+(y)(v +AT y)iAi.

(3.10)
In other words, from (3.10) we have three cases when separating the summation, all involving
whether i ∈ I+(y), i ∈ I0(y), or i ∈ I−(y). Therefore, we choose sufficiently small ∆y > 0 such
that for i ∈ I−(y), then i ∈ I0(y + ∆y) ∩ I−(y). With sufficiently small ∆y, (3.10) simplifies
as
∑

i∈I0(y+∆y)∩I−(y)(v + AT (y + ∆y))iAi = 0. Therefore, using the results from (3.9) and the
definition of I+,0,− we have

F (y +∆y)− F (y) =
∑

i∈I+(y)(v +AT (y +∆y))iAi +
∑

i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

−
∑

i∈I+(y)(v +AT y)iAi

=
∑

i∈I+(y)(A
T (∆y))iAi +

∑
i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)(A

T∆y)iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)AiA

T
i ∆y.

Then, the first summation is over the fixed index set I+(y), while the second summation is de-
pendent on (AT∆y) > 0. Suppose that AT

I0∆y = ei is consistent for each i ∈ I0. Then we can
choose whether or not to add the corresponding column i to the generalized Jacobian. In other
words, we only need a maximal linearly independent subset of the columns of AI0 . Let Ī0 ⊆ I0 be
a maximum linearly independent subset.

We consider the subgradient that follows [25] with the change being we use a maximum linearly
independent subset of I0 which we compute using a QR decomposition as done in the MATLAB
code licols 1

U(y) :=

u ∈ Rn |ui ∈

{1}, if i ∈ I+,
[0, 1] , if i ∈ Ī0,
{0}, if i ∈ I− ∪ (I0\Ī0).

 . (3.11)

Then the generalized Jacobian of the nonlinear system at y ∈ Rm is given by the set

∂F (y) = {A Diag(u)AT |u ∈ U(y)}. (3.12)

Let y0 ∈ Rm, then the nonsmooth Newton method for solving F (y) = 0 consists of the following
iterative process

yk+1 = yk − V −1
k F (yk), Vk ∈ ∂F (yk), (3.13)

1The code for licols can be found at https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-
linearly-independent-subset-of-matrix-columns and was submitted by the user Matt J

26

https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns
https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns
https://www.mathworks.com/matlabcentral/fileexchange/77437-extract-linearly-independent-subset-of-matrix-columns

where Vk is a generalized Jacobian matrix taken from the generalized Jacobian ∂F (yk). We note
that defining M = Diag(u) with u ∈ U(y) gives us

AMAT =
∑

i∈I+∪Ī0

uiAiA
T
i , ui = 1 for i ∈ I+, ui ∈ [0, 1] for i ∈ Ī0. (3.14)

We note that for positive diagonalM , and a rectangular matrixB, the ranks ofB, BM, (BM)(BM)T

are all the same.

Remark 3.3.1. Since we have freedom in choosing the values ui ∈ [0, 1] for i ∈ Ī0, we follow the
optimal diagonal scaling in [16, Prop. 2.1(v)], [28, Thm. 5.2] to minimize the ω condition number,
as defined in [15]. We then choose the generalized Jacobian by setting

ui = min{1, 1/∥Ai∥2}, ∀i ∈ Ī0.

Therefore, the generalized Jacobian matrix we choose is nonsingular if and only if AI+∪I0 is full
rank m. Moreover, for large problems we expect ∥Ai∥ > 1, and therefore ui < 1. This goes against
the intuitive choice of making ui as large as possible, or in this case equal to one. Note that all
elements of ∂F (y) are invertible if and only if AI+ is invertible. Furthermore, there exists an
invertible element if and only if AI+∪I0 is full rank m.

We finish this section with the addition of the pseudocode for the regularized nonsmooth New-
ton method, RNNM, in Algorithm 3.1. We also include the pseudocode for RNNM when the
linear system is solved inexactly in Algorithm A.1. We note that RNNM is a part of a class of
semismooth Newton algorithms. However, since we do not use any semismooth theory when de-
veloping RNNM we have opted to omit semismooth theory from our discussion. For the missing
results on semismooth Newton methods see [21,41] and the references therein.

Algorithm 3.1 BAP of v for constraints Ax = b, x ≥ 0; exact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. Primal-dual opt.: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ AiA

T
i +

∑
i∈Ī0

1
∥Ai∥2AiA

T
i

5: λ = min(1e−3, stopcrit)
6: V̄ = (Vk + λIm)
7: solve pos. def. system V̄ d = −Fk for Newton direction d
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while

27

3.4 Vertices and Dual Cones

In the numerical tests in Chapter 4 we can decide on the characteristics of the optimal solution using
the properties of vertices of a polyhedron P . Recall the definition of a vertex from Definition 2.3.2,
and of the dual cone Definition 2.1.21. Then we have the following characterizations with respect
to the index sets I+, I0, I−.

Lemma 3.4.1 (Vertex and dual cone). Suppose that x(y) = (v+AT y)+ ∈ P , where y ∈ Rm. Then
the following are equivalent:

(1) x(y) is a vertex of P .

(2) AI+(y) is full column rank.

(3)

[
AI+ AI0∪I−
0 II0∪I−

]
is full column rank n.

Moreover:

(a) the corresponding generalized Jacobian in (3.14) and Remark 3.3.1, is nonsingular if x(y) is a
nondegenerate vertex.

(b) the dual cone of the feasible set P at x = x(y) is

(P − x)◦ = {w |w = ATu+ z, u ∈ Rm, z ∈ Rn
+, x

T z = 0}. (3.15)

Proof. Without loss of generality we can permute the columns of A and corresponding components
of x and have A =

[
AI+ AI0 AI−

]
. We know from Theorem 2.3.7 that a vertex is equivalently

an extreme point and a basic feasible solution. Therefore, x(y) is a vertex if and only if AI+ is a
valid basis matrix if and only if the active set being full rank n. Then the active set of constraints
is

[
AI+ AI0∪I−
0 II0∪I−

]
x =

(
b
0

)
. (3.16)

This has the unique solution x(y) if and only if AI+ is full column rank. This shows the three
equivalences items 1 to 3, as well as the nonsingularity of the generalized Jacobian that we choose
as claimed in item a.

From the optimality conditions we have that the gradient of the objective satisfies

x− v = AT y +
∑

j∈I0∪I−

zjej ,

where ej is the j-th unit vector. Furthermore, we know that x − v is in the dual cone at x if
and only if x is optimal. Therefore, this yields the description of the polar cone at x as claimed
in item b.

28

Remark 3.4.2 (Degeneracy of optimal solutions). Let x be a boundary point of P . Then the polar
cone of P at x is given in (3.15). Moreover, x is the optimal solution of (3.1) if, and only if,
x− v ∈ (P − x)◦. In other words, we can choose v such that

v = x−ATu− z, z ≥ 0, zTx = 0.

Furthermore, we can choose z such that x + z > 0 and have no degeneracy, or we can choose
zi = 0, i ∈ {1, . . . , n} and increase the degeneracy. For these choices we still get x optimal. As
mentioned above, it is shown in [20] that

x∗(v) is differentiable at v̄ ⇐⇒ (x∗(v̄)− v̄) ∈ relint(P − x∗(v̄))◦,

This justifies our use of the Levenberg-Marquardt regularization.

3.5 Projection and Free variables

We now consider the application where some of the variables in the BAP are free.

3.5.1 Projection with Free Variables

Consider the following problem where some of the variables are free

(P)

x(v) := argminx1,x2

1
2 ∥x− v∥2 , x =

(
x1
x2

)
, v =

(
v1
v2

)
,

subject to Ax = b ∈ Rm

x1 ∈ Rn1
+ , x2 ∈ Rn2 ,

optimal value: p∗f (v) = 1
2 ∥x(v)− v∥2 ,

(3.17)

Theorem 3.5.1. Consider the BAP with free variables (3.17) and assume the feasible set is
nonempty. Then the optimum x(v) exists and is unique. Moreover, let

Ff (y) := A

((
(v +AT y)1

)
+

(v +AT y)2

)
− b, ff (y) =

1

2
∥Ff (y)∥2. (3.18)

Then Ff (y) = 0 ⇐⇒ y ∈ argmin ff (y), and

x(v) =

((
(v +AT y)1

)
+

(v +AT y)2

)
, for any root Ff (y) = 0. (3.19)

Let the primal optimal value be denoted by p∗f (v) =
1
2∥x(v) − v∥2. Then strong duality holds and

the dual problem is the following maximization problem:

29

p∗f (v) = d∗f (v) := max
z1∈Rn1

+ ,y∈Rm
ϕf (y, z1) := −

1

2

∥∥∥∥(z10
)
−AT y

∥∥∥∥2 + yT (Av − b)− zT1 v1.

Proof. To prove Theorem 3.5.1, we modify the proof of Theorem 3.1.1. Therefore, we consider the
Lagrangian, Lf (x, y, z), for (3.17)

Lf (x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zT1 x1, ∇xLf (x, y, z) = x− v −AT y −

(
z1
0

)
. (3.20)

We see that solving for a stationary point gives us the following

∇xLf (x, y, z) = 0 =⇒ x− v −AT y − z = 0, z =

(
z1
0

)
.

Therefore, we have x = v + AT y + z at its stationary point and the definition of z given above.
Evaluating the Lagrangian at its stationary point gives us the following

Lf (x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Similar to Theorem 3.1.1, since the solution of (3.17) is a projection onto a nonempty closed
convex set, the optimum exists and is unique by Remark 2.1.30. Therefore, strong duality holds as
the duality gap is zero and the dual is attained. Thus, the Lagrangian dual is

d∗ = maxz1∈R
n1
+ ,y minx1∈R

n1
+ ,x2

Lf (x, y, z) =
1
2 ∥x− v∥2 + yT (b−Ax)− zT1 x1

= maxz1∈R
n1
+ ,y,x1∈R

n1
+ ,x2

{Lf (x, y, z1) | ∇xLf (x, y, z1) = 0}
= maxz1∈R

n1
+ ,y,x1∈R

n1
+ ,x2

{Lf (x, y, z) |x = v +AT y + z}
= maxz1∈R

n1
+ ,y −1

2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Therefore, we derive the KKT optimality conditions for the primal dual variables (x, y, z) with

z =

(
z1
0

)
, x1 ≥ 0, z1 ≥ 0, as follows

∇xLf (x, y, z) = x− v −AT y − z = 0, (dual feasibility)
∇yLf (x, y, z) = Ax− b = 0, (primal feasibility)
∇zLf (x, y, z) ∼= x ∈ (Rn

+ − z)◦. (complementary slackness zT1 x1 = 0)

The standard KKT optimality conditions for primal-dual variables (x, y, z) can be rewritten as:

30

x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x1, z1 ∈ Rn1
+ , y ∈ Rm, z =

(
z1
0

)
.

Note v + AT y = x − z = x + (−z). Therefore, since z1 ≥ 0 and z =

(
z1
0

)
implies z ∈ Rn

+, this is

a Moreau decomposition of v + AT y, with xT z = 0, x, z ∈ Rn
+, x = (v + AT y)+. Therefore, we get

A(v+AT y)+f
= b, where the definition of +f

is a modification of + such that we project only the first

part corresponding to x1 onto the nonnegative orthant Rn1
+ , it follows that z1 = −

(
(v +AT y)1

)
−.

Then the optimality conditions

A

((
(v +AT y)1

)
+f

(v +AT y)2

)
= b, x1 =

(
(v +AT y)1

)
+
, x2 = (v +AT y)2

imply that
z = −(v +AT y)−, z

Tx = 0, x, z ∈ Rn
+ , x− v −AT y − z = 0.

In other words, Ff (y) = 0 for some y ∈ Rm.

Recall that for a basic feasible solution we need n active constraints. The equality constraints
Ax = b account for m active constraints, leaving n −m constraints needing to be active. These
n−m constraints will be from the indices 1, 2, . . . , n1, i.e., referring to the constrained variables in
x1. We now determine how many basic variables there will be in (3.17)

m1 = n1 − (n−m) = m− (n− n1) = m− n2 =⇒ m1 = m− n2, basic variables.

31

Chapter 4

Numerics for Best Approximation
Problem

We now compare the Regularized Nonsmooth Newton Method, (RNNM), with the Halpern-Lions-
Wittmann-Bauschke, (HLWB) [2], as described in Section 4.1, MATLAB’s lsqlin interior point
solver, and the quadratic programming proximal augmented Lagrangian method, (QPPAL) [35],
as described in Section 4.2. When making these comparisons, we will be using exact and inexact
methods for solving a system of linear equations.

We show in our experiments that RNNM (exact) significantly outperforms the other methods.
These experiments are performed with an i7-4930k @ 3.2GHz, and 16 GBs of RAM. The software
used is MATLAB 2022b and Mosek 9.1.9.

4.1 The Halpern-Lions-Wittmann-Bauschke method, HLWB

We explicitly define the projection operator as in Definition 2.1.29 with respect to the polyhedral
set Q := {x ∈ Rn |Ax ≤ b} with A ∈ Rm×n and b ∈ Rm. We note that Q can also be equivalently
described as an intersection of half-spaces. We denote PQ(v) to be the orthogonal projection of
v onto the polyhedral set Q. As this does not have an explicit representation for an intersection
of half-spaces larger than 2 (see [5]), we examine the orthogonal projection onto each individual
half-space.

Pi(v) = v +min

{
0,

bi −A(i,:)x∥∥A(i,:)

∥∥2
}
A(i,:). (4.1)

Since there are convex sets C that do not have explicitly defined projection operators, such as
Q, the invention of methods that use projection operators of a subset of C to project a point v
onto C is a growing field of interest. The methods that employ projection operators such as (4.1)
are called projection methods. The HLWB method for linear inequalities is a projection method
that uses projection operators for individual half-spaces of Q. More specifically, it iteratively takes
a convex combination of the projection operator Pi(v) and the point v (often referred to as the
anchor point) using a sequence of parameters. We now provide the properties that this sequence
of parameters requires.

32

Definition 4.1.1 (steering sequence). A sequence (σk)
∞
k=0 is called a steering sequence if it has the

following properties:

σk ∈ [0, 1] for all k ≥ 0, and lim
k→∞

σk = 0,∑∞
k=0 σk =∞, (or equivalently,

∏∞
k=0(1− σk) = 0) ,∑∞

k=0 |σk+1 − σk| <∞.

(4.2)

The third property in (4.2) was introduced by Wittmann, see [36].

For solving problem (3.1), we provide the pseudocode in Algorithm A.2 that uses the projection
operator as defined in (4.1). The following is a generalized version of the HLWB algorithm with
respect to linear inequalities.

Algorithm 4.1 Cyclic HLWB algorithm for linear inequalities

Initialization: Choose an arbitrary initialization point x0 ∈ Rn

Iterative Step: Given the current iterate xk, calculate the next iterate xk+1 by

xk+1 = σkv + (1− σk)Pik(xk), (4.3)

where v is the given anchor point, ik = k mod m, Pik is the projection operator for the ik-th
hyperplane as defined in (4.1), and (σk)

∞
k=0 is a steering sequence.

We note that the HLWB algorithm has a much broader formulation that applies to the BAP
with respect to the common fixed points set of a family of firmly nonexpansive (FNE) operators
presented in Bauschke [2] and [4, Chap. 30]. For more details on the BAP see [17] and the
references therein.

The family of iterative projection methods for the BAP includes but is not limited to the
HLWB method, Dykstra’s algorithm (see [10] and [4, Theorem 30.7]), Haugazeau’s algorithm
(see [23] and [4, Corollary 30.15]), and Hildreth’s algorithm [24, 32]. There are also simultaneous
versions of some of these algorithms available, see, e.g., [11]. A string-averaging HLWB algorithm,
which encompasses the sequential, the simultaneous and other variants of the HLWB algorithm,
recently appeared in [13].

4.1.1 Time Complexity of RNNM and HLWB

We now discuss theoretical time complexity differences of RNNM andHLWB . From theRNNM
algorithm, Algorithm 3.1, we can see that the worst-case time complexity per iteration is O(m3 +
m2n) flops 1, of which every step but solving the linear system is efficiently parallelizable. We note
that in line 7 of Algorithm 3.1, the linear system we are solving is positive definite and sparse.
Therefore, the linear system can be solved efficiently using the Cholesky decomposition. From the
HLWB algorithm, Algorithm A.2, we can see that worst-case time complexity per iteration is
O(mn) and per sweep is O(m2n), of which every step is efficiently parallelizable. 2

1See Algorithm 3.1 lines 4-12, the total time complexity respectively is: m2n +m2 +m3 + n + 2n +mn + 2n +
mn+ n+m+ 1 = m2n+m3 +m2 + 2mn+ 5n+m+ 1 = O(m3 +m2n).

2See Algorithm A.2 lines 5-12; the total time complexity respectively per iteration that projects onto a half space is
(2n+2)+1+(n+2)+(mn+m+1) = mn+3n+m+6 = O(mn) flops. Similarly, the total time complexity respectively
per iteration that projects onto the nonnegative orthant is: n+1+(n+2)+(mn+m+1) = mn+2n+m+4 = O(mn)

33

From the perspective of theoretical time complexity it would be easy to assume that as a
first-order method, HLWB is the preferable algorithm. This is because each of its iterations
are composed of operations that are completely parallelizable and each first-order sweep has an
overall lower worst-case time-complexity. However, without performing numerical tests with varying
parameters m and n, we cannot yet conclude how a first-order method compares to a second-order
method in terms of desired performance, especially as m and n get extremely large as observed in
practice.

4.2 Quadratic Programming Proximal Augmented Lagrangian method,
QPPAL

We now discuss the QPPAL algorithm. QPPAL is a sophisticated algorithm that employs the use
of first and second-order methods. Designed for solving large-scale convex quadratic programming
problems, its use of semismooth Newton methods for solving the augmented Lagrangian subproblem
makes it an appropriate candidate for comparison in our numerical testing.

To provide more context on how QPPAL is solving the BAP, we introduce the general
quadratic programming problem in Euclidean space:

minx
1
2x

TQx+ cTx
subject to:

Ax = b,
x ∈ C,

(4.4)

where C := {x ∈ Rn | l ≤ x ≤ u}. The vectors l and u are variable bounds that are given and satisfy
−∞ ≤ l ≤ u ≤ +∞. Further assumptions placed on the use of QPPAL is that a Slater point exists.
Since the constraints are linear and the objective in (4.4) is a convex quadratic function, we know
strong duality holds and we can therefore discuss the dual of (4.4). We use the restricted-Wolfe
dual from [33] of (4.4) as the following maximization problem

maxw,y,z −δ∗C(−z)−
1
2w

TQw + bT y
subject to:

z −Qw +AT y = c,
w ∈ range(Q),

(4.5)

where δC(·) denotes the indicator function of C and δ∗C(·) is its convex conjugate function. For our
applications, Q is positive definite (nonsingular), so the last constraint is redundant and is ignored.

Now that we have defined (4.4) and its dual (4.5), we elaborate on the augmented Lagrangian
method and how QPPAL approaches this problem. The philosophy of QPPAL is to implement
the augmented Lagrangian method on the dual problem, (4.5). Doing so and reformulating (4.5)
as a minimization problem yields the following augmented Lagrangian with a barrier term ρ > 0

Lρ(w, y, z;x) = δ∗C(−z) +
1

2
wTQw − bT y +

ρ

2

∥∥∥∥z −Qw +AT y − c+
1

ρ
x

∥∥∥∥2 − 1

2ρ
∥x∥2 . (4.6)

flops of which all flops are efficiently parallelizable. Therefore, in terms of sweeps the HLWB method computes
m(mn+ 3n+m+ 6) +mn+ 2n+m+ 4 = m2n+ 4mn+m2 + 2n+ 7m+ 4 = O(m2n) flops.

34

The augmented Lagrangian method performs the following iterative steps on (4.6)

(wk+1, yk+1, zk+1) = argmin(w,y,z) Lρ(w, y, z;x
k),

xk+1 = xk + τρ(AT yk+1 − c),
(4.7)

where the first step of the iterative process in (4.7) is the augmented Lagrangian subproblem and τ ∈
(0, 2) guarantees convergence. The main issue with the augmented Lagrangian method is solving
the augmented Lagrangian subproblem. Computing (wk+1, yk+1, zk+1) with high accuracy is both
difficult and expensive, especially in high dimensions. To overcome this difficulty, QPPAL requires
a warm-starting point that is close enough to the optimal solution of (4.4) to make augmented
Lagrangian subproblem less expensive to solve.

To provide a good initial point for the augmented Lagrangian method, QPPAL performs a
warm-start using a Gauss-Seidel-based inexact semi-proximal augmented Lagrangian algorithm.
This is referred to as Phase 1 of QPPAL by the authors. For the pseudocode and more details on
how this is done see [35, Section 3.1] and the references therein.

Once a warm-start point by Phase 1 of QPPAL is provided, a semismooth Newton method for
solving the augmented Lagrangian subproblem can be formulated using an orthogonal projection
onto C. This is referred to as Phase 2 of QPPAL by the authors. For the pseudocode and more
details on how this is done see [35, Section 3.3] and the references therein.

4.3 Comparison of Algorithms for solving the BAP

We now discuss how we perform our numerical experiments and our methodologies for comparison.
For these methodologies we refer to a discussion on techniques for comparisons of algorithms given
in [6]. In particular. we include performance profiles as defined in [18], and tables that include
details on the performances of RNNM (exact and inexact), HLWB , lsqlin, and for QPPAL.

We compare RNNM to HLWB, MATLAB’s lsqlin method, and QPPAL by generating a
test problem of the form specified in (3.1). We generate the problem such that the anchor v lies
in the relative interior of the normal cone of the feasible polyhedron at a vertex x̂ . Since v lies
in the normal cone of of the feasible polyhedron at x̂, x̂ is the closest point to v, and thus the
optimal solution. Furthermore, we set ∥A∥ = 1 and ∥v∥ = 1 to ensure meaningful comparisons as
no convergence results for RNNM solving (3.1) have been proven, as far as we know.

For the detailed comments regarding initialization and stopping criterion we refer to the pseu-
docodes of RNNM and HLWB in Appendix A. The RNNM algorithm starts with initializing
x0 ← (v + AT y0)+, where y0 = 0m. Then x0 ← (v + AT y0)+ reduces to x0 ← max(v, 0) in
the initialization stage of RNNM. This occurs before the first Newton step, therefore, to en-
sure all algorithms start at the same point, we initialize x0 ← max(v, 0) for HLWB, and provide
x0 ← max(v, 0) as a warm start for MATLAB’s lsqlin solver. However, since QPPAL performs an
ADMM warm-start as described in Section 4.2, there is no way to provide a warm start point for
it.

Since RNNM solves a reduced KKT condition for a convex problem with a Slater point, the
term ∥F (yk)∥

1+∥b∥ is a sufficient relative residual to serve as a stopping condition for RNNM. We note
that the stopping criterion for HLWB is measured at the end of a sweep rather than at the end
of an iteration. Since HLWB converges in the limit, but does not have proper stopping criterion,

35

we use the relative primal feasibility residual, ∥Ax̂k−b∥
1+∥b∥ , as the stopping criterion. Furthermore, for

HLWB we use x̂k instead of xk in the stopping criterion as x̂k is nonnegative at the end of every
sweep. The lsqlin solver uses first-order optimality conditions, i.e., the KKT system as its stopping
criterion. As in lsqlin, QPPAL uses first-order optimality conditions, and we report the relative
optimality gap,

|p∗ − d∗|(
1 + |p∗|+|d∗|

2

) ,
for the relative residual of QPPAL .

When implementing QPPAL,, we use QPPAL ’s Cholesky decomposition direct solver as
opposed to its inexact solver. Furthermore, we increase the maximum number of iterations for
the two phases of QPPAL to match the maximum number of sweeps the other methods utilize.
Lastly, we inform QPPAL that the quadratic used is the identity.

In Section 4.3.1, we generate problems such that v lies in the relative interior of the normal
cone of a nondegenerate vertex. We add additional experimental results and present them in Ap-
pendix B.1, observing a similar set of comparisons between the algorithms presented in this section.
Furthermore, we provide detailed experimental results such that v lies in the relative interior of
the normal cone of a degenerate vertex in Appendix B.2. These tests, and the performance of the
RNNM algorithm help to motivate the theory and potential practice of using RNNM for the
LP application, as seen in Section 5.3.

For the performance profiles in Section 4.3.1, we use the following notation from [6]. Let P
denote our set of problems with varying m, n, and density. Similarily, let S represent our set of
solvers, RNNM (exact and inexact), HLWB, lsqlin, and QPPAL. We define the performance
measure tp,s > 0 for each pair (p, s) ∈ P ×S as the computational time of solver s to solve problem
p. For each problem p ∈ P and solver s ∈ S, we define the performance ratio as

rp,s =

{
tp,s

min{tp,s | s∈S} , if convergence test passed,

∞, if convergence test failed.

The solver s that performs the best on problem p will have a performance ratio of 1. Solvers that
perform worse than s on problem p will satisfy tp,s > 1. In other words, the larger the performance
ratio, the worse the solver performed on problem p.

The performance profile of a solver s is defined as

ρs(τ) =
1

|P |
size{p ∈ P | rp,s ≤ τ}.

Therefore, ρs(τ) represents the relative portion of time in which the performance ratio rp,s for solver
s is within a factor τ ∈ R of the best possible performance ratio.

4.3.1 Numerical Comparisons

We tested the algorithms with optimal solutions at: nondegenerate vertices, degenerate vertices and
non-vertices. They all exhibited similar results. Therefore, in this section we present the results

36

for nondegenerate vertex solutions. We begin with choosing v for (3.1) such that the optimum
is uniquely a nondegenerate vertex of P . In the tables below we vary m, n, and the problem
density to illustrate the changes in each solver’s performance. A data point in each table is the
arithmetic mean of 5 randomly generated problems of the specified parameters that also satisfy
∥A∥ = 1, ∥v∥ = 0.1. For example, the first row of Table 4.1 represents a problem with parameters
m = 500, n = 3000, and a density of 0.0081, and each solver will solve 5 randomly generated
problems of the form discussed in (3.1), and the average time and relative residual from solving all
5 problems is displayed in the table. The desired stopping tolerance for the tables and performance
profiles is ε = 10−14 and maximum iterations (sweeps for HLWB) is 2000 for all solvers.

We remark that the regularization parameter of RNNM is chosen in an adaptive way. It takes
into account the relative residual as defined in line 13 of Algorithm 3.1, the norm of the Newton
direction, and the norm of v. The purpose of this is to decrease the magnitude of λ, or the amount
of regularization, as we approach the optimal solution while accounting for the norms of the Newton
direction and v. This regularization parameter is explicitly defined as

λk+1 = mean
((
10−2Fk

)
max(1, log10(∥dk∥)),

(
10−3Fk

)
max(1, log10(∥v∥)), 10−3Fk

)
, (4.8)

where Fk is the relative residual at iteration k, and dk is the Newton direction.

The empirical evidence from Tables 4.1 to 4.3 demonstrates the superiority of the RNNM
(exact) approach over the other solvers. Since the RNNM’s reduced KKT system is m ×m and
solved efficiently using the Cholesky Decomposition, its performance should be most affected as m
varies or density increases. This theoretical observation can be seen in Tables 4.1 to 4.3, as the
RNNM (exact and inexact) algorithm is slower to converge for increasing m and density, but is
not affected by an increase in n.

From Figure 4.1 the empirical evidence shows similar results to the tables, but better demon-
strates the differences in performance between RNNM (exact) and the other solvers as it more
concretely shows RNNM outperforming the other solvers. The problems in Figure 4.1a are similar
to those of Table 4.1 except m varies by 100 from 100 to 2000. Similarly, the problems in Fig-
ure 4.1b have n varying by 100 from 3000 to 5000, and Figure 4.1c has density varying by 1% from
1% to 100%. In every performance profile, the RNNM (exact) algorithm clearly outperforms the
other solvers in our experiments, with RNNM (inexact) performing well for an inexact method
on mid-sized problems. Conversely, HLWB is relatively slow on these problems. This can be
attributed to its linear convergence rate. Due to its linear convergence, it will perform a large
number of sweeps, which can amount to millions of iterations on certain problems with large m.
Performance profiles can be found in Appendix B.1 with the stopping tolerances ε = 10−2, 10−4, to
illustrate that RNNM (exact) outperforms HLWB and lsqlin at different tolerances, but QPPAL
remains competitive. In Appendix B.2 we include tables and performance profiles for the case that
the solution x∗ is degenerate.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
500 3000 8.1e-01 4.23e-02 1.51e-01 1.54e+02 3.77e+00 1.14e+00 1.96e-16 8.26e-16 2.25e-04 7.26e-17 1.72e-17
1000 3000 8.1e-01 4.40e-01 9.97e-01 3.71e+02 5.37e+00 2.15e+00 2.70e-16 1.95e-15 2.14e-04 3.87e-17 2.70e-17
1500 3000 8.1e-01 1.17e+00 3.23e+00 6.09e+02 7.02e+00 4.69e+00 3.41e-17 6.73e-16 2.27e-04 3.95e-17 1.16e-17
2000 3000 8.1e-01 2.49e+00 7.51e+00 8.67e+02 1.02e+01 7.81e+00 6.11e-17 3.11e-17 2.24e-04 3.14e-17 -2.74e-17

Table 4.1: Varying problem sizes m; comparing computation time and relative residuals.

37

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
200 3000 8.1e-01 3.12e-03 3.69e-02 4.45e+01 3.50e+00 8.66e-01 8.64e-18 7.39e-17 2.56e-04 6.52e-16 5.89e-17
200 3500 8.1e-01 3.08e-03 4.05e-02 5.17e+01 4.93e+00 1.00e+00 9.07e-18 1.26e-17 2.78e-04 1.23e-15 2.15e-17
200 4000 8.1e-01 3.24e-03 3.70e-02 5.82e+01 7.31e+00 1.09e+00 1.46e-16 8.91e-16 2.80e-04 3.21e-16 -9.18e-18
200 4500 8.1e-01 3.99e-03 4.17e-02 6.58e+01 1.01e+01 1.18e+00 1.80e-15 2.05e-16 3.13e-04 4.61e-17 1.71e-16

Table 4.2: Varying problem sizes n; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
300 1000 25 5.69e-02 2.66e-01 4.55e+01 3.30e-01 1.20e+00 2.83e-17 1.14e-17 1.50e-04 8.61e-17 5.99e-17
300 1000 50 5.43e-02 2.28e-01 5.39e+01 3.08e-01 1.82e+00 1.23e-16 1.97e-17 1.44e-04 8.08e-16 1.42e-17
300 1000 75 7.75e-02 2.86e-01 5.36e+01 3.16e-01 1.49e+01 4.83e-16 1.72e-17 1.62e-04 3.49e-16 -3.43e-16
300 1000 100 7.27e-02 2.47e-01 4.65e+01 3.00e-01 2.54e+02 5.66e-16 2.15e-17 1.63e-04 1.91e-15 1.04e-14

Table 4.3: Varying problem density; comparing computation time and relative residuals.

(a) Varying problem sizes m. (b) Varying problem sizes n.

(c) Varying problem density.

Figure 4.1: Performance profiles for problems with varying m, n, and densities for nondegenerate
vertex solutions.

38

Chapter 5

Theoretical Background for Linear
Programming

Linear programming has a very rich history of applications and algorithms. In 1947 we saw Dantzig
model the mechanization of military planning during World War 2 as a linear program and develop
the simplex method to solve it. Around the same time we saw Kantorovich and Koopmans indepen-
dently weave classical economic and transport problems such as military expenditures and optimal
routing into linear programs, for which they shared the 1975 Nobel prize in economics. Despite
its great success, the simplex method is not considered an efficient algorithm, as its worst-case
solve time is O(2n).1 Nevertheless, the boundless number of problems that could be expressed as a
linear program motivated the development of polynomial time solvers. In 1979 Khachiyan modified
the Shor, Nemirovski, and Yudin ellipsoid method [46, 54] for linear programming, and is the first
polynomial-time algorithm devised for linear programming [30]. This marked a major breakthrough
for linear programming. Despite the ellipsoid methods inferior practical performance compared to
the simplex method, the ellipsoid methods polynomial-time complexity sparked increased interest
in developing efficient polynomial-time linear programming algorithms. In 1984 Karmarker devel-
oped the first interior point method for linear programming [29], afterwards a revolution of research
in linear programming began to unfold that would later be regarded as the interior point revolution.

5.1 Optimality Conditions

One of the most widely used interior point methods are primal-dual interior point methods. Primal-
dual interior point methods examine various Newton equations of the logarithmic barrier function,
i.e., recall the primal LP (2.8) and dual LP (2.9), then the vector x∗ ∈ Rn is a solution of (2.8)
if and only if there exists vectors (y∗, z∗) ∈ Rm × Rn for which the following equations hold for
(x, y, z) = (x∗, y∗, z∗)

1Examples of the simplex method having a worst-case solve time of O(2n) can be found using the Klee-Minty
cube [31]. Despite the worst-case solve-time being O(2n), the average case in practice has been observed to be
polynomial-time under various probability distributions for random matrices A ∈ Rm×n [8, 45] .

39

Ax = b,
AT y + z = c,

xizi = 0, i = {1, . . . , n},
(x, z) ≥ 0.

(5.1)

We remark that since x, z ≥ 0, xizi = 0 ≡ xT z = 0.

Then the optimality conditions of (5.1) can be restated as the function F : R2m+n → R2m+n:

F (x, y, z) =

 Ax− b
AT y + z − c

XZe

 = 0,

(x, z) ≥ 0, X = diag(x1, . . . , xn), Z = diag(z1, . . . , zn).

(5.2)

Therefore, the goal of primal-dual methods is to provide a procedure for how to follow a perturbation
of the complementarity condition xT z = 0, i.e., we use the equation XZe = µ in (5.2). This new
formulation of (5.2) is called the central path, and stems from the log-barrier function of the
nonnegativity constraint.

Then given F as defined in (5.2), interior point methods use Newton’s method to form a linear
model for F (x, y, z) around the current point (xk, yk, zk). We then obtain the search directions
(∆x,∆y,∆z) by solving the following system of linear equations at (xk, yk, zk)

∇F (xk, yk, zk)

∆x
∆y
∆z

 = −F (xk, yk, zk). (5.3)

We can usually only take very small steps in the pure Newton method as described in (5.3). Primal-
dual methods aim to iteratively update the current point given (∆x,∆y,∆z) based on a primal
and dual step length αp and αd respectively, i.e.,

xk+1 ← xk + αp∆x,
yk+1 ← yk + αd∆y,
zk+1 ← zk + αd∆z.

Here we have only discussed primal-dual interior point methods, but in general methods for com-
puting µ in XZe = µ and the step lengths that interior point methods can take are rich in variety
and can be studied in more detail in [51].

While interior point methods are highly regarded and have applications in general nonlinear
programming, they are not the only Newton-type approach to linear programming. For example,
in [39] Mangasarian proposes a Newton-type method that utilizes the equivalence between the
BAP and the LP, as stated in [38, 48]. Mangasarian does this by solving a parametric exterior
penalty formulation of the LP

min
x

cTx subject to Ax ≤ b,

for any sufficiently small but finite value of the penalty parameter ρ. Then, for any sufficiently
small penalty parameter an exact minimum norm solution with respect to the 2-norm is computed.

40

The parametric exterior penalty formulation of the LP is the following problem:

min
x

ρcTx+
1

2
∥(Ax− b)+∥2.

Therefore, the objective in this approach is to determine an appropriate barrier parameter such
that the solution y of the quadratic program is the minimum norm solution of the dual LP. In
other words, we denote ρ as the barrier parameter and have the following quadratic problem

maxy (bT y + ρ
2 ∥y∥

2)
subject to:

AT y + c = 0,
y ≥ 0.

If ρ̄ is the largest possible barrier parameter such that y is a minimum norm solution of the
dual LP, then we have for any barrier parameter ρ such that 0 < ρ ≤ ρ̄, y remains a minimum
norm solution of the dual LP. The weakness in this approach, as acknowledged by Mangasarian
in [39, Remark 3.1], is that determining an appropriate barrier parameter such that the solution
y of the quadratic program is the minimum norm solution of the dual LP is too expensive. To
overcome this, Mangasarian claims that a small enough barrier term, ρ = 10−3, is more than
sufficient to attain the optimal solution of the LP. Mangasarian supports this claim with numerics
for medium-sized LP’s.

In our contributions, we use the theory from [38, 48], but differ from Mangasarian’s approach
by taking advantage of the highly accurate solution provided by RNNM to perform the neces-
sary sensitivity analysis needed to change the current basis. Compared to Mangasarian’s Newton
method, this is incredibly inexpensive, as it involves the simple computation of a simplex-like ratio
test. The paper that we published outlining our proposed external path following algorithm in
Section 5.2 and the respective numerical results in Section 5.3 can be found in [12].

5.2 An External Path Following Algorithm for Solving Linear Pro-
grams

We consider the maximization primal LP in standard equality form

(PLP)
p∗LP := max cTx

subject to Ax = b ∈ Rm

x ∈ Rn
+.

(5.4)

The dual LP is

(DLP)
d∗LP := min bT y

subject to AT y − z = c ∈ Rn

z ∈ Rn
+.

(5.5)

We assume that A is full row rank and that the optimal value is finite. By the fundamental theorem
of linear programming, we can now guarantee that strong duality holds for the primal and dual
problems, i.e., equality p∗LP = d∗LP holds and both optimal values are attained.

41

We will see in Lemma 5.2.1 that the solution to (PLP) is the limit of the sequence of projections
of the vectors vR = Rc ∈ Rn onto the feasible set as R ↑ ∞.

Lemma 5.2.1 ([37–39, 49]). Suppose that A, b, and c are given LP data such that A is full-row
rank, and the LP has a finite optimal value p∗LP . For each R > 0 we define

x∗(R) := argminx
1
2 ∥x−Rc∥2

subject to Ax = b ∈ Rm

x ∈ Rn
+.

(5.6)

Then x∗ is the minimum norm solution of (PLP) if and only if there exists R̄ > 0 such that

R ≥ R̄ =⇒ x∗ = x∗(R) = argmin

{
1

2
∥x−Rc∥2 |Ax = b, x ∈ Rn

+

}
. (5.7)

We would like an R that is not too large, but large enough such that R ∥c∥ > ∥x∗∥. We use the
following estimate to start our algorithm:

R = min

{
50,

√
mn ∥b∥
1 + ∥c∥

}
. (5.8)

To avoid numerical complications from large numbers, we consider the following equivalent
problem that uses the scaling 1

Rb rather than Rc.

Corollary 5.2.2. Let A, b, c, R, x∗(R) be defined as in Lemma 5.2.1. Then

1
Rx

∗(R) = w∗(R) := argminw
1
2 ∥w − c∥2

subject to: Aw = 1
Rb ∈ Rm

w ∈ Rn
+.

(5.9)

Proof. By examining the objective in Lemma 5.2.1, we see the following relationship

∥x−Rc∥2 = R2

∥∥∥∥ 1Rx− c

∥∥∥∥ = R2 ∥w − c∥ , w =
1

R
x.

Substituting for w = 1
Rx into the constraints of Lemma 5.2.1 gives us Ax = b ⇐⇒ A(Rw) =

b ⇐⇒ Aw = 1
Rb, and R > 0 =⇒ w ∈ Rn

+. It then follows that the optimal solution of
Lemma 5.2.1 is independent of R2, and so discarding the constant R2 gives us (5.9).

5.2.1 Exploiting Sensitivity Analysis to Warm Start the BAP

Recall the scaling done in Corollary 5.2.2 and the relationship between the scaling for c and the
decision variable x

x∗(R) = Rw∗(R).

To simplify notation, we ignore the optimality symbol (·)∗ and examine the optimality conditions
of (3.4) with respect to w = w(R) as in (5.9)

42

w − c−AT y − z
Aw − 1

Rb
zTw

 =

0
0
0

 , w, z ∈ Rn
+, y ∈ Rm. (5.10)

Then we can conclude that

lim
R→∞

Prange(AT)w(R) = 0, lim
R→∞

Rw(R) = x∗, the optimum of the LP (5.6).

The optimality conditions become

w = c+AT y + z, b = ARw = AR(c+AT y)+, w
T z, w, z ≥ 0. (5.11)

Therefore, ∥w∥ =
∥∥c+AT y + z

∥∥ indicates that the ∥w∥ is a measure of the error for dual
feasibility, and therefore a measure for the accuracy of Rw as the optimum of the original LP.

Given the current R and approximate optimal triplet (w(R), y(R), z(R)) for (5.6), we would like
to find a new Rn ≥ R that is a better approximation of the optimal solution for (5.4). Furthermore,
we would also like to use the corresponding yn = y(R)+∆y for solving the BAP with the new Rn.
In this way, the BAP serves as a subproblem for the LP algorithm proposed in Theorem 5.2.3,
and yn serves as a warm-start for solving the BAP subproblem.

Theorem 5.2.3. Suppose R > 0 is given and the triplet (w, y, z) = (w(R), y(R), z(R)) is primal-
dual optimal for (5.9), i.e., (5.10) is satisfied. Let

N = N (z) := {i | zi > 0}, B = B(w) := {i |wi > 0},Z = Z(w, z) := {i |wi = zi = 0};

e =

(
bB −RwB
−(bN +RzN)

)
, f =

(
RbB
−RbN

)
,

(5.12)

where bB, bN are defined in (5.16) and (5.21) respectively. Then the maximum value for increasing
R and maintaining both optimality and the indices in the bases sets B,N ,Z is

Rn = min{fi/ei | ei > 0, fi > 0, ∀ i}. (5.13)

Furthermore, the corresponding changes ∆w,∆y,∆z that result in w+∆w, y+∆y, z+∆z being
optimal for Rn are given in the proof in (5.16), (5.15), and (5.21) respectively.

Moreover, if Rn =∞, then the optimal solution of the LP has been found.

Proof. We first want to find the maximum increase in R that keeps the current basis B optimal for
(5.6). In other words, we maintain the following

zi ≥ 0, ∀ i ∈ N , wi ≥ 0, ∀ i ∈ B, wi = zi = 0, ∀ i ∈ Z.

To maintain the feasibility from the three basis sets in (5.12), we examine the effect of sensitivity
analysis on the optimality conditions as defined in (5.10). We will denote the new R attained
through sensitivity analysis as Rn. Then we have the following equations:

43

(1) From primal feasibility we have

ABwB =
1

R
b and AB(wB +∆wB) =

1

Rn
b =⇒ AB∆wB =

(
1

Rn
− 1

R

)
b.

(2) Since zB = 0, then from dual feasibility we have that wB− cB−AT
By = 0 and wB +∆wB− cB−

AT
B(y +∆y) = 0 =⇒ ∆wB = AT

B(∆y), and therefore

AB∆wB = ABA
T
B(∆y) =

(
R−Rn

RRn

)
b. (5.14)

Now that we have solved for ∆wB, it is left to solve for ∆y and ∆zN . Since wZ = zZ = 0, then
from similar logic to how we obtain (5.14) we have

−cZ −AT
Z(y +∆y) = 0 =⇒ AT

Z(∆y) = 0.

Lastly, since wN = 0, we have

−cN −AT
N (y +∆y)− (zN +∆zN) = 0 =⇒ ∆zN = −AT

N (∆y).

Therefore, we have two equations to solve ∆y. When strict complementarity fails, we choose a full
column rank matrix VZ that satisfies range(VZ) = null(AT

Z). Otherwise, we define VZ to be the
identity. Then we solve to get

∆yp := VZ(ABA
T
BVZ)

†b, ∆y :=

(
R−Rn

RRn

)
∆yp. (5.15)

By assumption b ∈ range(B), therefore a solution always exists for (5.15). To maintain the
primal feasibility and nonnegativity of wB +∆wB, we have the following inequality

−wB ≤ ∆wB = AT
B(∆y) = AT

B

(
R−Rn

RRn

)
∆yp = −

(
Rn −R

RRn

)
AT

B∆yp, bB := AT
B∆yp. (5.16)

We note that the result in (5.16) simplifies in the nondegenerate case as we have VZ = I

AT
B

(
Rn−R
RRn

)
∆yp =

(
Rn−R
RRn

)
AT

BVZ(ABA
T
BVZ)

†b

= −
(
Rn−R
RRn

)
A†

BbB

= −
(
Rn−R
RRn

)
bB, bB := A†

Bb.

Therefore, to get an upperbound for Rn we rearrange the inequalities in (5.16) to the following

(Rn −R)bB ≤ (RRn)wB ⇐⇒ Rn(bB −RwB) ≤ RbB. (5.17)

We note that the above inequality holds for the trivial case R = Rn.

To find the maximum possible Rn given the current (w, y, z) and check that Rn ̸= +∞, we use
an LP type ratio test. We set the two vectors to be

44

eB = (bB −RwB), fB = RbB.

For simplicity in our notation, we ignore the subscript B and refer to eB, fB as e, f . Furthermore,
we note that we cannot have both ei > 0, fi ≤ 0, as (5.17) would not hold. Therefore, we choose
Rn to be the maximum that satisfies the following ratio test

Rn := {fi/ei | fi > 0, ei > 0, i ∈ B}. (5.18)

We note that the minimum over the empty set is +∞ and maxi{fi/ei | fi < 0, ei < 0, i ∈ B} ≤
Rn always holds since Rn = R > 0 satisfies the inequality. If AB is full column rank or bB = wB,
then we have the best least-squares solution and get Rn =∞.

Now that we have done the ratio test for wB, it is left to do the ratio test for zN . Note that
we set ∆zi = ∆wi = 0, ∀ i ∈ Z. Therefore, to maintain the dual feasibility and nonnegativity of
zN +∆zN , we have the following inequality

−zN ≤ ∆zN = −AT
N (∆y) = −AT

N

(
R−Rn

RRn

)
∆yp =

(
Rn −R

RRn

)
AT

N∆yp =:

(
Rn −R

RRn

)
bN .

(5.19)
Therefore, to get an upperbound for Rn we rearrange the inequalities in (5.19) to the following

(Rn −R)bN ≥ (RRn)zN ⇐⇒ Rn(−bN −RzN) ≤ −RbN . (5.20)

We note that the above inequality holds for the trivial case R = Rn.

We again find the maximum Rn and check that Rn ̸= ∞ using an LP type ratio test. We set
the two vectors to be eN = −(bN + RzN), fN = −RbN . For simplicity in our notation we ignore
the subscript N and refer to eN , fN as e, f . Furthermore, we note that we cannot have ei > 0 and
fi ≤ 0, as (5.20) would not hold. Therefore, we choose Rn to be the maximum that satisfies the
following ratio test

Rn := {fi/ei | fi > 0, ei > 0, i ∈ N}. (5.21)

Again, we note that the minimum over the empty set is +∞ and maxi{fi/ei | fi < 0, ei < 0, i ∈
N} ≤ Rn always holds since Rn = R > 0 satisfies the inequality.

Finally, we choose Rn as the minimum of the two values found in (5.18) and (5.21) to satisfy
the necessary primal and dual feasibility conditions.

If Rn = ∞, then increasing R no longer changes the bases, and therefore we have found an
optimal basis and equivalently the sufficiently large R such that the optimal solution to the LP
has been found.

Theorem 5.2.3 illustrates the external path following algorithm that we are using. Its use
requires highly accurate solutions to the BAP subproblem. The theorem uses the triplet (w, y, z) =
(w(R), y(R), z(R)) from the BAP subproblem to find specific values of R, stepping stones on the
path, such that the current basis changes. Once we find the next stepping stone is equal to infinity,
we know that we have found the optimal basis for the LP. Thus, we have an external path following

45

algorithm with parameter R, but we only choose specific points on this path to step on. The
algorithm is efficient for nondegenerate problems as Z = ∅ gives us accurate sensitivity analysis.
For highly degenerate problems, restricting ∆wi = ∆zi = 0, ∀i ∈ Z can severely restrict how much
we can increase R by. See Section 5.3 for more details.

5.2.2 Upper and Lower Bounds for the LP Problem

The optimal solution from the projection problems (5.6) and (5.9) provides a feasible x, and we
get the corresponding LP lower bound cTx∗(R). It is now left to find the upper bound.

Recall from Section 5.2.1 that primal feasibility and complementary slackness hold for x(R) =
Rw and z, and this is identical for the LP problem. Therefore, we need to find the dual variable
yLP to satisfy the LP dual feasibility condition

zLP = AT yLP − c ≥ 0.

However, the optimality conditions as described in (5.10) give us

AT (−y) = z + c− w, 0 ≤ z = AT (−y)− c+ w, w ≥ 0.

Therefore, as discussed previously, we see that the norm of w becomes small as R tends to
infinity and we get dual feasibility, y(R)→ yLP. But, at each iteration we have

z − w = AT (−y)− c, w, z ≥ 0, wT z = 0, y ≡ yR. (5.22)

We can write the required dual feasibility equations using the indices for i ∈ B as defined in
Theorem 5.2.3.

AT
i y − ci ∈

{
{0}, if wi > 0,

R+, if wi = 0.

Therefore, recall the definitions of B and N as defined in Theorem 5.2.3. Then for a given yR
that satisfies (5.22), we consider the nearest dual LP feasible system with unknowns z ≥ 0 and yLP.

Lemma 5.2.4. Let (w, y, z) be the approximate optimal triplet from (5.11) and B the support as
defined in Theorem 5.2.3. Consider the BAP for the given dual variables.

(
y∗LP
z∗LP

)
∈ argmin 1

2∥(−y)− yLP∥2 + 1
2∥0− (zLP)B∥2 + 1

2∥zN − (zLP)N ∥2

subject to

[
AT

B −I 0
AT

N 0 −I

] yLP

(zLP)B
(zLP)N

 =

(
cB
cN

)
yLP free, zLP =

(
(zLP)B
(zLP)N

)
≥ 0.

(5.23)

Then the optimal value of the LP (5.4) satisfies the upper bound

46

p∗LP ≤ bT y∗LP.

Moreover, suppose that zB = 0. Then equality holds and the LP is solved with primal-dual optimum
pair (w, yLP).

Proof. Recall that the optimal value p∗LP is finite. The proof of the bound follows from weak duality
in linear programming. Equality follows from the optimality conditions since primal feasibility and
complementary slackness hold with w.

5.3 Solving Large Sparse Linear Programs

We now apply (5.6) and Theorem 5.2.3 to solve large-scale randomly generated LPs, and problems
from the NETLIB dataset. We call this method the stepping stones external path following algo-
rithm, (SSEPF), and note that we use the estimate for a starting R given in (5.8). The stepping
stones are found using Rn in (5.13). We add a small positive scalar to Rn to ensure that we change
the basis of x at each iteration. For simplicity, we restrict ourselves to nondegenerate LPs for the
randomly generated problems.

We compare SSEPF to the MATLAB linprog code, Mosek, and semismooth Newton inexact
proximal augmented Lagrangian method, (SNIPAL) [34]. For the MATLAB linprog and Mosek
software, we examine both the dual simplex and interior point method solvers. We scale the
randomly generated problems such that ∥A∥ = 1 and the optimal solution x∗ satisfies ∥x∗∥ = 1. A
data point in Table 5.1 is the arithmetic mean of 5 randomly generated problems of the specified
parameters, m,n, and density. We exclude instances from Table 5.1 where a method fails to provide
a solution, but these instances are plotted in Figure 5.1 as a failure to converge. Since the smallest
stopping tolerance allowed by linprog is ε = 10−10, a linear program is considered successfully solved
in the performance profile of Figure 5.1 if the optimality gap is less than or equal to ε = 10−8. The
maximum number of iterations for linprog and Mosek is the default number, and for SNIPAL it
is 2000. The relative residual shown in Table 5.1 is the sum of the relative primal feasibility, dual
feasibility, and complementary slackness. In other words, let (x∗, y∗, z∗) be the optimal solution an
algorithm returns, then the relative residual as shown in Table 5.1 is

∥Ax∗ − b∥
1 + ∥b∥

+

∥∥z∗ −AT y∗ + c
∥∥

1 + ∥c∥
+

(x∗)T z∗

1 + max(∥x∗∥ , ∥z∗∥)
.

We note that we are using the exact RNNM direction to solve the BAP subproblem when
discussing the performance of SSEPF, and using (4.8) to compute the regularization parameter.
We label SSEPF’s performance in Table 5.1 and Figure 5.1 as SSEPF-RNNM. Furthermore, we
use the abbreviations Linprog DS and Linprog IPM to refer to linprog’s dual simplex and interior
point method, respectively. Likewise, we use similar abbreviations for Mosek.

From Table 5.1, the empirical evidence demonstrates that the stepping stone approach performs
better than MATLAB’s dual simplex and interior point method on most problems, and has proven
to be quite competitive with Mosek’s dual simplex and interior point method. This becomes more
evident as the sizes of the problems grow and the problems become sparser. In other words, we
see that our code fully exploits sparsity in LP. This can be seen when observing the performance

47

of SSEPF-RNNM with respect to time on the rows of Table 5.1 where the problem density
decreases. Despite the increase in problem dimension, the decrease in density leads to an increase
in performance in comparison to the previous row. Another thing to notice is that in rows 5-9 of
Table 5.1, linprog’s interior point method and Mosek’s dual simplex method failed to converge to
a solution after having reached the default maximum number of iterations.

In Section 4.3.1, the performance profiles were constructed by looking at smaller intervals of
varying m,n and density. For example Table 4.1 shows results where m varies by increments of
500, but in Figure 4.1a m varies by increments of 100. Since linprog’s interior point method and
Mosek’s dual simplex method struggled with obtaining the desired primal feasibility, as seen in
Table 5.1, Figure 5.1 shows the performance of each solver with respect to all 50 problems instead
of examining the average performance.

It is important to note that the performance profile exhibits more failed solutions from the dual
simplex and interior point methods of MATLAB. We have tried taking the maximum of the primal
feasibility, dual feasibility, and complementary slackness returned by MATLAB’s linprog function
instead of the sum, and both revealed equivalent results. In other words, we are not sure why there
are more problems failing at this tolerance than reported by MATLAB, but it further distinguishes
our stepping stone approach from MATLAB’s linprog algorithms. Mosek, and more specifically
Mosek’s interior point method is very competitive, as Figure 5.1 shows. Unfortunately, SNIPAL
failed to converge on every problem in this dataset. We have seen it converge successfully on some
random linear programming problems, but none of the ones that we generated in our Numerical
Experiments section. It is worth noting that the table which shows the average performance of 5
randomly generated problems with respect to a set of parameters indicates that SSEPF-RNNM
performs better than Mosek’s interior point method in 7 out of 10 rows in the table.

Specifications Time (s) Rel. Resids.
m n % density SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL

2e+03 5e+03 1.0e-01 8.94e-02 3.09e-02 4.50e-02 1.46e-01 1.64e-01 6.90e+00 3.38e-17 2.63e-16 4.88e-09 1.31e-16 1.53e-16 2.14e-04
2e+03 1e+04 1.0e-01 9.64e-02 4.84e-02 7.53e-02 1.49e-01 1.93e-01 8.31e+00 2.82e-17 6.00e-16 1.60e-04 1.31e-16 2.89e-16 1.72e-04
2e+03 1e+05 1.0e-01 1.68e-01 3.91e-01 7.45e-01 5.41e-01 6.56e-01 1.94e+01 1.48e-17 7.45e-17 1.72e-05 8.84e-17 8.57e-17 1.55e-04
5e+03 1e+04 1.0e-01 9.97e+01 2.08e-01 1.39e+01 4.26e-01 2.65e+00 5.54e+01 5.55e-17 4.16e-16 5.02e-07 1.67e-14 3.20e-16 2.29e-04
5e+03 1e+05 1.0e-01 7.64e+01 7.24e-01 1.42e+02 1.12e+00 8.51e+00 7.85e+01 2.36e-17 9.31e-11 6.38e-05 3.13e-16 1.79e-16 1.58e-04
5e+03 5e+05 1.0e-01 2.30e+02 6.97e+00 6.54e+02 7.02e+00 1.52e+01 1.70e+02 1.52e-17 1.87e-10 3.73e-05 3.92e-16 1.68e-16 1.48e-04
2e+04 1e+05 1.0e-02 6.32e-01 9.46e-01 5.68e+00 1.05e+00 2.49e+00 4.28e+01 1.36e-17 3.55e-06 4.33e-07 1.99e-06 1.28e-16 1.42e-04
2e+04 5e+05 1.0e-02 6.66e-01 4.46e+00 3.78e+01 5.63e+00 9.28e+00 1.23e+02 8.48e-18 3.37e-06 8.83e-07 1.36e-06 2.89e-16 1.10e-04
2e+04 1e+06 1.0e-02 1.85e+00 9.30e+00 6.50e+01 1.17e+01 1.59e+01 2.06e+02 7.08e-18 4.34e-06 6.27e-06 1.76e-06 9.65e-17 1.12e-04
1e+05 1e+07 1.0e-03 7.38e+00 1.06e+01 6.14e+00 9.35e+01 9.60e+01 1.56e+03 1.39e-18 1.39e-18 1.39e-18 1.76e-17 1.76e-17 5.90e-05

Table 5.1: LP application results averaged on 5 randomly generated problems per row.

Figure 5.1: Performance Profiles for LP application with respect to all problems.

48

We also consider the first five problems in alphabetical order from the subset of the NETLIB
dataset where primal strict feasibility (PSF) holds [27, Sect. 4.2.2]. We then check dual strict
feasibility (DSF) and include the value of the constant we obtain from solving the theorem of
the alternative. In other words, a large, respectively small, constant indicates an algebraically
fat, respectively thin, feasible set. Failure, or near failure, of strict feasibility correlates with the
difficulty RNNM experiences in our observed numerics. We successfully solve two of the five
problems. We think that the difficulties from the NETLIB dataset is due to the dual feasible
set being very thin for some problems. For example, in Table 5.2, the problems 25fv47 and lotfi
have a very thin feasible set in the dual problem. It is important to note that the performance of
SSEPF-RNNM on the blend problem is significantly worse than the other solvers. A common
issue with SSEPF-RNNM when solving the blend problem as well as rows 4-6 of Table 5.1 is that
at certain tolerances, RNNM uses the maximum number of iterations (2000) to solve the BAP
subproblem. In other words, even though we are performing a warm-start with the solution from
the previous BAP subproblem, RNNM can fail to converge to the desired relative tolerance.
However, even though RNNM failed to converge, it still provides a solution that is very close to
the optimal solution, i.e., instead of solving the BAP subproblem to within a relative tolerance of
10−14, it returns a solution that is within a relative tolerance of 10−12 or 10−13. There are at least
two solutions to this issue. First, we can decrease the length of the Newton step when the iteration
count is large. Using this heuristic shows significant improvement in performance when solving the
blend problem. Secondly, if RNNM fails to converge to within the specified relative tolerance of
10−14, we can try a larger relative tolerance, such as 10−13. This strategy has shown to be crucial
when trying to solve problems like 25fv47, where we are not able to solve the BAP subproblem
with high accuracy due to its thin dual feasible set.

Problem: Primal Strict Feas. Dual Strict Feas.
25fv47 2.00e-01 2.01e-17
afiro 9.00e+00 1.19e-01
blend 7.30e-02 3.49e-03
israel 3.71e+00 1.38e-03
lotfi 1.00e+00 1.89e-10

Table 5.2: Primal and Dual strict feasibility of NETLIB problems.

Time (s) Rel. Resids.
Problem: SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL
25fv47 Inf 2.01e-01 1.01e-01 3.76e-01 1.54e-01 1.20e+01 Inf 2.30e-15 2.25e-15 5.51e-16 1.09e-14 7.36e-05
afiro 2.62e-02 7.71e-03 2.91e-03 9.16e-02 9.01e-02 9.81e-02 1.97e-16 3.67e-16 8.62e-14 7.49e-17 1.43e-13 9.39e-11
blend 1.42e+02 8.48e-03 3.81e-03 9.12e-02 9.03e-02 1.58e+00 5.37e-15 4.78e-14 1.31e-13 1.33e-15 1.63e-15 1.30e-03
israel Inf 1.07e-02 2.79e-02 9.33e-02 9.82e-02 3.27e+00 Inf 7.15e-16 8.44e-14 6.57e-16 8.93e-12 5.21e-05
lotfi Inf 9.63e-03 7.86e-03 9.41e-02 9.43e-02 2.00e+00 Inf 4.61e-14 3.38e-14 1.17e-16 9.05e-13 4.35e-05

Table 5.3: LP application results on the NETLIB problems.

49

Figure 5.2: Performance Profiles for LP application with respect to the Netlib problems.

Our algorithm has difficulties with highly degenerate problems where the optimal solution is
not unique. Moreover, the optimal minimum norm solution that our algorithm finds can fail
strict complementarity. In other words, we find that there are many i ∈ {1, . . . , n} such that
xi + zi = 0. The loss of strict complementarity results in a generalized Jacobian with low rank as
few columns of A are chosen in (3.14). Additionally, the sensitivity analysis of Theorem 5.2.3 has
difficulty increasing R. Finally, the failure of strict complementarity indicates that the gradient at
optimality is not in the relative interior of the normal cone, Lemma 3.4.1, Item b, indicating failure
of differentiability of the projection.

50

Chapter 6

Conclusion

In this thesis we showed that the BAP when the constraint set is the intersection of a linear
manifold with the nonnegative cone can be solved efficiently and with high accuracy for medium
and large-scale sparse problems when using a nonsmooth Newton method. We study the applica-
tion of the nonsmooth Newton method on a Moreau Decomposition of the KKT conditions. The
optimality conditions that arise from the Moreau Decomposition are independent of the number
of variables. However, the nonsmoothness of the KKT conditions raises the question of how to
choose a subgradient when utilizing the nonsmooth Newton method. To choose the appropriate
subgradients, we use the problem examined in [16, 28] to minimize the condition number of the
Jacobian.

Despite the conditioning consideration, we often still encounter a singular Jacobian. We handle
this using a modified Levenberg-Marquardt regularization with an adaptive regularization parame-
ter. We have proven this modified Levenberg-Marquardt regularization is a descent direction under
certain assumptions that are maintained by the properties of our Jacobian and problem structure.
As this is a descent direction, there are implementations that can be made that guarantee global
convergence such as line-search method that satisfy Wolfe-type conditions [40]. Even without a
line search, RNNM solves the BAP very competitively, outperforming professional and academic
codes such as MATLAB’s lsqlin and QPPAL [35]. Furthermore, we provide a preprocessing scal-
ing technique for when the argument of the projection v is too far from the solution x∗ for RNNM
to converge, as seen in Corollary 5.2.2.

Another result in this thesis includes the application of the BAP to solving a LP. We do
this by using a solution from the BAP to perform the necessary sensitivity analysis to guarantee
we have a large enough parameter such that Lemma 5.2.1 is true. We have also proven that we
can achieve finite termination using our sensitivity analysis given an optimal solution of the best
approximation problem. In other words, we use the sensitivity analysis on the solution from the
BAP, we estimate an appropriate new parameter R, and resolve the BAP. This terminates in
a finite number of iterations. We have shown that SSEPF-RNNM is very competitive with
professional and academic codes such as Mosek and SNIPAL when solving nondegenerate LP’s
where strict feasibility holds.

51

References

[1] H. Bauschke and V. Koch. Projection methods: Swiss army knives for solving feasibility and
best approximation problems with halfspaces. 1 2013. 2

[2] H.H. Bauschke. The approximation of fixed points of compositions of nonexpansive mappings
in hilbert space. Journal of Mathematical Analysis and Applications, 202:150–159, 1996. 2, 3,
32, 33

[3] H.H. Bauschke and J.M. Borwein. On projection algorithms for solving convex feasibility
problems. SIAM Review, 38(3):367–426, 1996. 1

[4] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham,
second edition, 2017. With a foreword by Hédy Attouch. 33

[5] H.H. Bauschke, D. Mao, and W.M. Moursi. How to project onto the intersection of a closed
affine subspace and a hyperplane. 2022. 32

[6] V. Beiranvand, W. Hare, and Y. Lucet. Best practices for comparing optimization algorithms.
Optimization and Engineering, 18(4):815–848, 2017. 35, 36

[7] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific books.
Athena Scientific, 1997. 13, 15, 16

[8] K.H. Borgwardt. The simplex method: a probabilistic analysis, volume 1. Springer Science &
Business Media, 2012. 39

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,
2004. 4, 9, 19

[10] J.P. Boyle and R.L. Dykstra. A method for finding projections onto the intersection of convex
sets in Hilbert spaces. In Advances in order restricted statistical inference (Iowa City, Iowa,
1985), volume 37 of Lect. Notes Stat., pages 28–47. Springer, Berlin, 1986. 33

[11] Y. Censor. Computational acceleration of projection algorithms for the linear best approxi-
mation problem. Linear Algebra Appl., 416(1):111–123, 2006. 33

[12] Y. Censor, W.M. Moursi, T. Weames, and H. Wolkowicz. Regularized nonsmooth newton
algorithms for best approximation, 2023. 21, 41

[13] Y. Censor and A. Nisenbaum. String-averaging methods for best approximation to common
fixed point sets of operators: the finite and infinite cases. Fixed Point Theory Algorithms Sci.
Eng., pages Paper No. 9, 21, 2021. 33

52

[14] F.H. Clarke. Optimization and nonsmooth analysis, volume 5 of Classics in Applied Math-
ematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 1990. 11

[15] J. E. Dennis, Jr. and H. Wolkowicz. Sizing and least-change secant methods. SIAM Journal
on Numerical Analysis, 30(5):1291–1314, 1993. 27

[16] J.E. Dennis Jr. and H. Wolkowicz. Sizing and least-change secant methods. SIAM J. Numer.
Anal., 30(5):1291–1314, 1993. 27, 51

[17] F. Deutsch. Best approximation in inner product spaces, volume 7 of CMS Books in Mathe-
matics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, 2001. 33

[18] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2, Ser. A):201–213, 2002. 35

[19] D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in conic optimization. 2017.
16

[20] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems, volume 1. Springer, 2003. 24, 29

[21] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and com-
plementarity problems, volume 2. Springer, 2003. 27

[22] S.-P. Han and O.L. Mangasarian. Conjugate cone characterization of positive definite and
semidefinite matrices. Linear Algebra Appl., 56:89–103, 1984. 8

[23] Y. Haugazeau. Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Con-
vexes. PhD thesis, University de Paris, 1968. 33

[24] C. Hildreth. A quadratic programming procedure. Naval Res. Logist. Quart., 4:79–85, 1957.
33

[25] H. Hu, H. Im, X. Li, and H. Wolkowicz. A semismooth Newton-type method for the nearest
doubly stochastic matrix problem. Math. Oper. Res., May, 2023. arxiv.org/abs/2107.09631,
35 pages. 26

[26] H. Im. Implicit Loss of Surjectivity and Facial Reduction: Theory and Applications. PhD
thesis, University of Waterloo, 2023. 15

[27] H. Im and H. Wolkowicz. Revisiting degeneracy, strict feasibility, stability, in linear program-
ming. European J. Oper. Res., 310(2):495–510, 2023. 35 pages, 10.48550/ARXIV.2203.02795.
15, 17, 18, 49

[28] W.L. Jung, D. Torregrosa-Belen, and H. Wolkowicz. Preconditioning, numerical computa-
tions and the Omega-condition number. Technical report, University of Waterloo, Waterloo,
Canada, 2023 in progress. 31 pages. 27, 51

[29] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984. 39

53

[30] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational Math-
ematics and Mathematical Physics, 20(1):53–72, 1980. 39

[31] V. Klee and G.J. Minty. How good is the simplex algorithm. Inequalities, 3(3):159–175, 1972.
39

[32] A. Lent and Y. Censor. Extensions of Hildreth’s row-action method for quadratic programming.
SIAM J. Control Optim., 18(4):444–454, 1980. 33

[33] X. Li, D. Sun, and K.-C. Toh. Qsdpnal: a two-phase augmented lagrangian method for convex
quadratic semidefinite programming. Mathematical Programming Computation, 10(4):703–743,
2018. 34

[34] X. Li, D. Sun, and K.-C. Toh. An asymptotically superlinearly convergent semismooth Newton
augmented Lagrangian method for linear programming. SIAM J. Optim., 30(3):2410–2440,
2020. 3, 47

[35] L. Liang, X. Li, D. Sun, and K.-C. Toh. QPPAL: a two-phase proximal augmented Lagrangian
method for high-dimensional convex quadratic programming problems. ACM Trans. Math.
Software, 48(3):Art. 33, 27, 2022. 3, 32, 35, 51

[36] G. López, V. Mart́ın-Márquez, and H.-K. Xu. Halpern’s iteration for nonexpansive mappings.
In Nonlinear analysis and optimization I. Nonlinear analysis, volume 513 of Contemp. Math.,
pages 211–231. Amer. Math. Soc., Providence, RI, 2010. 33

[37] O.L. Mangasarian. Iterative solution of linear programs. SIAM J. Numer. Anal., 18(4):606–
614, 1981. 42

[38] O.L. Mangasarian. Normal solutions of linear programs. Number 22, pages 206–216. 1984.
Mathematical programming at Oberwolfach, II (Oberwolfach, 1983). 2, 40, 41, 42

[39] O.L. Mangasarian. A Newton method for linear programming. J. Optim. Theory Appl.,
121(1):1–18, 2004. 2, 40, 41, 42

[40] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e
edition, 2006. 24, 51

[41] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical programming,
58(1-3):353–367, 1993. 27

[42] H. Rademacher. Uber partielle und totale differenzierbarkeit i. Math. Ann., 89:340–359, 1919.
12

[43] R.T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton University
Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks. 4

[44] E. Sarabi. A characterization of continuous differentiability of proximal mappings of com-
posite functions. url: https://www.math.uwaterloo.ca/~hwolkowi/F22MOMworkshop.d/

FslidesSarabi.pdf, 10 2022. 24th Midwest Optimization Meeting, MOM24. 24

[45] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998. 39

54

https://www.math.uwaterloo.ca/~hwolkowi/F22MOMworkshop.d/FslidesSarabi.pdf
https://www.math.uwaterloo.ca/~hwolkowi/F22MOMworkshop.d/FslidesSarabi.pdf

[46] N.Z. Shor. Cut-off method with space extension in convex programming problems. Cybernetics,
13(1):94–96, 1977. 39

[47] M. Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third
edition, 2013. 19

[48] P.W. Smith and H. Wolkowicz. A nonlinear equation for linear programming. Mathematical
programming, 34(2):235–238, 1986. 2, 40, 41

[49] P.W. Smith and H. Wolkowicz. A nonlinear equation for linear programming. Math. Program-
ming, 34(2):235–238, 1986. 42

[50] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of semidefinite programming: theory,
algorithms, and applications, volume 27. Springer Science & Business Media, 2012. 4, 16

[51] S.J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathe-
matics, 1997. 40

[52] Y. Xiao, Y. Censor, D. Michalski, and J.M. Galvin. The least-intensity feasible solution for
aperture-based inverse planning in radiation therapy. Annals of Operations Research, 119:183–
203, 2003. 1

[53] Y. Xiao, J. Galvin, M. Hossain, and R. Valicenti. An optimized forward-planning technique
for intensity modulated radiation therapy. Medical Physics, 27(9):2093–2099, 2000. 1

[54] D.B. Yudin and A.S. Nemirovskii. Informational complexity and efficient methods for the
solution of convex extremal problems. Matekon, 13(2):22–45, 1976. 39

55

Appendix A

Pseudocodes for Generalized Simplex

The pseudocodes described in Algorithms 3.1, A.1 and A.2 solve (3.1) using the exact and inexact
nonsmooth Newton methods RNNM, and HLWB respectively.

Algorithm A.1 BAP of v for constraints Ax = b, x ≥ 0, inexact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. Primal-dual: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

δ ∈ (0, 1], ν ∈ [1 + δ
2 , 2], and a sequence θ such that θk ≥ 0 and supk∈N θk < 1

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ AiA

T
i +

∑
i∈Ī0

1
∥Ai∥2AiA

T
i

5: λ = (stopcrit)δ

6: V̄ = (Vk + λIm)
7: solve V̄ d = −Fk for Newton direction d such that residual ∥rk∥ ≤ θk ∥Fk∥ν
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while

56

Algorithm A.2 Extended HLWB algorithm

Require: v ∈ Rn, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. xk+1

2: Initialization. k ← 0, msweeps← 0 x0 ← max(v, 0), x̂0 ← x0, i0 = 1
stopcrit ← ∥Ax̂0 − b∥ /(1 + ∥b∥) (= ∥F0∥ /(1 + ∥b∥))

3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: if 1 ≤ ik ≤ m then

5: x̂k = xk +
bik−aTik

xk

∥aik∥
2 aik

6: else
7: x̂k = max(0, xk)
8: end if
9: updates

10: σk = 1
k+1

11: xk+1 ← σkv + (1− σk)x̂k
12: stopcrit ← ∥Ax̂k − b∥ /(1 + ∥b∥)
13: if k(mod m+ 1) = 0 then
14: msweeps = msweeps+ 1
15: end if
16: ik = k(mod m) + 1
17: k ← k + 1
18: end while

57

Appendix B

Additional Tables and Performance
Profiles

B.1 Nondegenerate Solutions

(a) tol = 10−2

(b) tol = 10−4

58

(a) tol = 10−14

Figure B.2: Performance Profiles for varying m for nondegenerate vertex solutions.

(a) tol = 10−2

(b) tol = 10−4

59

(a) tol = 10−14

Figure B.4: Performance Profiles for varying n for nondegenerate vertex solutions.

(a) tol = 10−2

(b) tol = 10−4

60

(a) tol = 10−14

Figure B.6: Performance Profiles for varying density for nondegenerate vertex solutions.

B.2 Degenerate Solutions

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
500 3000 8.1e-01 4.99e-02 1.83e-01 1.54e+02 3.80e+00 2.66e+01 2.88e-15 5.37e-17 2.25e-04 8.20e-17 3.07e-16
1000 3000 8.1e-01 4.64e-01 1.12e+00 3.71e+02 5.98e+00 3.63e+00 5.23e-18 4.35e-15 2.04e-04 6.42e-17 -2.20e-16
1500 3000 8.1e-01 3.45e+00 4.53e+00 6.14e+02 7.07e+00 8.61e+00 3.89e-18 2.28e-18 1.99e-04 2.02e-16 1.14e-16
2000 3000 8.1e-01 8.22e+00 8.02e+00 8.71e+02 1.94e+03 2.88e+01 1.27e-16 9.78e-17 2.16e-04 3.94e-18 -1.66e-16

Table B.1: Varying problem sizes m and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
200 3000 8.1e-01 2.52e-03 3.94e-02 4.40e+01 3.34e+00 9.36e+00 7.23e-18 2.71e-18 2.43e-04 3.53e-17 -8.12e-16
200 3500 8.1e-01 2.41e-03 3.81e-02 5.09e+01 5.16e+00 1.80e+01 2.69e-16 2.10e-18 2.70e-04 6.63e-16 -1.10e-15
200 4000 8.1e-01 3.17e-03 3.62e-02 5.87e+01 7.07e+00 1.13e+01 5.29e-18 2.77e-18 2.69e-04 4.69e-17 2.30e-15
200 4500 8.1e-01 3.49e-03 4.17e-02 6.57e+01 9.39e+00 2.43e+01 4.94e-18 1.90e-18 3.11e-04 5.94e-16 2.94e-15

Table B.2: Varying problem sizes n and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
300 1000 25 3.90e-02 4.37e-01 4.58e+01 3.25e-01 2.25e+00 5.12e-17 1.23e-17 1.34e-04 9.04e-16 -5.76e-16
300 1000 50 6.52e-02 3.55e-01 5.42e+01 3.24e-01 1.38e+01 2.54e-17 9.84e-16 1.49e-04 6.69e-18 -1.90e-15
300 1000 75 9.85e-02 2.94e-01 5.32e+01 3.33e-01 5.41e+01 3.76e-17 3.06e-16 1.54e-04 3.17e-17 4.48e-15
300 1000 100 1.50e-01 3.03e-01 4.79e+01 2.88e-01 2.96e+02 4.43e-17 2.01e-17 1.47e-04 1.42e-16 -9.59e-14

Table B.3: Varying problem density and comparing computation time with relative residual for
degenerate vertex solutions.

61

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.7: Performance Profiles for varying m for degenerate vertex solutions.

62

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.8: Performance Profiles for varying n for degenerate vertex solutions.

63

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.9: Performance Profiles for varying density for degenerate vertex solutions.

64

Index

(P − x)◦, polar cone of P at x, 28
0n, matrix of zeroes with dimension n by n, 2
0n, vector of zeroes with length n, 2
A†, Moore-Penrose pseudoinverse, 2
A1(I), submatrix of A with columns indexed by

I, 2
A1(J , I), submatrix of A with columns indexed

by I and rows indexed by J , 2
A(:,I), submatrix of A with columns indexed by

I, and all of the rows of A are used, 2
A(J ,:), submatrix of A with rows indexed by J ,

and all of the columns of A are used, 2
A(J ,I), submatrix of A with columns indexed by

I and rows indexed by J , 2
AI , submatrix of A with columns indexed by I,

2
I, identity matrix, 2
In, identity matrix of size Rn×n, 2
KA, conjugate cone to K with respect to A, 8
L-Lipschitz near x, 11
Lf (x, y, z), Lagrangian, 30
P , feasible set, 28
X, Euclidean space, 2
B(x, ε), open ball centered at x of radius ε, 2
Diag(x) : Rn → Rn×n, 2
diag(A) : Rn×n → Rn, 2
int(C), interior of C, 2
⟨·, ·⟩, inner product, 2
argminx f(x), minimizers of f , 8
ϕ(y, z), dual functional, 22, 30
relint(C), relative interior of C, 2
≻K , strict partial ordering on K, 6
⪰K , partial ordering on K, 6
d∗, optimal value of the Lagrangian dual, 10
d∗(v), 22
d∗f (v), 30
e, vector of all ones, 2
ei, vector of all zeroes except the ith entry, 2
f◦(x; d), generalized directional derivative, 11

ff (y), squared residual function, 29
m1 = m− n2, 31
p∗, optimal value of the primal, 10
p∗(v), optimal value, 22
p∗f (v), optimal value, 29

x(y) = (v +AT y)+ ∈ P , 28
x+ = (max{0, xi})ni=1, projection of the vector x

onto the nonnegative orthant, 2
x− = (min{(0, xi})ni=1, projection of the vector

x onto the nonpositive orthant, 2
U(y), 26
HLWB , Halpern-Lions-Wittmann-Bauschke, 32
LM, Levenberg-Marquardt, 3
LP lower bound, 46
QPPAL, quadratic programming proximal aug-

mented Lagrangian method, 3, 32
RNNM, regularized nonsmooth Newton method,

3
SNIPAL, semismooth Newton inexact proximal

augmented Lagrangian method, 3
SSEPF, stepping stones external path following

method, 3
lsc , lower semicontinuous, 5

active constraint, 13
affine, 4
anchor point, 32
asymptotic upper bound, 19

basic feasible solution, 14
basic solution, 14
best approximation problem, BAP, 1
big-O notation, 19

central path, 40
Clarke generalized derivative, 11
Clarke subdifferential, 11
coercive, 6
cone, 6
conjugate cone, 8

65

conjugate cone to K with respect to A, KA, 8
conjugate decomposition, 8
conjugate face, 7
constrained optimization problem, 9
constraint qualifications, 10
convex, 4
convex combination, 4
convex cone, 6
convex function, 5
convex hull, 5
convex optimization, 9

degenerate basic feasible solution, 15
degenerate basic solution, 15
descent direction, 8
distance function to C, dC(x), 7
dual LP, 15
dual attainment, 10
dual cone, 6
dual functional, 9
dual functional, ϕ(y, z), 22
dual functional, ϕf (y, z1), 29, 30
dual optimal pair, 10
dual problem, 22
dual variables, 9

efficient algorithm, 20
epigraph, 5
equality constraints, 9
Euclidean space, X, 2
exposed face of K, 7
exposing vector, 7
extreme point, 13

face of K, 7
facially exposed cone, 7
feasible descent direction, 9
feasible domain, 9
feasible set, P , 28
floating-point operations, 19
flops, 19

generalized directional derivative, 11
generalized gradient, 12
generalized inequalities, 6
generalized Jacobian, 12
generalized simplex best approximation problem,

22

half-spaces, 4
Halpern-Lions-Wittmann-Bauschke,HLWB , 32
hyperplanes, 4

identity matrix of size Rn×n, In, 2
identity matrix, I, 2
inequality constraints, 9
inner product, ⟨·, ·⟩, 2
interior of C, int(C), 2

Karush-Kuhn-Tucker, KKT, 10
KKT optimality conditions, 30
KKT, Karush-Kuhn-Tucker, 10

Lagrange dual function, 9
Lagrange multipliers, 9
Lagrangian, 9
Lagrangian dual problem, 10
Lagrangian, Lf (x, y, z), 30
Levenberg-Marquardt, LM , 24
Levenberg-Marquardt, LM, 3
linear program, 14
lower semicontinuous, lsc , 5

matrix of zeroes with dimension n by n, 0n, 2
minimal face, 7
minimizers of f , argminx f(x), 8
minimum norm solution, 42
Moore-Penrose pseudoinverse, A†, 2

normal cone, 7

objective function, 9
open ball centered at x of radius ε, B(x, ε), 2
optimal Lagrange multipliers, 10
optimal primal-dual solution, (x∗, λ∗, µ∗), 11
optimal value of the Lagrangian dual, d∗, 10
optimal value of the primal, p∗, 10
optimal value, p∗f (v), 29
optimality gap, 10

partial ordering on K, ⪰K , 6
pointed cone, 6
polar cone, 7
polar cone of P at x, (P − x)∗, 28
polyhedron, 13
polynomial time algorithm, 20
primal LP, 15
primal optimal value, 22

66

primal problem, 10
primal-dual pair, 10
projection, 7
projection methods, 32
projection of the vector x onto the nonnegative

orthant, x+ = (max{0, xi})ni=1, 2
projection of the vector x onto the nonpositive

orthant, x− = (min{(0, xi})ni=1, 2
projection operator, PC(x), 7
proper, 5
proper cone, 6
proper face, 7

quadratic programming proximal augmented La-
grangian method, QPPAL, 3, 32

regularized nonsmooth Newton method,RNNM,
3

relative interior of C, relint(C), 2

self-dual cone, 6
semismooth Newton inexact proximal augmented

Lagrangian method, SNIPAL , 3
semismooth Newton inexact proximal augmented

Lagrangian method, SNIPAL, 47
Slater point, 10
Slater’s condition, 10
squared residual function, ff (y), 29
standard equality form, 14
steering sequence, 33
stepping stone, 45
stepping stones external path following algorithm,

(SSEPF), 47
stepping stones external path following method,

SSEPF, 3
strict partial ordering on K, ≻K , 6
strictly convex, 5
strictly feasible, 10
strong duality, 10
subdifferential, 5
subgradient, 5
submatrix of A with columns indexed by I and

rows indexed by J , A1(J , I), 2
submatrix of A with columns indexed by I and

rows indexed by J , A(J ,I), 2
submatrix ofA with columns indexed by I, A1(I),

2

submatrix of A with columns indexed by I, AI ,
2

submatrix of A with columns indexed by I, and
all of the rows of A are used, A(:,I), 2

submatrix of A with rows indexed by J , and all
of the columns of A are used, A(J ,:), 2

time complexity, 19

unconstrained convex optimization problem, 8

vector of all ones, e, 2
vector of all zeroes except the ith entry, ei, 2
vector of zeroes with length n, 0n, 2
vertex, 13

weak duality, 10

zero optimality gap, 10

67

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Notation
	Contributions and Organization

	Background
	Convex Analysis Background
	Convex Sets
	Convex Functions
	Cones and Faces
	Projections
	Unconstrained Optimization
	Constrained Optimization

	Nonsmooth Analysis Background
	Generalized Gradient

	Linear Programming
	Extreme points and Basic Feasible Solutions
	Degeneracy
	Duality
	Theorem of the Alternative

	Time Complexity

	Solving the BAP with a Regularized Nonsmooth Newton Method, RNNM
	Basic theory of the BAP
	Nonlinear Least Squares
	Well Conditioned Generalized Jacobian
	Vertices and Dual Cones
	Projection and Free variables
	Projection with Free Variables

	Numerics for Best Approximation Problem
	The Halpern-Lions-Wittmann-Bauschke method, HLWB
	Time Complexity of RNNM and HLWB

	Quadratic Programming Proximal Augmented Lagrangian method, QPPAL
	Comparison of Algorithms for solving the BAP
	Numerical Comparisons

	Theoretical Background for Linear Programming
	Optimality Conditions
	An External Path Following Algorithm for Solving Linear Programs
	Exploiting Sensitivity Analysis to Warm Start the BAP
	Upper and Lower Bounds for the LP Problem

	Solving Large Sparse Linear Programs

	Conclusion
	References

	Pseudocodes for Generalized Simplex
	Additional Tables and Performance Profiles
	Nondegenerate Solutions
	Degenerate Solutions

	Index

