%%%Please try these commands. a=[1 2 3] a = 1 2 3 format compact % to suppress blank lines (format loose) % more on (more off) c=[4;5;6] c = 4 5 6 a*c % equivalent to inner product ans = 32 dot(a,c) % inner product ans = 32 A=c*a % outer product A = 4 8 12 5 10 15 6 12 18 b=a.^2 % . for elementwise b = 1 4 9 a.*b ans = 1 8 27 a = 1 2 3 exp(a) % function that acts on array ans = 2.7183 7.3891 20.0855 log(ans) ans = 1 2 3 sqrt(a) ans = 1.0000 1.4142 1.7321 format long sqrt(a) ans = 1.000000000000000 1.414213562373095 1.732050807568877 format short format % format short 2^(-24) ans = 5.9605e-008 A=reshape([1:9],3,3) A = 1 4 7 2 5 8 3 6 9 sqrt(A) ans = 1.0000 2.0000 2.6458 1.4142 2.2361 2.8284 1.7321 2.4495 3.0000 sqrtm(A) ans = 0.4498 + 0.7623i 1.0185 + 0.0842i 1.5873 - 0.5940i 0.5526 + 0.2068i 1.2515 + 0.0228i 1.9503 - 0.1611i 0.6555 - 0.3487i 1.4844 - 0.0385i 2.3134 + 0.2717i ans*ans ans = 1.0000 + 0.0000i 4.0000 + 0.0000i 7.0000 + 0.0000i 2.0000 + 0.0000i 5.0000 + 0.0000i 8.0000 - 0.0000i 3.0000 + 0.0000i 6.0000 - 0.0000i 9.0000 - 0.0000i sum(b), mean(c) ans = 14 ans = 5 y=pi % pi special variable y = 3.1416 y=tan(pi/6); B=[2 0 -1;2 5 7;-1 4 8] % form rows B = 2 0 -1 2 5 7 -1 4 8 x=B\c % solve equation x = 5.2727 -10.2727 6.5455 norm(B*x-c) % check residual ans = 7.1607e-015 B=[-3 0 1;2 5 -7;-1 4 8] B = -3 0 1 2 5 -7 -1 4 8 x=B\c x = -1.3717 1.3874 -0.1152 norm(B*x-c) ans = 0 eig(B) ans = -2.8601 6.4300 + 5.0434i 6.4300 - 5.0434i [V,D]=eig(B) V = 0.9823 -0.0400 - 0.0404i -0.0400 + 0.0404i -0.1275 0.7922 0.7922 0.1374 -0.1733 - 0.5823i -0.1733 + 0.5823i D = -2.8601 0 0 0 6.4300 + 5.0434i 0 0 0 6.4300 - 5.0434i w=2:3:10, y=1:-.25:0 w = 2 5 8 y = 1.0000 0.7500 0.5000 0.2500 0 C=[A,[8;9;10]],D=[B;a] % forming larger matrices from matrices C = 4 8 12 8 5 10 15 9 6 12 18 10 D = -3 0 1 2 5 -7 -1 4 8 1 2 3 C(2,3) ans = 15 C(2:3,1:2) ans = 5 10 6 12 I3=eye(3), Z=zeros(5,3), O=ones(2,1) I3 = 1 0 0 0 1 0 0 0 1 Z = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O = 1 1 lookfor elliptic ellipj - Jacobi elliptic functions. ellipke - Complete elliptic integral. pdepe - Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D. iirautoscaledemo - Fixed-Point Scaling of an Elliptic IIR Filter ellipk - Complete elliptic integral of first kind. ellip - Elliptic or Cauer digital and analog filter design. ellipdeg - Solves the degree equation in analog elliptic filter design. ellipap - Elliptic analog lowpass filter prototype. sne - sn elliptic function with normalized complex argument. ellipord - Elliptic filter order selection. asne - Inverse of sn elliptic function. acde - Inverse of cd elliptic function. cde - cd elliptic function with normalized complex argument. fdellip - Elliptic Module for filtdes. >> quit