Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions

Nathan Krislock, Henry Wolkowicz

Department of Combinatorics & Optimization University of Waterloo

Southern Ontario Numerical Analysis Day May 8, 2009

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- 3 Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- 3 Algorithm
 - Clique Unions and Node Absorptions
 - Results

Motivation

Many applications use wireless sensor networks:

 natural habitat monitoring, weather monitoring, disaster relief operations, ...

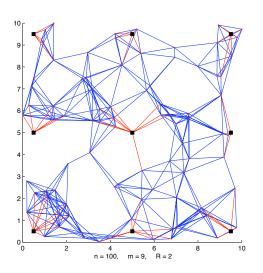
The Sensor Network Localization (SNL) Problem

Given:

- Distances between sensors within a fixed radio range
- Positions of some fixed sensors (called anchors)

Goal:

Determine locations of sensors



Notation

- $p_1, \ldots, p_{n-m} \in \mathbb{R}^r$ unknown points (sensors)
- $a_1, \ldots, a_m \in \mathbb{R}^r$ known points (anchors)
 - anchors also labeled p_{n-m+1}, \dots, p_n

$$P = \begin{bmatrix} p_1^T \\ \vdots \\ p_n^T \end{bmatrix} = \begin{bmatrix} X \\ A \end{bmatrix} \in \mathbb{R}^{n \times r}$$

- r embedding dimension (usually 2 or 3)
- Assumptions: *n* >> *m* > *r*
- R > 0 radio range

Graph Realization

- G = (V, E, w) underlying weighted graph
 - $V = \{1, ..., n\}$
 - $(i,j) \in E$ if $w_{ij} = ||p_i p_j||$ is known
- Anchors form clique
- SNL problem \equiv find realization of graph in \mathbb{R}^r

Euclidean Distance Matrix (EDM) Completion

• $D_p \in S^n$ - partial EDM:

$$(D_p)_{ij} = \begin{cases} ||p_i - p_j||^2 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

• SNL problem \equiv find EDM completion with embed. dim. = r

Graph Realization

- G = (V, E, w) underlying weighted graph
 - $V = \{1, ..., n\}$
 - $(i,j) \in E$ if $w_{ij} = ||p_i p_j||$ is known
- Anchors form clique
- SNL problem \equiv find realization of graph in \mathbb{R}^r

Euclidean Distance Matrix (EDM) Completion

• $D_p \in \mathcal{S}^n$ - partial EDM:

$$(D_p)_{ij} = \left\{ egin{array}{ll} \|p_i - p_j\|^2 & ext{if } (i, j) \in E \\ 0 & ext{otherwise} \end{array} \right.$$

• SNL problem \equiv find EDM completion with embed. dim. = r

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- 3 Algorithm
 - Clique Unions and Node Absorptions
 - Results

Linear Transformation K

• If *D* is an EDM with embed. dim. *r* given by $P \in \mathbb{R}^{n \times r}$, then:

$$D_{ij} = \|p_i - p_j\|^2 = p_i^T p_i + p_j^T p_j - 2p_i^T p_j$$

$$= \left(\operatorname{diag}(PP^T)e^T + \operatorname{ediag}(PP^T)^T - 2PP^T\right)_{ij}$$

$$= \mathcal{K}(PP^T)_{ij}$$

• Thus $D = \mathcal{K}(Y)$, where:

$$\mathcal{K}(Y) := \operatorname{diag}(Y)e^T + e\operatorname{diag}(Y)^T - 2Y$$
 and $Y := PP^T$

- $Y = PP^T$ is positive semidefinite $(Y \in S^n_+ \text{ or } Y \succeq 0)$, rank(Y) = r
- \mathcal{K} maps the semidefinite cone, \mathcal{S}_{+}^{n} , onto the EDM cone, \mathcal{E}^{n}

Linear Transformation K

• If *D* is an EDM with embed. dim. *r* given by $P \in \mathbb{R}^{n \times r}$, then:

$$D_{ij} = \|p_i - p_j\|^2 = p_i^T p_i + p_j^T p_j - 2p_i^T p_j$$

$$= \left(\operatorname{diag}(PP^T)e^T + \operatorname{ediag}(PP^T)^T - 2PP^T\right)_{ij}$$

$$= \mathcal{K}(PP^T)_{ij}$$

• Thus $D = \mathcal{K}(Y)$, where:

$$\mathcal{K}(Y) := \operatorname{diag}(Y)e^T + \operatorname{ediag}(Y)^T - 2Y$$
 and $Y := PP^T$

- $Y = PP^T$ is positive semidefinite $(Y \in S^n_+ \text{ or } Y \succeq 0)$, rank(Y) = r
- K maps the semidefinite cone, S_+^n , onto the EDM cone, \mathcal{E}^n

Linear Transformation K

• If *D* is an EDM with embed. dim. *r* given by $P \in \mathbb{R}^{n \times r}$, then:

$$D_{ij} = \|p_i - p_j\|^2 = p_i^T p_i + p_j^T p_j - 2p_i^T p_j$$

$$= \left(\operatorname{diag}(PP^T)e^T + \operatorname{ediag}(PP^T)^T - 2PP^T\right)_{ij}$$

$$= \mathcal{K}(PP^T)_{ij}$$

• Thus $D = \mathcal{K}(Y)$, where:

$$\mathcal{K}(Y) := \operatorname{diag}(Y)e^T + \operatorname{ediag}(Y)^T - 2Y$$
 and $Y := PP^T$

- $Y = PP^T$ is positive semidefinite ($Y \in S^n_+$ or $Y \succeq 0$), rank(Y) = r
- \mathcal{K} maps the semidefinite cone, \mathcal{S}_{+}^{n} , onto the EDM cone, \mathcal{E}^{n}

Properties of K

$$\mathcal{S}_{\mathcal{C}} := \{ Y \in \mathcal{S}^n : Ye = 0 \}$$
 and $\mathcal{S}_{\mathcal{H}} := \{ D \in \mathcal{S}^n : \operatorname{diag}(D) = 0 \}$

- $\mathcal{K}(Y) = \operatorname{diag}(Y)e^T + \operatorname{ediag}(Y)^T 2Y$ \Longrightarrow range(\mathcal{K}) = \mathcal{S}_H
- For $D \in \mathcal{S}_H$ we have $\left[\mathcal{K}^{\dagger}(D) = -\frac{1}{2}JDJ \right]$ where $J := I \frac{1}{n}ee^T$ is the orthogonal projection onto $\{e\}^{\perp}$
- \mathcal{K} and \mathcal{K}^{\dagger} are one-to-one and onto:

$$\mathcal{K}^{\dagger}(\mathcal{S}_H) = \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}_C) = \mathcal{S}_H$

$$\mathcal{K}^{\dagger}(\mathcal{E}^n) = \mathcal{S}_+^n \cap \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}_2^n)$

Properties of K

$$\mathcal{S}_{\mathcal{C}} := \{ Y \in \mathcal{S}^n : Ye = 0 \}$$
 and $\mathcal{S}_{\mathcal{H}} := \{ D \in \mathcal{S}^n : \operatorname{diag}(D) = 0 \}$

- $\mathcal{K}(Y) = \operatorname{diag}(Y)e^T + \operatorname{ediag}(Y)^T 2Y$ \implies range(\mathcal{K}) = \mathcal{S}_H
- For $D \in \mathcal{S}_H$ we have $\mathcal{K}^{\dagger}(D) = -\frac{1}{2}JDJ$ where $J := I \frac{1}{n}ee^T$ is the orthogonal projection onto $\{e\}^{\perp}$
- \mathcal{K} and \mathcal{K}^{\dagger} are one-to-one and onto:

$$\mathcal{K}^{\dagger}(\mathcal{S}_H) = \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}_C) = \mathcal{S}_H$

$$\mathcal{K}^{\dagger}(\mathcal{E}^n) = \mathcal{S}_+^n \cap \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}_+^n \cap \mathcal{S}_C) = \mathcal{E}^n$

Properties of K

$$\mathcal{S}_{\mathcal{C}} := \{ Y \in \mathcal{S}^n : Ye = 0 \}$$
 and $\mathcal{S}_{\mathcal{H}} := \{ D \in \mathcal{S}^n : \operatorname{diag}(D) = 0 \}$

- $\mathcal{K}(Y) = \operatorname{diag}(Y)e^T + e\operatorname{diag}(Y)^T 2Y$ \implies range(\mathcal{K}) = \mathcal{S}_H
- For $D \in \mathcal{S}_H$ we have $\left[\mathcal{K}^{\dagger}(D) = -\frac{1}{2}JDJ \right]$ where $J := I \frac{1}{n}ee^T$ is the orthogonal projection onto $\{e\}^{\perp}$
- ullet ${\cal K}$ and ${\cal K}^\dagger$ are one-to-one and onto:

$$\mathcal{K}^{\dagger}(\mathcal{S}_H) = \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}_C) = \mathcal{S}_H$

$$\mathcal{K}^{\dagger}(\mathcal{E}^n) = \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}^n_+ \cap \mathcal{S}_C) = \mathcal{E}^n$

Properties of K

$$\mathcal{S}_{\mathcal{C}} := \{ Y \in \mathcal{S}^n : Ye = 0 \}$$
 and $\mathcal{S}_{\mathcal{H}} := \{ D \in \mathcal{S}^n : \operatorname{diag}(D) = 0 \}$

- $\mathcal{K}(Y) = \operatorname{diag}(Y)e^T + \operatorname{ediag}(Y)^T 2Y$ \implies range(\mathcal{K}) = \mathcal{S}_H
- For $D \in \mathcal{S}_H$ we have $\mathcal{K}^{\dagger}(D) = -\frac{1}{2}JDJ$ where $J := I \frac{1}{n}ee^T$ is the orthogonal projection onto $\{e\}^{\perp}$
- \mathcal{K} and \mathcal{K}^{\dagger} are one-to-one and onto:

$$\mathcal{K}^{\dagger}(\mathcal{S}_H) = \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}_C) = \mathcal{S}_H$

$$\mathcal{K}^\dagger(\mathcal{E}^n) = \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 and $\mathcal{K}(\mathcal{S}^n_+ \cap \mathcal{S}_C) = \mathcal{E}^n$

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{l} \|p_i - p_j\|^2 = (D_p)_{ij}, \quad \forall (i,j) \in \mathcal{E} \\ \|p_i - p_j\|^2 \geq R^2, \quad \forall (i,j) \notin \mathcal{E} \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 such that
$$\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{l} \|p_i - p_j\|^2 = (D_p)_{ij}, \quad \forall (i,j) \in \mathcal{E} \\ \|p_i - p_j\|^2 \geq R^2, \quad \forall (i,j) \notin \mathcal{E} \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{l} \|p_i - p_j\|^2 = (D_p)_{ij}, \quad \forall (i,j) \in \mathcal{E} \\ \|p_i - p_j\|^2 \geq R^2, \quad \forall (i,j) \notin \mathcal{E} \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{l} \|p_i - p_j\|^2 = (D_p)_{ij}, \quad \forall (i,j) \in \mathcal{E} \\ \|p_i - p_j\|^2 \geq R^2, \quad \forall (i,j) \notin \mathcal{E} \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{C}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_{p} \\ H \circ \mathcal{K}(Y) \geq R^{2} \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Faces of the Semidefinite Cone

• A cone $\mathcal{F} \subseteq \mathcal{S}^n_+$ is a face of \mathcal{S}^n_+ (denoted $\mathcal{F} \unlhd \mathcal{S}^n_+$) if

$$X, Y \in \mathcal{S}^n_+$$
 and $\frac{1}{2}(X + Y) \in \mathcal{F} \implies X, Y \in \mathcal{F}$

• If $S \subseteq \mathcal{S}^n_+$, then $\mathrm{face}(S)$ is the smallest face of \mathcal{S}^n_+ containing S

Representing Faces of \mathcal{S}^n_+

If $\mathcal{F} \subseteq \mathcal{S}^n_+$ and $X \in \operatorname{relint}(\mathcal{F})$ with $\operatorname{rank}(X) = t$, then

$$\mathcal{F} = U\mathcal{S}_+^t U^{7}$$

where $X = U \Lambda U^T$ is the compact eigenvalue decomp. with $U \in \mathbb{R}^{n \times t}$

Faces of the Semidefinite Cone

• A cone $\mathcal{F} \subseteq \mathcal{S}^n_+$ is a face of \mathcal{S}^n_+ (denoted $\mathcal{F} \unlhd \mathcal{S}^n_+$) if

$$X, Y \in \mathcal{S}^n_+$$
 and $\frac{1}{2}(X + Y) \in \mathcal{F}$ \Longrightarrow $X, Y \in \mathcal{F}$

• If $S \subseteq S_+^n$, then face(S) is the smallest face of S_+^n containing S

Representing Faces of S^n_+

If $\mathcal{F} \subseteq \mathcal{S}^n_+$ and $X \in \operatorname{relint}(\mathcal{F})$ with $\operatorname{rank}(X) = t$, then

$$\mathcal{F} = U\mathcal{S}_+^t U^T$$

where $X = U \wedge U^T$ is the compact eigenvalue decomp. with $U \in \mathbb{R}^{n \times t}$

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

Theorem: Single Clique Reduction

Let:

• D_p be a partial EDM such that

$$D_p = \begin{bmatrix} \overline{D} & \cdot \\ \hline \cdot & \cdot \end{bmatrix}$$
, for some $\overline{D} \in \mathcal{E}^k$ with embed. dim. $t \leq r$

- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[1:k]) = \overline{D} \}$ (contains SDP feas. set)
- $B := \mathcal{K}^{\dagger}(\bar{D})$ has eigenvectors $\bar{U} \in \mathbb{R}^{k \times t}$ (Note: rank(B) = t)
- $U := \begin{bmatrix} \overline{U} & \frac{1}{\sqrt{k}}e & 0 \\ \hline 0 & 0 & I_{n-k} \end{bmatrix}$ and $\begin{bmatrix} V & \frac{U^Te}{\|U^Te\|} \end{bmatrix}$ be orthogonal

Then: face(
$$F$$
) = $\left(US_{+}^{n-k+t+1}U^{T}\right) \cap S_{C} = (UV)S_{+}^{n-k+t}(UV)^{T}$

Theorem: Single Clique Reduction

Let:

• D_p be a partial EDM such that

$$D_p = \begin{bmatrix} \overline{D} & \cdot \\ \hline \cdot & \cdot \end{bmatrix}$$
, for some $\overline{D} \in \mathcal{E}^k$ with embed. dim. $t \leq r$

- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[1:k]) = \overline{D} \}$ (contains SDP feas. set)
- $B := \mathcal{K}^{\dagger}(\bar{D})$ has eigenvectors $\bar{U} \in \mathbb{R}^{k \times t}$ (Note: rank(B) = t)
- $U := \begin{bmatrix} \overline{U} & \frac{1}{\sqrt{k}}e & 0 \\ \hline 0 & 0 & I_{n-k} \end{bmatrix}$ and $\begin{bmatrix} V & \frac{U^Te}{\|U^Te\|} \end{bmatrix}$ be orthogonal

Then: face(
$$F$$
) = $\left(US_{+}^{n-k+t+1}U^{T}\right) \cap S_{C} = (UV)S_{+}^{n-k+t}(UV)^{T}$

Theorem: Single Clique Reduction

Let:

D_p be a partial EDM such that

$$D_p = \begin{bmatrix} \overline{D} & \cdot \\ \hline \cdot & \cdot \end{bmatrix}$$
, for some $\overline{D} \in \mathcal{E}^k$ with embed. dim. $t \leq r$

- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[1:k]) = \overline{D} \}$ (contains SDP feas. set)
- $B := \mathcal{K}^{\dagger}(\bar{D})$ has eigenvectors $\bar{U} \in \mathbb{R}^{k \times t}$ (Note: rank(B) = t)
- $U := \begin{bmatrix} \overline{U} & \frac{1}{\sqrt{k}}e & 0 \\ \hline 0 & 0 & I_{n-k} \end{bmatrix}$ and $\begin{bmatrix} V & \frac{U^Te}{\|U^Te\|} \end{bmatrix}$ be orthogonal

Then:
$$\operatorname{face}(F) = \left(US_+^{n-k+t+1}U^T\right) \cap S_C = (UV)S_+^{n-k+t}(UV)^T$$

Corollary: Two Clique Reduction

Let $D \in \mathcal{E}^n$ with embed. dim. r. Let $\alpha_1, \alpha_2 \subseteq 1 : n$ and $k := |\alpha_1 \cup \alpha_2|$.

- $t_i :=$ embed. dim. of $D[\alpha_i] \in \mathcal{E}^{k_i}$
- $F_i := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[\alpha_i]) = D[\alpha_i] \}$ (contains SDP feas. set)
- face $(F_i) =: \left(U_i \mathcal{S}_+^{n-k_i+t_i+1} U_i^T\right) \cap \mathcal{S}_C$

Let

- $U \in \mathbb{R}^{n \times t}$ full column rank s.t. $\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$
- $V = \frac{U^T e}{\|U^T e\|}$ be orthogonal

Then:
$$\operatorname{face}(F_1 \cap F_2) = \left(US_+^{n-k+t+1}U^T\right) \cap S_C = (UV)S_+^{n-k+t}(UV)^T$$

Corollary: Two Clique Reduction

Let $D \in \mathcal{E}^n$ with embed. dim. r. Let $\alpha_1, \alpha_2 \subseteq 1 : n$ and $k := |\alpha_1 \cup \alpha_2|$. For i = 1, 2 let:

- $t_i :=$ embed. dim. of $D[\alpha_i] \in \mathcal{E}^{k_i}$
- $F_i := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[\alpha_i]) = D[\alpha_i] \}$ (contains SDP feas. set)
- face $(F_i) =: \left(U_i \mathcal{S}_+^{n-k_i+t_i+1} U_i^T\right) \cap \mathcal{S}_C$

Let:

- $U \in \mathbb{R}^{n \times t}$ full column rank s.t. $\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$
- $V = \frac{U^T e}{\|U^T e\|}$ be orthogonal

Then:
$$face(F_1 \cap F_2) = (US_+^{n-k+t+1}U^T) \cap S_C = (UV)S_+^{n-k+t}(UV)^T$$

Corollary: Two Clique Reduction

Let $D \in \mathcal{E}^n$ with embed. dim. r. Let $\alpha_1, \alpha_2 \subseteq 1 : n$ and $k := |\alpha_1 \cup \alpha_2|$. For i = 1, 2 let:

- $t_i :=$ embed. dim. of $D[\alpha_i] \in \mathcal{E}^{k_i}$
- $F_i := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[\alpha_i]) = D[\alpha_i] \}$ (contains SDP feas. set)
- face $(F_i) =: \left(U_i \mathcal{S}_+^{n-k_i+t_i+1} U_i^T\right) \cap \mathcal{S}_C$

Let:

- $U \in \mathbb{R}^{n \times t}$ full column rank s.t. $\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$
- $V \frac{U^T e}{\|U^T e\|}$ be orthogonal

Then: face $(F_1 \cap F_2) = (US_+^{n-k+t+1}U^T) \cap S_C = (UV)S_+^{n-k+t}(UV)^T$

Corollary: Two Clique Reduction

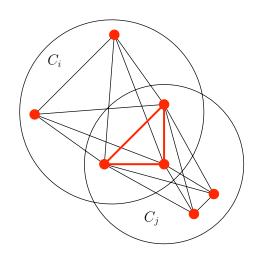
Let $D \in \mathcal{E}^n$ with embed. dim. r. Let $\alpha_1, \alpha_2 \subseteq 1 : n$ and $k := |\alpha_1 \cup \alpha_2|$. For i = 1, 2 let:

- $t_i :=$ embed. dim. of $D[\alpha_i] \in \mathcal{E}^{k_i}$
- $F_i := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[\alpha_i]) = D[\alpha_i] \}$ (contains SDP feas. set)
- face $(F_i) =: \left(U_i \mathcal{S}_+^{n-k_i+t_i+1} U_i^T\right) \cap \mathcal{S}_C$

Let:

- $U \in \mathbb{R}^{n \times t}$ full column rank s.t. $\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$
- $\left[V \quad \frac{U^T e}{\|U^T e\|}\right]$ be orthogonal

Then:
$$\operatorname{face}(F_1 \cap F_2) = \left(US_+^{n-k+t+1}U^T\right) \cap S_C = (UV)S_+^{n-k+t}(UV)^T$$



Subspace Intersection for Two Intersecting Cliques

Suppose:

$$U_1 = \begin{bmatrix} U_1' & 0 \\ U_1'' & 0 \\ 0 & I \end{bmatrix} \quad \text{and} \quad U_2 = \begin{bmatrix} I & 0 \\ 0 & U_2'' \\ 0 & U_2' \end{bmatrix}$$

Then:

$$U := \begin{bmatrix} U_1' \\ U_1'' \\ U_2'(U_2'')^{\dagger}U_1'' \end{bmatrix} \quad \text{or} \quad U := \begin{bmatrix} U_1'(U_1'')^{\dagger}U_2'' \\ U_2'' \\ U_2' \end{bmatrix}$$

Satisfies:

$$\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$$

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

Completing the EDM

Completing the EDM and Finding Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $\bullet \ F := \left\{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \right\}$
- face(F) =: $(UV)S_+^r(UV)^T$

If $D_p[\beta]$ is complete with embed. dim. r then:

- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_{\rho}[\beta])$ has a unique solution Z
- $D = \mathcal{K}(PP^T)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

Completing the EDM

Completing the EDM and Finding Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \}$
- face(F) =: $(UV)S_+^r(UV)^T$

If $D_p[\beta]$ is complete with embed. dim. r then:

- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_p[\beta])$ has a unique solution Z
- $D = \mathcal{K}\left(PP^{T}\right)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

Completing the EDM

Rotate to Align the Anchor Positions

- Given $P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \in \mathbb{R}^{n \times r}$ such that $D = \mathcal{K}(PP^T)$
- Solve the orthogonal Procrustes problem:

min
$$||A - P_2 Q||$$

s.t. $Q^T Q = I$

using SVD (Golub/Van Loan, Algorithm 12.4.1)

Set X := P₁Q

Outline

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- 3 Algorithm
 - Clique Unions and Node Absorptions
 - Results

Initialize

$$C_i := \left\{ j : (D_p)_{ij} < (R/2)^2 \right\}, \quad \text{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bounds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorption (lower bounds)

Finalize

When there is a clique containing all the anchors, use the computed facial representation and the positions of the anchors to solve for \boldsymbol{X}

Initialize

$$C_i := \left\{ j : (D_p)_{ij} < (R/2)^2 \right\}, \quad \text{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bounds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorption (lower bounds)

Finalize

When there is a clique containing all the anchors, use the computed facial representation and the positions of the anchors to solve for X

Initialize

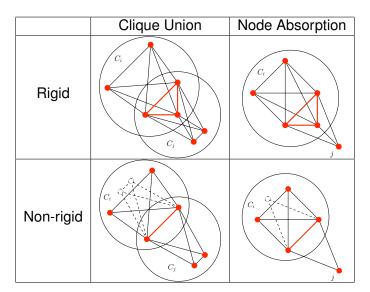
$$C_i := \left\{ j : (D_p)_{ij} < (R/2)^2 \right\}, \quad \text{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bounds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorption (lower bounds)

Finalize

When there is a clique containing all the anchors, use the computed facial representation and the positions of the anchors to solve for X



Outline

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Completing the EDM
- 3 Algorithm
 - Clique Unions and Node Absorptions
 - Results

Results

Rigid Clique Union Rigid Clique Union and Node Absorption

n/R	0.7	0.6	0.5	0.4
2000	1	7	91	362
4000	1	1	1	16
6000	1	1	1	1
8000	1	1	1	1
10000	1	1	1	1

ſ	n/R	0.7	0.6	0.5	0.4
ſ	2000	1	1	2	78
	4000	1	1	1	1
İ	6000	1	1	1	1
İ	8000	1	1	1	1
l	10000	1	1	1	1

Remaining Cliques

n/R	0.7	0.6	0.5	0.4
2000	4.8	4.6	4.2	4.1
4000	9.2	9.4	9.1	9.2
6000	16.0	14.7	15.3	14.9
8000	22.9	22.5	20.9	21.0
10000	38.3	32.7	29.1	30.7

Remaining Cliques

n/R	0.7	0.6	0.5	0.4
2000	4.9	4.9	6.1	13.2
4000	9.2	9.5	9.1	9.8
6000	16.1	15.1	15.1	14.8
8000	22.7	22.4	21.0	21.3
10000	32.5	32.4	28.8	30.6

CPU Seconds

	n/R	0.7	0.6	0.5	0.4
	2000	-10.1	-10.8	_	_
	4000	-10.9	-11.0	-10.5	-9.6
	6000	-11.6	-10.7	-10.6	-10.0
ı	8000	-11.1	-11.0	-10.7	-9.2
ı	10000	-11.0	-11.0	-10.2	-10.4

CPU Seconds

n/R	0.7	0.6	0.5	0.4
2000	-10.1	-10.8	-9.8	-8.8
4000	-10.9	-11.0	-10.5	-9.6
6000	-11.6	-10.7	-10.6	-10.0
8000	-11.1	-11.0	-10.7	-9.2
10000	-11.0	-11.0	-10.2	-10.4

Max log(Error)

Max log(Error)

Summary

- SDP relaxation of SNL is highly degenerate: The feasible set of this SDP is restricted to a low dimensional face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of the faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation (except for round-off error from computing eigenvectors, etc.)

Summary

- SDP relaxation of SNL is highly degenerate: The feasible set of this SDP is restricted to a low dimensional face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of the faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation (except for round-off error from computing eigenvectors, etc.)

Summary

- SDP relaxation of SNL is highly degenerate: The feasible set of this SDP is restricted to a low dimensional face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of the faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation (except for round-off error from computing eigenvectors, etc.)