Explicit Sensor Network Localization using Semidefinite Representations and Clique Reductions

Nathan Krislock, Henry Wolkowicz

Department of Combinatorics & Optimization University of Waterloo

ISMP, Chicago August 25, 2009

Introduction

The Sensor Network Localization (SNL) Problem

Given:

- Distances between sensors within a fixed radio range
- Positions of some fixed sensors (called anchors)

Goal:

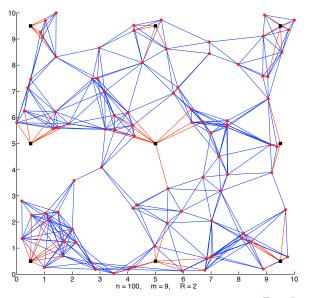
Determine locations of sensors

Motivation

Many applications use wireless sensor networks:

• natural habitat monitoring, weather monitoring, tracking of goods, random deployment in inaccessible terrains, surveillance, . . .

Introduction



- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

Introduction

Notation

- $p_1, \ldots, p_{n-m} \in \mathbb{R}^r$ unknown points (sensors)
- $a_1, \ldots, a_m \in \mathbb{R}^r$ known points (anchors)
 - anchors also labeled p_{n-m+1}, \ldots, p_n

$$P = \begin{bmatrix} p_1^T \\ \vdots \\ p_n^T \end{bmatrix} = \begin{bmatrix} X \\ A \end{bmatrix} \in \mathbb{R}^{n \times r}$$

- r embedding dimension (usually 2 or 3)
- R > 0 radio range

Introduction

Graph Realization

- G = (N, E, w) underlying weighted graph
 - $N = \{1, ..., n\}$
 - $(i,j) \in E$ if $w_{ij} = ||p_i p_j|| < R$
- SNL problem \equiv find realization of graph in \mathbb{R}^r

Euclidean Distance Matrix (EDM) Completion

• $D_p \in S^n$ - partial EDM:

$$(D_p)_{ij} = \begin{cases} \|p_i - p_j\|^2 & \text{if } (i,j) \in E \\ ? & \text{otherwise} \end{cases}$$

• SNL problem \equiv find EDM completion with embed. dim. = r

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

Linear Transformation K

• If *D* is an EDM with embed. dim. *r* given by $P \in \mathbb{R}^{n \times r}$, then:

$$D_{ij} = \|p_i - p_j\|^2 = p_i^T p_i + p_j^T p_j - 2p_i^T p_j$$

$$= \left(\operatorname{diag}(PP^T)e^T + e\operatorname{diag}(PP^T)^T - 2PP^T\right)_{ij}$$

$$= \mathcal{K}(PP^T)_{ij}$$

• Thus $D = \mathcal{K}(Y)$, where:

$$\mathcal{K}(Y) := \operatorname{diag}(Y)e^T + e\operatorname{diag}(Y)^T - 2Y$$
 and $Y := PP^T$

- $Y = PP^T$ is positive semidefinite, rank(Y) = r
- K maps the semidefinite cone, S_+^n , onto the EDM cone, \mathcal{E}^n

Linear Transformation K

• If *D* is an EDM with embed. dim. *r* given by $P \in \mathbb{R}^{n \times r}$, then:

$$D_{ij} = \|p_i - p_j\|^2 = p_i^T p_i + p_j^T p_j - 2p_i^T p_j$$

$$= \left(\operatorname{diag}(PP^T)e^T + e\operatorname{diag}(PP^T)^T - 2PP^T\right)_{ij}$$

$$= \mathcal{K}(PP^T)_{ij}$$

• Thus $D = \mathcal{K}(Y)$, where:

$$\mathcal{K}(Y) := \operatorname{diag}(Y)e^T + e\operatorname{diag}(Y)^T - 2Y$$
 and $Y := PP^T$

- $Y = PP^T$ is positive semidefinite, rank(Y) = r
- \mathcal{K} maps the semidefinite cone, \mathcal{S}_{+}^{n} , onto the EDM cone, \mathcal{E}^{n}

Linear Transformation K

• If *D* is an EDM with embed. dim. *r* given by $P \in \mathbb{R}^{n \times r}$, then:

$$D_{ij} = \|p_i - p_j\|^2 = p_i^T p_i + p_j^T p_j - 2p_i^T p_j$$

$$= \left(\operatorname{diag}(PP^T)e^T + \operatorname{ediag}(PP^T)^T - 2PP^T\right)_{ij}$$

$$= \mathcal{K}(PP^T)_{ij}$$

• Thus $D = \mathcal{K}(Y)$, where:

$$\mathcal{K}(Y) := \operatorname{diag}(Y)e^T + \operatorname{ediag}(Y)^T - 2Y$$
 and $Y := PP^T$

- $Y = PP^T$ is positive semidefinite, rank(Y) = r
- \mathcal{K} maps the semidefinite cone, \mathcal{S}_{+}^{n} , onto the EDM cone, \mathcal{E}^{n}

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{ll} \|p_i - p_j\|^2 = (D_p)_{ij}, & \forall (i,j) \in E \\ \|p_i - p_j\|^2 \ge R^2, & \forall (i,j) \notin E \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{C}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_{p} \\ H \circ \mathcal{K}(Y) \geq R^{2} \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{ll} \|p_i - p_j\|^2 = (D_p)_{ij}, & \forall (i,j) \in E \\ \|p_i - p_j\|^2 \ge R^2, & \forall (i,j) \notin E \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{ll} \|p_i - p_j\|^2 = (D_p)_{ij}, & \forall (i,j) \in E \\ \|p_i - p_j\|^2 \ge R^2, & \forall (i,j) \notin E \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

Vector Formulation

Find
$$p_1, \ldots, p_n \in \mathbb{R}^r$$
 such that $\left\{ \begin{array}{ll} \|p_i - p_j\|^2 = (D_p)_{ij}, & \forall (i,j) \in E \\ \|p_i - p_j\|^2 \ge R^2, & \forall (i,j) \notin E \end{array} \right\}$

Matrix Formulation

Find
$$P \in \mathbb{R}^{n \times r}$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$, where $Y = PP^T$

Find
$$Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C$$
 such that $\left\{ \begin{array}{l} W \circ \mathcal{K}(Y) = D_p \\ H \circ \mathcal{K}(Y) \geq R^2 \end{array} \right\}$

- Vector/Matrix Formulation is non-convex and NP-HARD
- SDP Relaxation is convex, but degenerate (strict feasibility fails)

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

Theorem: Single Clique Reduction

Let:

D_p be a partial EDM such that

$$D_p = \begin{bmatrix} \overline{D} & \cdot \\ \hline \cdot & \cdot \end{bmatrix}$$
, for some $\overline{D} \in \mathcal{E}^k$ with embed. dim. $t \leq r$

• $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[1:k]) = \overline{D} \}$ (contains SDP feas. set)

Then:

$$face(F) = \left(US_{+}^{n-k+t+1}U^{T}\right) \cap S_{C}$$

where
$$U:=\begin{bmatrix} \bar{U} & 0 \\ 0 & I_{n-k} \end{bmatrix}$$
, $\bar{U}\in\mathbb{R}^{k\times t}$ eigenvectors of $B:=\mathcal{K}^\dagger(\bar{D})$

Theorem: Single Clique Reduction

Let:

D_p be a partial EDM such that

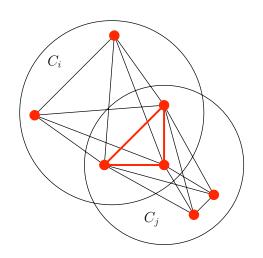
$$D_p = \begin{bmatrix} \overline{D} & \cdot \\ \hline \cdot & \cdot \end{bmatrix}$$
, for some $\overline{D} \in \mathcal{E}^k$ with embed. dim. $t \leq r$

•
$$F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[1:k]) = \overline{D} \}$$
 (contains SDP feas. set)

Then:

$$face(F) = \left(US_{+}^{n-k+t+1}U^{T}\right) \cap S_{C}$$

where
$$U := \begin{bmatrix} \overline{U} & 0 \\ \hline 0 & I_{n-k} \end{bmatrix}$$
, $\overline{U} \in \mathbb{R}^{k \times t}$ eigenvectors of $B := \mathcal{K}^{\dagger}(\overline{D})$



Theorem: Two Clique Reduction

Let $D \in \mathcal{E}^n$ with embed. dim. r. Let $\alpha_1, \alpha_2 \subseteq 1 : n$ and $k := |\alpha_1 \cup \alpha_2|$. For i = 1, 2 let:

- $t_i :=$ embed. dim. of $D[\alpha_i] \in \mathcal{E}^{k_i}$
- $F_i := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : \mathcal{K}(Y[\alpha_i]) = D[\alpha_i] \}$ (contains SDP feas. set)
- face(F_i) =: $\left(U_i S_+^{n-k_i+t_i+1} U_i^T\right) \cap S_C$

Then

$$\operatorname{face}(F_1 \cap F_2) = \left(US_+^{n-k+t+1}U^T\right) \cap S_C$$

where $U \in \mathbb{R}^{n \times t}$ full column rank s.t. $\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$

Theorem: Two Clique Reduction

Let $D \in \mathcal{E}^n$ with embed. dim. r. Let $\alpha_1, \alpha_2 \subseteq 1 : n$ and $k := |\alpha_1 \cup \alpha_2|$. For i = 1, 2 let:

- $t_i :=$ embed. dim. of $D[\alpha_i] \in \mathcal{E}^{k_i}$
- $F_i := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_{\mathcal{C}} : \mathcal{K}(Y[\alpha_i]) = D[\alpha_i] \}$ (contains SDP feas. set)
- face $(F_i) =: \left(U_i \mathcal{S}_+^{n-k_i+t_i+1} U_i^T\right) \cap \mathcal{S}_C$

Then:

$$\operatorname{face}(F_1 \cap F_2) = \left(US_+^{n-k+t+1}U^T\right) \cap S_C$$

where $U \in \mathbb{R}^{n \times t}$ full column rank s.t. $\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$

Subspace Intersection for Two Intersecting Cliques

Suppose:

$$U_1 = \begin{bmatrix} U_1' & 0 \\ U_1'' & 0 \\ 0 & I \end{bmatrix} \quad \text{and} \quad U_2 = \begin{bmatrix} I & 0 \\ 0 & U_2'' \\ 0 & U_2' \end{bmatrix}$$

Then:

$$U := \begin{bmatrix} U_1' \\ U_1'' \\ U_2'(U_2'')^{\dagger}U_1'' \end{bmatrix} \quad \text{or} \quad U := \begin{bmatrix} U_1'(U_1'')^{\dagger}U_2'' \\ U_2'' \\ U_2' \end{bmatrix}$$

Satisfies:

$$\operatorname{col}(U) = \operatorname{col}(U_1) \cap \operatorname{col}(U_2)$$

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

Corollary: Computing Sensor Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \}$ and let $Y \in F$
- face(F) =: $\left(US_+^{r+1}U^T\right)\cap S_C = (UV)S_+^r(UV)^T$

- $\mathcal{K}(Y[\beta]) = D_p[\beta]$
- $Y = (UV)Z(UV)^T$, for some $Z \in \mathcal{S}_+^r$
- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_p[\beta])$ has a <u>unique</u> solution Z
- $D = \mathcal{K}\left(PP^{T}\right)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

Corollary: Computing Sensor Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \}$ and let $Y \in F$
- face(F) =: $\left(US_{+}^{r+1}U^{T}\right)\cap S_{C} = (UV)S_{+}^{r}(UV)^{T}$

- $\mathcal{K}(Y[\beta]) = D_{\rho}[\beta]$
- $Y = (UV)Z(UV)^T$, for some $Z \in S^r_+$
- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_p[\beta])$ has a <u>unique</u> solution Z
- $D = \mathcal{K}\left(PP^{T}\right)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

Corollary: Computing Sensor Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \}$ and let $Y \in F$
- face(F) =: $\left(US_{+}^{r+1}U^{T}\right)\cap S_{C} = (UV)S_{+}^{r}(UV)^{T}$

- $\mathcal{K}(Y[\beta]) = D_{\rho}[\beta]$
- $Y = (UV)Z(UV)^T$, for some $Z \in S_+^r$
- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_p[\beta])$ has a unique solution Z
- $D = \mathcal{K}\left(PP^{T}\right)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

Corollary: Computing Sensor Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \}$ and let $Y \in F$
- face(F) =: $\left(US_{+}^{r+1}U^{T}\right)\cap S_{C}=(UV)S_{+}^{r}(UV)^{T}$

- $\mathcal{K}(Y[\beta]) = D_{\rho}[\beta]$
- $Y = (UV)Z(UV)^T$, for some $Z \in S_+^r$
- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_p[\beta])$ has a <u>unique</u> solution Z
- $D = \mathcal{K}\left(PP^{T}\right)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

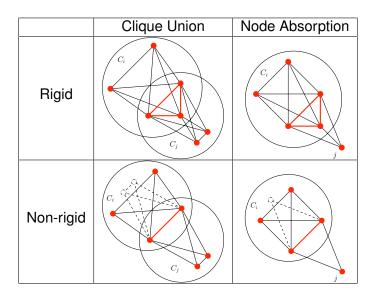
Corollary: Computing Sensor Positions

Let:

- $D \in \mathcal{E}^n$ with embed. dim. r
- $D_p := W \circ D$ be a partial EDM (for some 0–1 matrix W)
- $F := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}_C : W \circ \mathcal{K}(Y) = D_p \}$ and let $Y \in F$
- face(F) =: $\left(US_{+}^{r+1}U^{T}\right)\cap S_{C} = (UV)S_{+}^{r}(UV)^{T}$

- $\mathcal{K}(Y[\beta]) = D_{p}[\beta]$
- $Y = (UV)Z(UV)^T$, for some $Z \in S_+^r$
- $(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D_p[\beta])$ has a <u>unique</u> solution Z
- $D = \mathcal{K}\left(PP^{T}\right)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{n \times r}$

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results



Initialize

$$C_i := \left\{ j : (D_p)_{ij} < (R/2)^2 \right\}, \quad \text{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bounds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorption (lower bounds)

Finalize

When \exists a clique containing all the anchors, use the computed facial representation and the positions of the anchors to locate the sensors

Initialize

$$C_i := \left\{ j : (D_p)_{ij} < (R/2)^2 \right\}, \quad \text{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bounds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorption (lower bounds)

Finalize

When \exists a clique containing all the anchors, use the computed facial representation and the positions of the anchors to locate the sensors

Initialize

$$C_i := \left\{ j : (D_p)_{ij} < (R/2)^2 \right\}, \quad \text{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bounds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorption (lower bounds)

Finalize

When ∃ a clique containing all the anchors, use the computed facial representation and the positions of the anchors to locate the sensors

- Sensor Network Localization (SNL)
 - Introduction
 - Euclidean Distance Matrices and Semidefinite Matrices
- Clique Reductions of SNL
 - Clique Reductions
 - Computing Sensor Positions
- Algorithm
 - Clique Unions and Node Absorptions
 - Results

- Random noiseless problems
- Dimension r=2
- Square region: [0, 1] × [0, 1]
- m = 9 anchors
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$\mathsf{RMSD} = \left(\frac{1}{n} \sum_{i=1}^{n} \|p_i - p_i^{\mathsf{true}}\|^2\right)^{1/2}$$

of Sensors Located

# sensors \ R	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1375
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

# sensors \ R	0.07			0.04
2000	1	1	1	3
6000	6	5	5	5
10000	16	13	12	12

RMSD (over located sensors)

# sensors \ R	0.07			0.04
2000	4 <i>e</i> -16	9 <i>e</i> -16	4 <i>e</i> -16	4 <i>e</i> -16
6000	6 <i>e</i> -16	4 <i>e</i> -16	3 <i>e</i> -16	6 <i>e</i> -16
10000	4 <i>e</i> -16	4 <i>e</i> -16	6 <i>e</i> -16	6 <i>e</i> -16

of Sensors Located

# sensors \ R	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1375
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

# sensors \ R	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	6	5	5	5
10000	16	13	12	12

RMSD (over located sensors)

# sensors \ R	0.07			0.04
2000	4 <i>e</i> -16	9 <i>e</i> -16	4 <i>e</i> -16	4 <i>e</i> -16
6000	6 <i>e</i> -16	4 <i>e</i> -16	3 <i>e</i> -16	6 <i>e</i> -16
10000	4 <i>e</i> -16	4 <i>e</i> -16	6 <i>e</i> -16	6 <i>e</i> -16

of Sensors Located

# sensors \ R	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1375
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

# sensors \ R	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	6	5	5	5
10000	16	13	12	12

RMSD (over located sensors)

# sensors \ R	0.07	0.06	0.05	0.04
2000	4 <i>e</i> -16	9 <i>e</i> -16	4 <i>e</i> -16	4 <i>e</i> -16
6000	6 <i>e</i> -16	4 <i>e</i> −16	3 <i>e</i> −16	6 <i>e</i> -16
10000	4 <i>e</i> -16	4 <i>e</i> -16	6 <i>e</i> –16	6 <i>e</i> –16

Large-Scale Problems

# sensors	# anchors	radio range	RMSD	Time
20000	9	.02	5 <i>e</i> -16	35s
40000	9	.015	7 <i>e</i> -16	2m 15s
60000	9	.01	1 <i>e</i> -15	5m 21s
100000	9	.01	8 <i>e</i> -16	14m 14s

Summary

- SDP relaxation of SNL is highly degenerate: The feasible set of this SDP is restricted to a low dimensional face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of the faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi, SDPA, SDPT3), we quickly compute the exact solution to the large SDP relaxations

Summary

- SDP relaxation of SNL is highly degenerate: The feasible set of this SDP is restricted to a low dimensional face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of the faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi, SDPA, SDPT3), we quickly compute the exact solution to the large SDP relaxations

Summary

- SDP relaxation of SNL is highly degenerate: The feasible set of this SDP is restricted to a low dimensional face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of the faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi, SDPA, SDPT3), we quickly compute the exact solution to the large SDP relaxations

Thank you!