Preliminaries Clique/Facial Reduction (Exploit degeneracy) Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl. Noisy Data Summary

Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions

Nathan Krislock and Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

NIU LA'09, Northern Illinois University Aug. 12-14, 2009

- Preliminaries
 - SNL <-> GR <-> EDM <-> SDP
 - Further Notation/Preliminaries; Facial Structure of Cones
- Clique/Facial Reduction (Exploit degeneracy)
 - Single Clique Reduction
 - Two Clique Reduction and EDM DELAYED Completion
 - Completing SNL; DELAYED use of Anchor Locations
- 3 Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl.
 - Clique Unions and Node Absorptions
 - Results (low CPU time; high accuracy)
- 4 Noisy Data

- Preliminaries
 - SNL <-> GR <-> EDM <-> SDP
 - Further Notation/Preliminaries; Facial Structure of Cones
- Clique/Facial Reduction (Exploit degeneracy)
 - Single Clique Reduction
 - Two Clique Reduction and EDM DELAYED Completion
 - Completing SNL; DELAYED use of Anchor Locations
- Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl
 - Clique Unions and Node Absorptions
 - Results (low CPU time; high accuracy)
- 4 Noisy Data

- Preliminaries
 - SNL <-> GR <-> EDM <-> SDP
 - Further Notation/Preliminaries; Facial Structure of Cones
- Clique/Facial Reduction (Exploit degeneracy)
 - Single Clique Reduction
 - Two Clique Reduction and EDM DELAYED Completion
 - Completing SNL; DELAYED use of Anchor Locations
- 3 Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl.
 - Clique Unions and Node Absorptions
 - Results (low CPU time; high accuracy)
- 4 Noisy Data

- Preliminaries
 - SNL <-> GR <-> EDM <-> SDP
 - Further Notation/Preliminaries; Facial Structure of Cones
- Clique/Facial Reduction (Exploit degeneracy)
 - Single Clique Reduction
 - Two Clique Reduction and EDM DELAYED Completion
 - Completing SNL; DELAYED use of Anchor Locations
- 3 Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl.
 - Clique Unions and Node Absorptions
 - Results (low CPU time; high accuracy)
- 4 Noisy Data

Further Notation/Preliminaries; Facial Structure of Cones

Sensor Network Localization, SNL, Problem

Summary

SNL - a Fundamental Problem of Distance Geometry; (easy to describe)

- n ad hoc wireless sensors (nodes) to locate in \mathbb{R}^r , (r is embedding dimension; sensors $p_i \in \mathbb{R}^r$, $i \in V := 1, ..., n$)
- m of the sensors are anchors, p_i , i = n m + 1, ..., n) (positions known, using e.g. GPS)
- pairwise distances known within radio range R > 0, $D_{ij} = ||p_i p_j||^2$, $ij \in E$

$$P = \begin{bmatrix} p_1^T \\ \vdots \\ p_n^T \end{bmatrix} = \begin{bmatrix} X \\ A \end{bmatrix} \in \mathbb{R}^{n \times r}$$

Applications of Wireless Ad-Hoc Sensor Networks

Fully Connected, Inexpensive Wireless Networks

- Tracking Humans/Animals/Equipment/Weather
- geographic routing; data aggregation; topological control.
- monitoring: large buildings environmental sensors; natural habitat; soil humidity; earthquakes and volcanos; forest fires; weather and ocean currents.
- military, tracking of goods, vehicle positions, surveillance, (where open-air positioning is not feasible), random deployment in inaccessible terrains or disaster relief operations

Underlying Graph Realization/Partial EDM

Summary

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $\mathcal{V} = \{1, \dots, n\}$
- edge set $(i,j) \in \mathcal{E}$; $\omega_{ij} = \|\mathbf{p}_i \mathbf{p}_i\|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \Re^r : a mapping of node $v_i \to p_i \in \Re^r$ with squared distances given by ω .

$$D_{ij} = \left\{ \begin{array}{ll} d_{ij}^2 & \text{if } (i,j) \in \mathcal{E} \\ 0 & \text{otherwise,} \end{array} \right.$$

Underlying Graph Realization/Partial EDM

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $\mathcal{V} = \{1, \dots, n\}$
- edge set $(i,j) \in \mathcal{E}$; $\omega_{ij} = \|\mathbf{p}_i \mathbf{p}_j\|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \Re^r : a mapping of node $v_i \to p_i \in \Re^r$ with squared distances given by ω .

Corresponding Partial Euclidean Distance Matrix, EDM

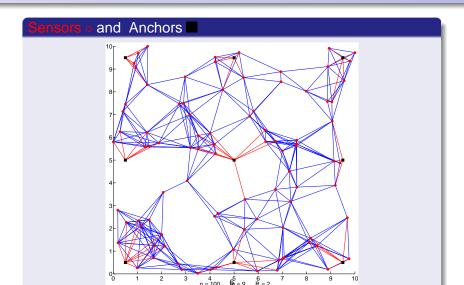
$$D_{ij} = \left\{ egin{array}{ll} d_{ij}^2 & ext{if } (i,j) \in \mathcal{E} \\ 0 & ext{otherwise}, \end{array}
ight.$$

 $d_{ij}^2 = \omega_{ij}$ are known squared Euclidean distances between sensors p_i , p_i ; anchors correspond to a clique.

SNL <-> GR <-> EDM <-> SDP

Further Notation/Preliminaries; Facial Structure of Cones

Sensor Localization Problem/Partial EDM



Connections to Semidefinite Programming (SDP)

\mathcal{S}_{+}^{k} , Cone of (symmetric) SDP matrices in \mathcal{S}^{k} ; $x^{T}Ax \geq 0$

Summary

inner product $\langle A, B \rangle = \operatorname{trace} AB$

Löwner (psd) partial order $A \succeq B$, $A \succ B$

$D = \mathcal{K}(B) \in \mathcal{E}^n$, $B = \mathcal{K}^{\dagger}(D) \in \mathcal{S}^n \cap \mathcal{S}_C$ (centered Be = 0)

 $P^T = [p_1 \quad p_2 \quad \dots \quad p_k] \in \mathcal{M}^{r \times k}; B := PP^T \in \mathcal{S}_+^k$ rank B = r: $D \in \mathcal{E}^k$ be corresponding EDM

(to
$$D \in \mathcal{E}^{k}$$
) $D = (\|p_{i} - p_{j}\|_{2}^{2})_{i,j=1}^{k}$
 $= (p_{i}^{T}p_{i} + p_{j}^{T}p_{j} - 2p_{i}^{T}p_{j})_{i,j=1}^{k}$
 $= \operatorname{diag}(B) e^{T} + e \operatorname{diag}(B)^{T} - 2B$

$$=: \mathcal{K}(B_7) \text{ (from } B \in \mathcal{S}_+^k).$$

SNL <-> GR <-> EDM <-> SDP Further Notation/Preliminaries; Facial Structure of Cones

Connections to Semidefinite Programming (SDP)

\mathcal{S}_{+}^{k} , Cone of (symmetric) SDP matrices in \mathcal{S}^{k} ; $x^{T}Ax \geq 0$

Summary

inner product $\langle A, B \rangle = \text{trace } AB$ Löwner (psd) partial order $A \succeq B, A \succ B$

$$D = \mathcal{K}(B) \in \mathcal{E}^n$$
, $B = \mathcal{K}^{\dagger}(D) \in \mathcal{S}^n \cap \mathcal{S}_C$ (centered $Be = 0$)

$$P^T = [p_1 \quad p_2 \quad \dots \quad p_k] \in \mathcal{M}^{r \times k}; B := PP^T \in \mathcal{S}_+^k;$$

rank $B = r; D \in \mathcal{E}^k$ be corresponding EDM.

(to
$$D \in \mathcal{E}^k$$
) $D = (\|p_i - p_j\|_2^2)_{i,j=1}^k$

$$= (p_i^T p_i + p_j^T p_j - 2p_i^T p_j)_{i,j=1}^k$$

$$= (\operatorname{diag}(B) e^T + e \operatorname{diag}(B)^T - 2B)$$

$$=: \mathcal{D}_e(B) - 2B$$

 $=: \mathcal{K}(B_n)$ (from $B \in \mathcal{S}_+^k$).

Current Techniques: SDP Relaxation

Nearest, Weighted, SDP Approx. (relax rank B)

- $\min_{B\succeq 0, B\in\Omega} \|H\circ (\mathcal{K}(B)-D)\|$; rank B=r; weights $H_{ii}=1/\sqrt{D_{ii}}$ if $ij\in E$.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex but: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible Bs)
- take advantage of degeneracy!: clique α , $|\alpha| = k$ (corresp. $D(\alpha)$) with embed. dim. $= t \le r < k \implies$ rank $\mathcal{K}^{\dagger}(\bar{D}) = t \le r \implies$ rank $B(\alpha) \le \operatorname{rank} \mathcal{K}^{\dagger}(D(\alpha)) + 1 \implies$ rank $B = \operatorname{rank} \mathcal{K}^{\dagger}(D) \le n (k t 1) \implies$ Slater's CQ (strict feasibility) fails

Noisy Data Summary SNL <-> GR <-> EDM <-> SDP

Further Notation/Preliminaries; Facial Structure of Cones

 $\mathcal{K}\,:\mathcal{S}^n_+\cap\mathcal{S}_C\to\mathcal{E}^n\subset\mathcal{S}^n\cap\mathcal{S}_H$

Linear Transformations: $\mathcal{D}_{V}(B)$, $\mathcal{K}(B)$, $\mathcal{T}(D)$

- allow: $\mathcal{D}_v(B) := \operatorname{diag}(B) v^T + v \operatorname{diag}(B)^T$; $\mathcal{D}_v(y) := yv^T + vy^T$
- adjoint $\mathcal{K}^*(D) = 2(\text{Diag}(De) D)$.

$$\mathcal{S}_{C} := \{ B \in \mathcal{S}^{n} : Be = 0 \};$$

 $\mathcal{S}_{H} := \{ D \in \mathcal{S}^{n} : \operatorname{diag}(D) = 0 \} = \mathcal{R} (\operatorname{offDiag})$

- $J := I \frac{1}{n} ee^T$ (orthogonal projection onto $M := \{e\}^{\perp}$);
- $\mathcal{T}(D) := -\frac{1}{2} Joff Diag(D) J \qquad (= \mathcal{K}^{\dagger}(D))$

Properties of Linear Transformations

$(\mathcal{K}_{0}, \mathcal{T}_{0}, \mathrm{Diag}_{0}, \mathcal{D}_{\mathbf{e}})$

$$\mathcal{R}\left(\mathcal{K}\right) = \mathcal{S}_{H}; \qquad \underline{\mathcal{N}\left(\mathcal{K}\right)} = \mathcal{R}\left(\mathcal{D}_{e}\right);$$
 $\mathcal{R}\left(\mathcal{K}^{*}\right) = \mathcal{R}\left(\mathcal{T}\right) = \mathcal{S}_{C}; \qquad \mathcal{N}\left(\mathcal{K}^{*}\right) = \mathcal{N}\left(\mathcal{T}\right) = \mathcal{R}\left(\mathrm{Diag}\right);$
 $\mathcal{S}^{n} = \mathcal{S}_{H} \oplus \mathcal{R}\left(\mathrm{Diag}\right) = \mathcal{S}_{C} \oplus \mathcal{R}\left(\mathcal{D}_{e}\right).$
 $\mathcal{T}\left(\mathcal{E}^{n}\right) = \mathcal{S}_{+}^{n} \cap \mathcal{S}_{C} \quad \text{and} \quad \mathcal{K}\left(\mathcal{S}_{+}^{n} \cap \mathcal{S}_{C}\right) = \mathcal{E}^{n}.$

Semidefinite Cone, Faces

Faces of cone K

- $F \subseteq K$ is a face of K, denoted $F \subseteq K$, if $(x, y \in K, \frac{1}{2}(x+y) \in F) \implies (\operatorname{cone}\{x, y\} \subseteq F)$.
- $F \triangleleft K$, if $F \unlhd K$, $F \neq K$; F is proper face if $\{0\} \neq F \triangleleft K$.
- $F \subseteq K$ is exposed if: intersection of K with a hyperplane.
- face(S) denotes smallest face of K that contains set S.

S^k is a

All faces are exposed

Semidefinite Cone, Faces

Faces of cone K

- $F \subseteq K$ is a face of K, denoted $F \subseteq K$, if $(x, y \in K, \frac{1}{2}(x+y) \in F) \implies (\operatorname{cone}\{x, y\} \subseteq F)$.
- $F \triangleleft K$, if $F \unlhd K$, $F \neq K$; F is proper face if $\{0\} \neq F \triangleleft K$.
- $F \subseteq K$ is exposed if: intersection of K with a hyperplane.
- face(S) denotes smallest face of K that contains set S.

S_{+}^{k} is a Facially Exposed Cone

All faces are exposed.

Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl.

Summary Facial Structure of SDP Cone; Equivalent SUBSPACES

```
Face F \leq S_{+}^{k} Equivalence to \mathcal{R}(U) Subspace of \mathbb{R}^{k}
```

Noisy Data

 $F \subseteq S_+^k$ determined by range of any $S \in \text{relint } F$, i.e. let $S = U \Gamma U^T$ be compact spectral decomposition; $\Gamma \in \mathcal{S}_{++}^t$ is diagonal matrix of pos. eigenvalues; $F = U S_+^t U^T$ (F associated with $\mathcal{R}(U)$) $\dim F = t(t+1)/2.$

$$F := TS_{\perp}^{t}T^{T} \triangleleft S_{\perp}^{k}$$

Facial Structure of SDP Cone; Equivalent SUBSPACES

Face $F \triangleleft S_{\perp}^{k}$ Equivalence to $\mathcal{R}(U)$ Subspace of \mathbb{R}^{k}

Summary

 $F \triangleleft S_{\perp}^{k}$ determined by range of any $S \in \text{relint } F$, i.e. let $S = U \Gamma U^T$ be compact spectral decomposition; $\Gamma \in S_{++}^t$ is diagonal matrix of pos. eigenvalues; $F = US_{+}^{t}U^{T}$ (F associated with $\mathcal{R}(U)$) $\dim F = t(t+1)/2$.

face F representation by subspace £

(subspace) $\mathcal{L} = \mathcal{R}(T)$, T is $k \times t$ full column, then:

$$F := TS_+^t T^T \unlhd S_+^k$$

Further Notation

Matrix with Fixed Principal Submatrix

For $Y \in S^n$, $\alpha \subseteq \{1, ..., n\}$: $Y[\alpha]$ denotes principal submatrix formed from rows & cols with indices α .

Sets with Fixed Principal Submatrices

If
$$|\alpha| = k$$
 and $\bar{Y} \in \mathcal{S}^k$, then:

•
$$S^n(\alpha, \bar{Y}) := \{ Y \in S^n : Y[\alpha] = \bar{Y} \},$$

•
$$S_+^n(\alpha, \bar{Y}) := \{ Y \in S_+^n : Y[\alpha] = \bar{Y} \}$$

i.e. the subset of matrices $Y \in S_+^n$ $(Y \in S_+^n)$ with principal submatrix $Y[\alpha]$ fixed to \bar{Y} .

Further Notation

Matrix with Fixed Principal Submatrix

For $Y \in S^n$, $\alpha \subseteq \{1, ..., n\}$: $Y[\alpha]$ denotes principal submatrix formed from rows & cols with indices α .

Sets with Fixed Principal Submatrices

If $|\alpha| = k$ and $\overline{Y} \in S^k$, then:

- $S^n(\alpha, \bar{Y}) := \{ Y \in S^n : Y[\alpha] = \bar{Y} \},$
- $S_+^n(\alpha, \bar{Y}) := \{ Y \in S_+^n : Y[\alpha] = \bar{Y} \}$ i.e. the subset of matrices $Y \in S^n$ $(Y \in S_+^n)$ with principal submatrix $Y[\alpha]$ fixed to \bar{Y} .

Two Clique Reduction and EDM DELAYED Completion Completing SNL; DELAYED use of Anchor Locations

Single Clique/Facial Reduction

$$\bar{D} \in \mathcal{E}^{k}$$
, $\alpha \subseteq 1:n$, $|\alpha| = k$

Define
$$\mathcal{E}^n(\alpha, \bar{D}) := \{ D \in \mathcal{E}^n : D[\alpha] = \bar{D} \}.$$

Given \overline{D} ; find a corresponding $B \succeq 0$; find the corresponding face; find the corresponding subspace.

if
$$\alpha = 1 : k$$
; embed. dim of \overline{D} is $t \le r$

$$D = \begin{bmatrix} \bar{D} & \cdot \\ \cdot & \cdot \end{bmatrix},$$

Two Clique Reduction and EDM DELAYED Completion Completing SNL; DELAYED use of Anchor Locations

BASIC THEOREM for Single Clique/Facial Reduction

THEOREM 1: Single Clique Reduction

Let: $\bar{D} := D[1:k] \in \mathcal{E}^k$, k < n, with embedding dimension $t \le r$; $B := \mathcal{K}^{\dagger}(\bar{D}) = \bar{U}_B S \bar{U}_B^T$, $\bar{U}_B \in \mathcal{M}^{k \times t}$, $\bar{U}_B^T \bar{U}_B = I_t$, $S \in \mathcal{S}_{++}^t$.

Furthermore, let $U_B := \begin{bmatrix} \bar{U}_B & \frac{1}{\sqrt{k}}e \end{bmatrix} \in \mathcal{M}^{k \times (t+1)}$,

$$U := egin{bmatrix} U_B & 0 \ 0 & I_{n-k} \end{bmatrix}$$
, and let $\begin{bmatrix} V & rac{U^T e}{\|U^T e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be

Noisy Data

Summary

orthogonal. Then:

face
$$\mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1:k,\bar{D})\right) = \left(U\mathcal{S}_{+}^{n-k+t+1}U^{T}\right) \cap \mathcal{S}_{C}$$

= $(UV)\mathcal{S}_{+}^{n-k+t}(UV)^{T}$

Note that we add $\frac{1}{\sqrt{k}}e$ to represent $\mathcal{N}(\mathcal{K})$; then we use V to eliminate e to recover a centered face.

Two Clique Reduction and EDM DELAYED Completion
Completing SNL: DELAYED use of Anchor Locations

Positive Integers/Sets for Intersecting Cliques

Noisy Data

$$\alpha_1 := 1: (\bar{k}_1 + \bar{k}_2); \quad \alpha_2 := (\bar{k}_1 + 1): (\bar{k}_1 + \bar{k}_2 + \bar{k}_3)$$

$$\alpha_1 \qquad \qquad \bar{k}_1 \qquad \bar{k}_2 \qquad \bar{k}_3$$

For each clique $|\alpha| = k$, we get a corresponding face/subspace $(k \times r)$ matrix) representation. We now see how to handle two cliques, α_1, α_2 , that intersect.

Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl.
Noisy Data
Summary

Two (Intersecting) Clique Reduction/Subsp. Repres.

THEOREM 2: Clique Intersection Using Subspace Intersection

$$\left\{ \begin{array}{l} \alpha_1, \alpha_2 \subseteq 1: \textbf{\textit{n}}; \quad k := |\alpha_1 \cup \alpha_2| \\ \text{For } i = 1, 2 \colon \bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}, \text{ embedding dimension } t_i; \\ B_i := \mathcal{K}^{\dagger}(\bar{D}_i) = \bar{U}_i S_i \bar{U}_i^T, \ \bar{U}_i \in \mathcal{M}^{k_i \times t_i}, \ \bar{U}_i^T \bar{U}_i = I_{t_i}, \ S_i \in \mathcal{S}_{++}^{t_i}; \\ U_i := \left[\bar{U}_i \quad \frac{1}{\sqrt{k_i}} \mathbf{e} \right] \in \mathcal{M}^{k_i \times (t_i + 1)}; \text{ and } \bar{U} \in \mathcal{M}^{k \times (t + 1)} \text{ satisfies} \\ \\ \mathcal{R}(\bar{U}) = \mathcal{R}\left(\begin{bmatrix} U_1 & 0 \\ 0 & I_{\bar{k}_3} \end{bmatrix} \right) \cap \mathcal{R}\left(\begin{bmatrix} I_{\bar{k}_1} & 0 \\ 0 & U_2 \end{bmatrix} \right), \text{ with } \bar{U}^T \bar{U} = I_{t+1} \\ \end{array}$$

cont...

Two (Intersecting) Clique Reduction, cont...

THEOREM 2 Nonsing. Clique Inters. cont...

$$\mathcal{R}\left(\bar{U}
ight) = \mathcal{R}\left(egin{bmatrix} U_1 & 0 \ 0 & I_{ar{k}_3} \end{bmatrix}
ight) \cap \mathcal{R}\left(egin{bmatrix} I_{ar{k}_1} & 0 \ 0 & U_2 \end{bmatrix}
ight), \text{ with } \bar{U}^T\bar{U} = I_{t+1};$$

let:
$$U := \begin{bmatrix} U & 0 \\ 0 & I_{n-k} \end{bmatrix} \in \mathcal{M}^{n \times (n-k+t+1)}$$
 and

$$egin{bmatrix} V & rac{U^T e}{\|U^T e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$$
 be orthogonal. Then

$$\underline{\bigcap_{i=1}^{2} \operatorname{face} \mathcal{K}^{\dagger} \left(\mathcal{E}^{n} (\alpha_{i}, \overline{D}_{i}) \right)} = \left(U \mathcal{S}_{+}^{n-k+t+1} U^{T} \right) \cap \mathcal{S}_{C}
= (UV) \mathcal{S}_{+}^{n-k+t} (UV)^{T}$$

Expense/Work of (Two) Clique Reductions

Noisy Data

Summary

Subspace Intersection for Two Intersecting Cliques

Suppose:

$$U_1 = \begin{bmatrix} U_1' & 0 \\ U_1'' & 0 \\ 0 & I \end{bmatrix}$$
 and $U_2 = \begin{bmatrix} I & 0 \\ 0 & U_2'' \\ 0 & U_2' \end{bmatrix}$

Then:

$$U := \begin{bmatrix} U_1' \\ U_1'' \\ U_2'(U_2'')^{\dagger} U_1'' \end{bmatrix} \quad \text{or} \quad U := \begin{bmatrix} U_1'(U_1'')^{\dagger} U_2'' \\ U_2'' \\ U_2' \end{bmatrix}$$

(Efficiently) satisfies:

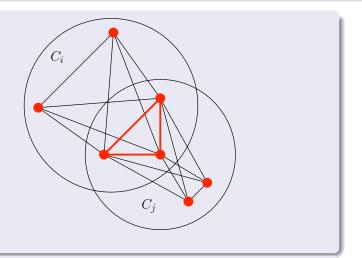
$$\mathcal{R}(U) = \mathcal{R}(U_1) \cap \mathcal{R}(U_2)$$

Two Clique Reduction and EDM DELAYED Completion Completing SNL; DELAYED use of Anchor Locations

Two (Intersecting) Clique Reduction Figure

Noisy Data

Summary



Completion: missing distances can be recovered if desired.

Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. r/Completion

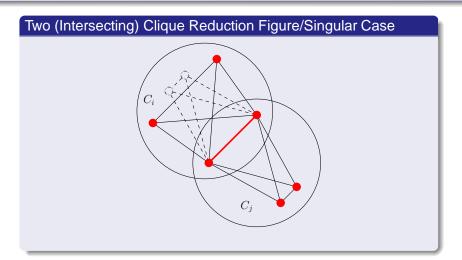
Summary

Hypotheses of Theorem 2 holds. Let $\bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, for $i=1,2,\, eta\subseteq lpha_1\caplpha_2, \gamma:=lpha_1\cuplpha_2, ar{D}:=D[eta], B:=\mathcal{K}^\dagger(ar{D}),\quad ar{U}_eta:=ar{U}(eta,:), \text{ where } ar{U}\in\mathcal{M}^{k imes(t+1)} \text{ satisfies}$ intersection equation of Theorem 2. Let $\left[\bar{V} \quad \frac{\bar{U}^T e}{\|\bar{U}^T e\|} \right] \in \mathcal{M}^{t+1}$ be orthogonal. Let $Z := (J\bar{U}_{\beta}\bar{V})^{\dagger}B((J\bar{U}_{\beta}\bar{V})^{\dagger})^{T}$. If the embedding dimension for \bar{D} is r, THEN t = r in Theorem 2, and $Z \in \mathcal{S}_{+}^{r}$ is the unique solution of the equation $(J\bar{U}_{\beta}\bar{V})Z(J\bar{U}_{\beta}\bar{V})^T=B$, and the exact completion is $D[\gamma] = \mathcal{K} (PP^T)$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{|\gamma| \times r}$

Two Clique Reduction and EDM DELAYED Completion Completing SNL; DELAYED use of Anchor Locations

2 (Inters.) Clique Red. Figure/Singular Case

Noisy Data



Use R as lower bound in singular/nonrigid case.

Two Clique Reduction and EDM DELAYED Completion
Completing SNL: DELAYED use of Anchor Locations

Two (Inters.) Clique Explicit Compl.; Sing. Case

Noisy Data

COR. Clique-Sing.; Intersect. Embedding Dim. r-1

Hypotheses of previous COR holds. For i = 1, 2, let $\beta \subset \delta_i \subseteq \alpha_i$, $A_i := J\bar{U}_{\delta_i}\bar{V}$, where $\bar{U}_{\delta_i} := \bar{U}(\delta_i,:)$, and $B_i := \mathcal{K}^{\dagger}(D[\delta_i])$. Let $\bar{Z} \in \mathcal{S}^t$ be a particular solution of the linear systems

$$\begin{array}{rcl} A_1 Z A_1^T & = & B_1 \\ A_2 Z A_2^T & = & B_2. \end{array}$$

If the embedding dimension of $D[\delta_i]$ is r, for i = 1, 2, but the embedding dimension of $\bar{D} := D[\beta]$ is r - 1, then the following holds. cont. . .

Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl. Noisy Data Summary

2 (Inters.) Clique Expl. Compl.; Degen. cont...

COR. Clique-Degen. cont...

The following holds:

- **1** dim $\mathcal{N}(A_i) = 1$, for i = 1, 2.
- 2 For i = 1, 2, let $n_i \in \mathcal{N}(A_i)$, $||n_i||_2 = 1$, and $\Delta Z := n_1 n_2^T + n_2 n_1^T$. Then, Z is a solution of the linear systems if and only if

$$Z = \bar{Z} + \tau \Delta Z$$
, for some $\tau \in \mathcal{R}$

3 There are at most two nonzero solutions, τ_1 and τ_2 , for the generalized eigenvalue problem $-\Delta Zv = \tau \bar{Z}v$, $v \neq 0$. Set $Z_i := \bar{Z} + \frac{1}{2}\Delta Z$, for i = 1, 2. Then the exact completion is one of $D[\gamma] \in \{\mathcal{K}(\bar{U}\bar{V}Z_i\bar{V}^T\bar{U}^T) : i = 1, 2\}$

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

• Given $P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \in \mathbb{R}^{n \times r}$ such that $D = \mathcal{K}(PP^T)$

Noisy Data

Summary

Solve the orthogonal Procrustes problem:

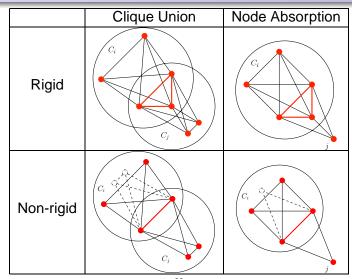
min
$$||A - P_2Q||$$

s.t. $Q^TQ = I$

using SVD (Golub/Van Loan, Algorithm 12.4.1)

Set X := P₁Q

Algorithm: Four Cases



ALGOR: clique union; facial reduct.; delay compl.

Summary

Initialize: Find initial set of cliques.

$$C_i := \{j : (D_p)_{ij} < (R/2)^2\}, \text{ for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_i| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_i| = r$, do Non-Rigid Clique Union (lower bnds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for X

ALGOR: clique union; facial reduct.; delay compl.

Summary

Initialize: Find initial set of cliques.

$$C_i := \{j : (D_p)_{ij} < (R/2)^2\}, \text{ for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_i| = r$, do Non-Rigid Clique Union (lower bnds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for X

ALGOR: clique union; facial reduct.; delay compl.

Summary

Initialize: Find initial set of cliques.

$$C_i := \{j : (D_p)_{ij} < (R/2)^2\}, \text{ for } i = 1, ..., n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bnds)
- For $|C_i \cap \mathcal{N}(j)| = r$, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for X

Clique Unions and Node Absorptions Results (low CPU time; high accuracy)

Noisy Data Summary

10 random noiseless probs; $r = 2, m = 9$																
	Rigid Clique Union								Rigi	d Cl	lique	Uni	on and I	Node A	bsorp	tion
		n/R 2000 4000 6000 8000 0000	0.7 (1 1 1 1 1	0.6 7 1 1 1	0.5 91 1 1 1	0.4 362 16 1 1				20 40 60 80	/R 000 000 000 000 000	0.7 1 1 1 1	7 0.6 1 1 1 1 1	0.5 2 1 1 1 1	0.4 78 1 1 1	
	Remaining Cliques							Remaining Cliques								
	n/ 20 40 60 80 100	00 4. 00 9. 00 16 00 22	8 4 2 9 .0 1 .9 2	0.6 4.6 9.4 4.7 2.5 2.7	0.5 4.2 9.1 15.3 20.9 29.1	0.4 4.1 9.2 14.9 21.0 30.7				n/F 2000 4000 6000 8000 1000	0 0 0 0	0.7 4.9 9.2 16.1 22.7 32.5	0.6 4.9 9.5 15.1 22.4 32.4	0.5 6.1 9.1 15.1 21.0 28.8	0.4 13.2 9.8 14.8 21.3 30.6	
	n/R 2000	0.7 -10.1	0. -1	.6 0.8	0.5 —	0	.4		n/ 200		0. —10		0.6 -10.8	0.5 -9.8		8.8

n/R	0.7	0.6	0.5	0.4
2000	-10.1	-10.8	_	_
4000	-10.9	-11.0	-10.5	-9.6
6000	-11.6	-10.7	-10.6	-10.0
8000	-11.1	-11.0	-10.7	-9.2
10000	-11.0	-11.0	-10.2	-10.4

Max log(Error)

n/R	0.7	0.6	0.5	0.4
2000	-10.1	-10.8	-9.8	-8.8
4000	-10.9	-11.0	-10.5	-9.6
6000	-11.6	-10.7	-10.6	-10.0
8000	-11.1	-11.0	-10.7	-9.2
10000	-11.0	-11.0	-10.2	-10.4

Max log(Error)

Locally Recover Exact EDMs

Nearest EDM

• Given clique α ; corresp. EDM $D_{\epsilon} = D + N_{\epsilon}$, N_{ϵ} noise

Summary

• we need to find the smallest face containing $\mathcal{E}^n(\alpha, D)$.

$$\bullet \left\{ \begin{array}{ll} \min & \|\mathcal{K}\left(X\right) - D_{\epsilon}\| \\ \text{s.t.} & \operatorname{rank}\left(X\right) = r, Xe = 0, X \succeq 0 \\ & X \succeq 0. \end{array} \right.$$

• Eliminate the constraints: Ve = 0, $V^T V = I$, $\mathcal{K}_V(X) := \mathcal{K}(VXV^T)$:

$$U_r^* \in \operatorname{argmin} \frac{1}{2} \| \mathcal{K}_V(UU^T) - D_{\epsilon} \|_F^2$$

s.t. $U \in M^{(n-1)r}$.

The nearest EDM is $D^* = \mathcal{K}_V(U_r^*(U_r^*)^T)$.

Solve Overdetermined Nonlin. Least Squares Prob.

Newton (expensive) or Gauss-Newton (less accurate)

$$F(U) := \text{us2vec}\left(\mathcal{K}_V(UU^T) - D_{\epsilon}\right), \quad \min_{U} f(U) := \frac{1}{2} \|F(U)\|^2$$

Derivatives: gradient and Hessian

$$abla f(U)(\Delta U) = \langle 2\left(\mathcal{K}_{V}^{*}\left[\mathcal{K}_{V}(UU^{T}) - D_{\epsilon}\right]\right)U, \Delta U \rangle$$

$$\nabla^2 f(U) = 2 \text{vec } \left(\mathcal{L}_U^* \mathcal{K}_V^* \mathcal{K}_V \mathcal{S}_{\Sigma} \mathcal{L}_U + \mathcal{K}_V^* \left(\mathcal{K}_V (UU^T) - D_{\epsilon} \right) \right) \text{Mat}$$

where
$$\mathcal{L}_U(\cdot) = \cdot U^T$$
; $\mathcal{S}_{\Sigma}(U) = \frac{1}{2}(U + U^T)$

Clique/Facial Reduction (Exploit degeneracy)
Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Compl.

Noisy Data Summary

random noisy probs; r = 2, m = 9, nf = 1e - 6

Using only Rigid Clique Union, preliminary results:

remaining cliques

n/R	1.0	0.9	0.8	0.7	0.6
1000	1.00	5.00	11.00	40.00	124.00
2000	1.00	1.00	1.00	1.00	7.00
3000	1.00	1.00	1.00	1.00	1.00
4000	1.00	1.00	1.00	1.00	1.00
5000	1.00	1.00	1.00	1.00	1.00

cpu seconds

n/R	1.0	0.9	0.8	0.7	0.6
1000	9.43	6.98	5.57	5.04	4.05
2000	12.46	12.18	12.43	11.18	9.89
3000	18.08	18.50	19.07	18.33	16.33
4000	25.18	24.01	24.02	23.80	22.12
5000	38.13	31.66	30.26	30.32	29.88

max-log-error

1.0	0.9	0.8	0.7	0.6
-3.28	-4.19	-2.92	Inf	Inf
-3.63	-3.81	-3.82	-2.39	-3.73
-3.51	-3.98	-3.25	-3.90	-3.28
-4.15	-4.05	-3.52	-3.04	-3.33
-4.80	-4.38	-3.89	-4.13	-3.40
	-3.28 -3.63 -3.51 -4.15	-3.28 -4.19 -3.63 -3.81 -3.51 -3.98 -4.15 -4.05	-3.28 -4.19 -2.92 -3.63 -3.81 -3.82 -3.51 -3.98 -3.25 -4.15 -4.05 -3.52	-3.28 -4.19 -2.92 Inf -3.63 -3.81 -3.82 -2.39 -3.51 -3.98 -3.25 -3.90 -4.15 -4.05 -3.52 -3.04

- SDP relaxation of SNL is highly (implicitly) degenerate:
 The feasible set of this SDP is restricted to a low dim. face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques
- <u>Without</u> using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation (except for round-off error from computing eigenvectors, etc.)

- SDP relaxation of SNL is highly (implicitly) degenerate:
 The feasible set of this SDP is restricted to a low dim. face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques
- <u>Without</u> using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation (except for round-off error from computing eigenvectors, etc.)

- SDP relaxation of SNL is highly (implicitly) degenerate:
 The feasible set of this SDP is restricted to a low dim. face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques
- <u>Without</u> using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation (except for round-off error from computing eigenvectors, etc.)

Preliminaries
Clique/Facial Reduction (Exploit degeneracy)
Algorithm: Facial Reduct. via Subsp. Inters./DELAYED Comp.
Noisy Data
Summary

Thanks for your attention!

Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions

Nathan Krislock and Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

NIU LA'09, Northern Illinois University Aug. 12₃14, 2009