Strong Duality and Stability in Conic Convex Optimization

Henry Wolkowicz

Department of Combinatorics and Optimization
University of Waterloo

Joint work with: Simon Schurr and Levent Tunçel

Ninth SIAM Conference on Optimization, May/08

1

Motivation

Strong Duality Failure/Absence of Constraint Qualification, CQ

- <u>Fresh look</u> at known <u>Characterizations of Optimality</u> using Subspace Formulation
- Instances: SDP relaxations for hard combinatorial problems (e.g. QAP, GP, strengthened MC)

Regularization, Efficient Solutions

 We can still solve many problems if they are properly regularized.

Connections to Complementarity (for nonpolyhedral problems)

 Surprising Connections to Complementarity of Homogeneous Problem

Outline

- Motivation, Notation, Preliminaries
 - SDP Duality Gap Example
 - SUBSPACE FORM and MINIMAL REPRESENTATIONS
 - Recession Directions and Minimal Subspaces
- REGULARIZATION for Cone Programs
 - Minimal Representations using MINIMAL FACE
 - Minimal Representations using MINIMAL SUBSPACE
 - Constraint Qualifications, CQs, for (P)
- 3 Towards a Better regularization
 - A Stable Auxiliary Problem
- Mumerical Tests
- Strict Complementarity and Nonzero Duality Gaps
 - Strict Complementarity Partitions and Nonzero Gaps
- Concluding Remarks

SDP Duality Gap Example SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

Cone Optimization, (e.g. $K = \mathbb{S}^n_+$, SDP)

Primal-Dual Pair of Optimization Problems in Conic Form

(finite)
$$v_P = \sup_{v} \{\langle b, y \rangle : A^*y \leq_K c\},$$
 (P)

$$(v_P \leq)$$
 $v_D = \inf_{x} \{\langle c, x \rangle : Ax = b, x \succeq_{K^*} 0\}.$ (\mathbb{D})

where

- A an onto linear transformation; adjoint is A^*
- K a proper convex cone with dual/polar cone $K^* = \{x : \langle s | x \rangle > 0 \mid \forall s \in K \}$
- $s' \leq_K s''(s' \prec_K s'')$ partial order, $s'' s' \in K(\in intK)$

SDP Duality Gap Example SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

Cone Optimization, (e.g. $K = \mathbb{S}^n_+$, SDP)

Primal-Dual Pair of Optimization Problems in Conic Form

(finite)
$$v_P = \sup_{v} \{\langle b, y \rangle : A^*y \leq_K c\},$$
 (P)

$$(v_P \leq)$$
 $v_D = \inf_{\mathbf{x}} \{\langle \mathbf{c}, \mathbf{x} \rangle : A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \succeq_{K^*} \mathbf{0}\}.$ (\mathbb{D})

where

- \mathcal{A} an onto linear transformation; adjoint is \mathcal{A}^*
- K a proper convex cone with dual/polar cone $K^* = \{x : \langle s, x \rangle \ge 0, \ \forall s \in K \}.$
- $s' \leq_K s''(s' \prec_K s'')$ partial order, $s'' s' \in K(\in intK)$

Faces of Cones

Face

A convex cone F is a face of K, denoted $F \subseteq K$, if

$$x, y \in K$$
 and $x + y \in F \implies x, y \in F$.

If $F \subseteq K$ and $F \neq K$, write $F \triangleleft K$.

Conjugate Face

If $F \subseteq K$, the conjugate face (or complementary face) of F is

$$F^{c} := F^{\perp} \cap K^{*} \unlhd K^{*}.$$

If
$$x \in ri(F)$$
, then $F^c = \{x\}^{\perp} \cap K^*$.

Minimal Face (Minimal Cone)

Feasible sets

$$\begin{split} \mathcal{F}_{P}^{y} &:= \{ y : c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0 \} \\ \mathcal{F}_{P}^{s} &:= \{ s : s = c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0, \text{ for some } y \} \\ \mathcal{F}_{D}^{x} &:= \{ x : \mathcal{A} x = b, x \succeq_{\mathcal{K}}^{x} 0 \} \end{split}$$

Minimal Faces

$$f_P := \text{face} \mathcal{F}_P^S \triangleleft K$$
 $f_D := \text{face} \mathcal{F}_D^X \triangleleft K$

Minimal Face (Minimal Cone)

Feasible sets

$$\begin{aligned} \mathcal{F}_{P}^{y} &:= \{ y : c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0 \} \\ \mathcal{F}_{P}^{s} &:= \{ s : s = c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0, \text{ for some } y \} \\ \mathcal{F}_{D}^{x} &:= \{ x : \mathcal{A} x = b, x \succeq_{\mathcal{K}}^{x} 0 \} \end{aligned}$$

Minimal Faces

$$f_P := \text{face} \mathcal{F}_P^s \triangleleft K$$
 $f_D := \text{face} \mathcal{F}_D^x \triangleleft K^*$

SDP Duality Gap Example

SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

SDP Example from Ramana, 1995

Primal SDP

$$0 = v_P = \sup_{y} \left\{ y_2 : \begin{pmatrix} y_2 & 0 & 0 \\ 0 & y_1 & y_2 \\ 0 & y_2 & 0 \end{pmatrix} \preceq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}$$

$$y^* = egin{pmatrix} y^* &= egin{pmatrix} y_1^* &= 0, & s^* &= c - \mathcal{A}^* y^* &= egin{pmatrix} 1 & 0 & 0 \ 0 & -y_1^* & 0 \ 0 & 0 & 0 \end{pmatrix}$$

Slater's CQ fails for primal and dual; $v_D = 1 > v_P = 0$

-

SDP Duality Gap Example

SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

Minimal Face for Ramana Example

Feasible Set/Minimal Face

$$\begin{aligned} \mathcal{F}_P^{y} &= \{ y \in \mathbb{R}^2 : y_1 \leq 0, \ y_2 = 0 \} \\ f_P &= \bigcap \{ F \leq K : c - \mathcal{A}^*(\mathcal{F}_P^y) \subset F \} \\ &= \begin{pmatrix} \mathbb{S}_+^2 & 0 \\ 0 & 0 \end{pmatrix} \\ &\leq \mathbb{S}_+^3 \end{aligned}$$

Slater CQ and Minimal Face

If (\mathbb{P}) is feasible, then

$$c - A^*y \not\succ_K 0 \forall y$$
 (Slater's CQ fails for (P)) $\iff f_P \triangleleft K$

Recession Directions and Minimal Subspaces

(SYMMETRIC) Subspace Form for (\mathbb{P}) and (\mathbb{D})

Concluding Remarks

Assume Linear Feasibility for $\tilde{s}, \tilde{y}, \tilde{x}$; with data A, b, c, K

$$\mathcal{A}^* ilde{y} + ilde{s} = c$$
 $\mathcal{A} ilde{x} = b$ $\mathcal{L}^\perp = \mathcal{R}(\mathcal{A}^*)$ (range) $\mathcal{L} = \mathcal{N}(\mathcal{A})$ (nullspace)

Equivalent Primal-Dual Pair in Subspace Form

Particular solution + solution of homogeneous equation

$$v_P = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}^{\perp}) \cap K \right\}.$$
 (P)

$$V_D = \tilde{y}b + \inf_{X} \left\{ \tilde{s}x : x \in (\tilde{x} + \mathcal{L}) \cap K^* \right\}. \tag{D}$$

Recession Directions and Minimal Subspaces

(SYMMETRIC) Subspace Form for (\mathbb{P}) and (\mathbb{D})

Concluding Remarks

Assume Linear Feasibility for $\tilde{s}, \tilde{y}, \tilde{x}$; with data A, b, c, K

$$\mathcal{A}^* ilde{y} + ilde{s} = c \qquad \mathcal{A} ilde{x} = b$$
 $\mathcal{L}^\perp = \mathcal{R}(\mathcal{A}^*) ext{ (range)} \qquad \mathcal{L} = \mathcal{N}(\mathcal{A}) ext{ (nullspace)}$

Equivalent Primal-Dual Pair in Subspace Form

Particular solution + solution of homogeneous equation

$$v_P = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}^{\perp}) \cap K \right\}.$$
 (P)

$$v_D = \tilde{y}b + \inf_{\mathbf{v}} \{\tilde{\mathbf{s}}\mathbf{x} : \mathbf{x} \in (\tilde{\mathbf{x}} + \mathcal{L}) \cap \mathbf{K}^*\}.$$
 (D)

For (\mathbb{P}) and (\mathbb{D})

Faces of Recession Directions

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap \mathcal{K}\right), \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap \mathcal{K}^*\right)$$

Recall

minimal faces
$$f_P = \text{face} \mathcal{F}_D^S$$
 $f_D = \text{face} \mathcal{F}_D^X$

Minimal Subspaces/Linear Transformations

min. subsp.
$$\mathcal{L}_{PM}^{\perp} := \mathcal{L}^{\perp} \cap (f_P - f_P)$$
 $\mathcal{L}_{DM} := \mathcal{L} \cap (f_D - f_D)$ min. Lin. Tr. \mathcal{A}_{PM}^*

For (\mathbb{P}) and (\mathbb{D})

Faces of Recession Directions

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap \mathcal{K}\right), \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap \mathcal{K}^*\right)$$

Recall

minimal faces
$$f_P = \text{face} \mathcal{F}_P^S$$
 $f_D = \text{face} \mathcal{F}_D^X$

Minimal Subspaces/Linear Transformations

min. subsp.
$$\mathcal{L}_{PM}^{\perp} := \mathcal{L}^{\perp} \cap (f_P - f_P)$$
 $\mathcal{L}_{DM} := \mathcal{L} \cap (f_D - f_D)$ min. Lin. Tr. \mathcal{A}_{PM}^* \mathcal{A}_{DM}

Minimal Representations using MINIMAL FACE
Minimal Representations using MINIMAL SUBSPACE
Constraint Qualifications, CQs, for (P)

Regularization of (P) Using Minimal Face

Numerical Tests

Borwein-W (1981), $f_P = \text{face} \mathcal{F}_P^s$

Strict Complementarity and Nonzero Duality Gaps

(ℙ) is equivalent to regularized (ℙ)

$$v_{RP} := \sup_{y} \{ \langle b, y \rangle : A^* y \leq_{f_{P}} c \}.$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$v_P = v_{RP} = v_{DRP} := \inf_{\mathbf{x}} \left\{ \langle c, \mathbf{x} \rangle : A\mathbf{x} = b, \ \mathbf{x} \succeq_{f_P^*} \mathbf{0} \right\}$$
 (DRP)

and **VDRP** is attained

Minimal Representations using MINIMAL FACE Minimal Representations using MINIMAL SUBSPACE Constraint Qualifications, CQs, for (P)

Regularization of (P) Using Minimal Subspace

Concluding Remarks

Assume K Facially Dual Complete, FDC (Pataki/07, 'nice')

$$0 \neq F \triangleleft K \implies K^* + F^{\perp}$$
 is closed. (e.g. $\mathbb{S}^n_+, \mathbb{R}^n_+$,SOC).

$$\mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp} \cap (f_P - f_P)$$

$$v_{RP} = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}_{MP}^{\perp}) \cap K \right\}$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$v_{DRP} = \tilde{y}b + \inf_{x} \left\{ \tilde{s}x : x \in (\tilde{x} + \mathcal{L}_{MP}) \cap K^* \right\}$$
 (DRP)

and VDRP is attained

Strict Complementarity and Nonzero Duality Gaps

Minimal Representations using MINIMAL FACE Minimal Representations using MINIMAL SUBSPACE Constraint Qualifications, CQs, for (P)

Strong Duality for (P) $(v_P = v_D \text{ and } v_D \text{ is attained})$

Minimal Face and Minimal Subspace CQs for (P)

Concluding Remarks

2
$$\mathcal{L}^{\perp} \cap (f_P - f_P) = \mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp}$$
 is a CQ (if K is FDC)

Universal CQ, UCQ (i.e. independent of data c, b) for (P)

$$\mathcal{L}^{\perp} \subset f_{P}^{0} - f_{P}^{0}$$
 is a UCQ (if *K* is FDC)

Minimal Representations using MINIMAL FACE Minimal Representations using MINIMAL SUBSPACE Constraint Qualifications, CQs, for (P)

Strong Duality for (P) $(v_P = v_D \text{ and } v_D \text{ is attained})$

Minimal Face and Minimal Subspace CQs for (P)

Concluding Remarks

2
$$\mathcal{L}^{\perp} \cap (f_P - f_P) = \mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp}$$
 is a CQ (if K is FDC)

Universal CQ, UCQ (i.e. independent of data c, b) for (P)

$$\mathcal{L}^{\perp} \subset f_{P}^{0} - f_{P}^{0}$$
 is a UCQ (if K is FDC)

Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks

Our Goals:

Goals: Derive an Algorithm that Satisfies

- recognizes if Slater's CQ holds and if (ℙ)–(ⅅ) has a zero duality gap (improves on stability/efficiency of B-W algorithm)
- 3 intermediate cone programs to be solved are well behaved

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathbb{P}) is feasible. Then exactly one of the following two systems is consistent:

- (1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$
- (2) $A^*y \prec_K c$ (Slater's CQ holds for (P))

Difficult?

In theory, we can solve $\min\{0 : x \text{ satisfies (1)}\}\$ to determine it Slater's CQ fails for (\mathbb{P}) .

But this problem need not satisfy the generalized Slater CQ. So how can we solve (1)?

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathbb{P}) is feasible. Then exactly one of the following two systems is consistent:

- (1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$
- (2) $A^*y \prec_K c$ (Slater's CQ holds for (P))

Difficult?

In theory, we can solve $\min\{0 : x \text{ satisfies (1)}\}\$ to determine if Slater's CQ fails for (\mathbb{P}) .

But this problem need not satisfy the generalized Slater CQ. So how can we solve (1)?

Stable Theorem of the Alternative

Stable Auxiliary Problem

Let
$$e \in \text{int}(K) \cap \text{int}(K^*)$$
; define $A_c x := \begin{pmatrix} Ax \\ \langle c, x \rangle \end{pmatrix}$

$$\alpha^* := \left\{ \inf_{x,\alpha} \alpha : A_c x = 0, x + \alpha e \succeq_{K^*} 0, \langle e, x \rangle \le 1 \right\} \tag{A}$$

Properties/Advantages

- size of (A) essentially that of (D)
- A strictly feasible primal-dual point is easily found.
- Apply primal-dual IPM; assume a barrier for K* such that the central path defined by it converges to a point in the relative interior of the optimal face; follow central path closely at end of algorithm.

Slater's Condition and the Auxiliary problem

Concluding Remarks

Solution to (A) yields info on (P)–(D)

Strict Complementarity and Nonzero Duality Gaps

Theorem: The x component of the central path for (A) converges to a point in $ri(face(G_P))$, where

$$G_P := \{x : Ax = 0, \langle c, x \rangle = 0, x \succeq_{K^*} 0\}.$$

Moreover, since $f_P \subset \{x^*\}^{\perp} \cap K = [face(G_P)]^c \subseteq K$, one of the following holds:

- \bullet $\alpha^* = 0$ and $x^* = 0$, so Slater's CQ holds for (\mathbb{P}), or
- $\alpha^* = 0$ and $0 \neq x^* \succeq_{K^*} 0$, so $f_P \subset \{x^*\}^{\perp} \cap K \triangleleft K$, or
- ③ α^* < 0 and x^* ≻_{K*} 0, so the generalized Slater CQ holds for (□).

Towards a Better regularization

Numerical Tests

Strict Complementarity and Nonzero Duality Gaps

Concluding Remarks

Algorithm <u>Alternates</u> to Obtain Minimal Representations

For Minimal Face

From auxiliary problem, find:

$$0 \neq x \in K^*, \{x\}^{\perp} = H, \{x\}^{\perp} \cap K \supset f_P$$

For Minimal Subspace

Find A_H so that $\mathcal{R}(A_H^*) = \mathcal{R}(A^*) \cap H$ to get reduced problem in H

Previous SDP with $K = \mathbb{S}^3_+$ and a Duality Gap of 1

SeDuMi 1.1 Results

$$\begin{array}{lll} y^* = \begin{pmatrix} -0.321 \times 10^6 & 0.372 \end{pmatrix}^T \\ s^* = \begin{pmatrix} 0.628 \times 10^5 & 0 & 0 \\ 0 & -0.321 \times 10^6 & -0.372 \\ 0 & -0.372 & 0 \end{pmatrix}; \end{array}$$

desired accuracy (10⁻⁶) achieved but!!

$$\langle c, x^* \rangle - \langle b, y^* \rangle \approx -0.12!$$
 and s^* is not pos. semidef.

After One Step of the Reduction

Our code yields correct primal solution:

$$y^* = \begin{pmatrix} -1.50 \\ 0 \end{pmatrix}, \quad s^* = \begin{pmatrix} 1.00 & 0 & 0 \\ 0 & 1.50 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Higher Dimensional Numerical Experiments

SDP with $m = n \ge 3$, $b = e_2$, c = 0

$$A^*y = \begin{pmatrix} y_1 & y_2 & y_3 & \cdots & y_{n-1} & y_n \\ y_2 & y_3 & & & & \\ \vdots & & & & \ddots & \\ y_{n-1} & & & & y_n & \\ y_n & & & & 0 \end{pmatrix}$$

SeDuMi/Our Algorithm

SeDuMi gives incorrect primal/dual solution; duality gap of -1; our algorithm gives correct solution

$$F_P = \{ y \in \mathbb{R}^n : y_1 \le 0, \ y_2 = \dots = y_n = 0 \}$$
 min. face $f_P = \{ Z \in \mathbb{S}^n_+ : Z_{11} \ge 0, \ Z_{ij} = 0 \ \forall (i,j) \ne (1,1) \}$, and (\mathbb{D}) is infeasible.

Complementarity Partition

Recall Faces of Recession Directions

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap \mathcal{K}\right), \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap \mathcal{K}^*\right)$$

The pair f_P^0, f_D^0 define a Complementarity Partition

 $\operatorname{face}(f_P^0) \subset \operatorname{face}(f_D^0)^c$ and $\operatorname{face}(f_D^0) \subset \operatorname{face}(f_P^0)^c$. it is a strict complementarity partition if also $[\operatorname{face}(f_P^0)]^c = \operatorname{face}(f_D^0)$ (equiv. $[\operatorname{face}(f_P^0)]^c \cap [\operatorname{face}(f_D^0)]^c = \{0\}$); it is proper if f_D^0 and f_D^0 are both nonempty.

Strict Complementarity and Nonzero Gaps

Theorem: K is a proper cone

(1) If f_P^0 , f_D^0 define a proper complementarity partition but not a strict complementarity partition, then there exists \bar{s} and \bar{x} such that (\mathbb{P}) – (\mathbb{D}) with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap.

(Partial Converse)

(2) If (a) (\mathbb{P}) – (\mathbb{D}) with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap with both optimal values attained, and (b) the objective functions are constant along all recession directions of (\mathbb{P}) and (\mathbb{D}) , then f_P^0, f_D^0 has a proper complementarity partition but not a strict complementarity partition.

Conclusion

- Minimal Representations of the data regularize (P) min. face f_P and/or the min. L.T. \mathcal{A}_{PM} or \mathcal{L}_{PM}^*
- presented a stable algorithm to solve (feasible) conic problems for which Slater's CQ fails
- Failure of strict complementarity for the associated recession problems is closely related to the existence of instances having a finite nonzero duality gap; provides a means of generating instances for testing.