SDP Background
Hard SDP Instances
Measures for Strict Complementarity Nullity
Numerical Results
Conclusion

Generating and Measuring Instances of Hard Semidefinite Programs

Hua Wei and Henry Wolkowicz

ICCOPT II & MOPTA-07

Monday, August 13, 2007

1

Outline

- SDP Background
 - Problem Statement
 - Theoretical/Numerical Difficulties in SDP
- Hard SDP Instances
 - Definitions
 - Generating Hard SDP Instances
 - Generating Hard SDP Instances with Slater Condition
- Measures for Strict Complementarity Nullity
- Mumerical Results
 - Randomly Generated Instances
 - Plots
 - Correlation Matrix
 - SDPLIB Instances
- Conclusion

SDP Models

Primal SDP

$$(PSDP) \qquad \begin{array}{ccc} p^* := & \min & \operatorname{trace} CX \\ & \text{s.t.} & \mathcal{A}\left(X\right) = b \\ & X \succ 0 \end{array}$$

Numerical Results

Dual SDP

$$\begin{array}{ccc} d^* := & \max & b^T y \\ (\textit{DSDP}) & & \text{s.t.} & \mathcal{A}^*(y) + Z = C \\ & & Z \succeq 0, \end{array}$$

where $C, X, Z \in \mathcal{S}^n$, $n \times n$ real symmetric matrices, $y, b \in \mathbb{R}^m$, $(\succeq) \succ$ denotes positive (semi)definiteness.

SDP Models

Primal SDP

$$(PSDP) \qquad p^* := \quad \min \quad \text{trace } CX$$

$$\text{s.t.} \quad \mathcal{A}(X) = b$$

$$X \succeq 0$$

Dual SDP

$$\begin{array}{ccc} d^* := & \max & b^T y \\ (\textit{DSDP}) & & \text{s.t.} & \mathcal{A}^*(y) + Z = C \\ & & Z \succ 0. \end{array}$$

where $C, X, Z \in \mathcal{S}^n$, $n \times n$ real symmetric matrices, $y, b \in \mathbb{R}^m$, $(\succeq) \succ$ denotes positive (semi)definiteness.

 \mathcal{P}^* and \mathcal{D}^* - are sets of optimal primal and dual solutions

Primal/Dual Slater

- A(X) = b, X > 0
- $\mathcal{A}^*(y) \prec C$

- Primal Slater condition implies strong duality, i.e. zero duality gap AND dual attainment.
- (Near) loss of strict feasibility is used as a measure in complexity theory. (e.g. Renegar/95, Freund/01, Lara and Tuncel/02)
- (Near) loss of strict feasibility correlates with number of iterations and loss of accuracy in interior-point methods (e.g. Freund/Ordonez/Toh 2006)

Primal/Dual Slater

- $A(X) = b, X \succ 0$
- $\mathcal{A}^*(y) \prec C$

- Primal Slater condition implies strong duality, i.e. zero duality gap AND dual attainment.
- (Near) loss of strict feasibility is used as a measure in complexity theory. (e.g. Renegar/95, Freund/01, Lara and Tuncel/02)
- (Near) loss of strict feasibility correlates with number of iterations and loss of accuracy in interior-point methods (e.g. Freund/Ordonez/Toh 2006)

Primal/Dual Slater

- $A(X) = b, X \succ 0$
- $\mathcal{A}^*(y) \prec C$

- Primal Slater condition implies strong duality, i.e. zero duality gap AND dual attainment.
- (Near) loss of strict feasibility is used as a measure in complexity theory. (e.g. Renegar/95, Freund/01, Lara and Tuncel/02)
- (Near) loss of strict feasibility correlates with number of iterations and loss of accuracy in interior-point methods (e.g. Freund/Ordonez/Toh 2006)

Primal/Dual Slater

- $A(X) = b, X \succ 0$
- $\mathcal{A}^*(y) \prec C$

- Primal Slater condition implies strong duality, i.e. zero duality gap AND dual attainment.
- (Near) loss of strict feasibility is used as a measure in complexity theory. (e.g. Renegar/95, Freund/01, Lara and Tuncel/02)
- (Near) loss of strict feasibility correlates with number of iterations and loss of accuracy in interior-point methods (e.g. Freund/Ordonez/Toh 2006)

Loss of Strict Complementarity, (SC)

Strict Complementary Optimal Primal-Dual Pair

• There exists an optimal primal-dual pair X, Z such that

$$X + Z \succ 0$$

Theoretical Difficulties

- Convergence proofs for asymptotic quadratic superlinear convergence require SC.
- Proofs of convergence to the analytic center require SC

increased number of iterations? loss of accuracy?

Loss of Strict Complementarity, (SC)

Strict Complementary Optimal Primal-Dual Pair

There exists an optimal primal-dual pair X, Z such that

$$X + Z \succ 0$$

Theoretical Difficulties

- Convergence proofs for asymptotic quadratic superlinear convergence require SC.
- Proofs of convergence to the analytic center require SC

increased number of iterations? loss of accuracy?

Loss of Strict Complementarity, (SC)

Strict Complementary Optimal Primal-Dual Pair

There exists an optimal primal-dual pair X, Z such that

$$X + Z \succ 0$$

Theoretical Difficulties

- Convergence proofs for asymptotic quadratic superlinear convergence require SC.
- Proofs of convergence to the analytic center require SC

Numerical Difficulties ???

increased number of iterations? loss of accuracy?

- The Primal-Dual: Feasibility, Complementary Slackness
 Optimality Conditions are overdetermined;
 symmetrizations to use Newton's method result in ill-posed problems.
- High accuracy solutions are hard/impossible to obtain; sparsity is hard to exploit; large scale is still an open area of research.

Maximal Complementary Solution Pair:

• A primal-dual pair of optimal solutions $(\bar{X}, \bar{Z}) \in \mathcal{P}^* \times \mathcal{D}^*$ is called a *maximal complementary solution pair* to the problems (PSDP) and (DSDP), if the pair maximizes the sum rank (X) + rank (Z) over all primal-dual optimal solution pairs (X, Z).

Strict Complementarity Nullity:

• $g = n - \text{rank}(\bar{X}) - \text{rank}(\bar{Z})$, where (\bar{X}, \bar{Z}) is a maximal complementary solution pair

Hard SDP Instances

Maximal Complementary Solution Pair:

• A primal-dual pair of optimal solutions $(\bar{X}, \bar{Z}) \in \mathcal{P}^* \times \mathcal{D}^*$ is called a *maximal complementary solution pair* to the problems (PSDP) and (DSDP), if the pair maximizes the sum rank (X) + rank (Z) over all primal-dual optimal solution pairs (X, Z).

Strict Complementarity Nullity

• $g = n - \text{rank}(\bar{X}) - \text{rank}(\bar{Z})$, where (\bar{X}, \bar{Z}) is a maximal complementary solution pair

Hard SDP Instances

Maximal Complementary Solution Pair:

• A primal-dual pair of optimal solutions $(\bar{X}, \bar{Z}) \in \mathcal{P}^* \times \mathcal{D}^*$ is called a *maximal complementary solution pair* to the problems (PSDP) and (DSDP), if the pair maximizes the sum rank (X) + rank (Z) over all primal-dual optimal solution pairs (X, Z).

Strict Complementarity Nullity:

• $g = n - \text{rank}(\bar{X}) - \text{rank}(\bar{Z})$, where (\bar{X}, \bar{Z}) is a maximal complementary solution pair

Hard SDP Instances

Maximal Complementary Solution Pair:

• A primal-dual pair of optimal solutions $(\bar{X}, \bar{Z}) \in \mathcal{P}^* \times \mathcal{D}^*$ is called a *maximal complementary solution pair* to the problems (PSDP) and (DSDP), if the pair maximizes the sum rank (X) + rank (Z) over all primal-dual optimal solution pairs (X, Z).

Strict Complementarity Nullity:

• $g = n - \text{rank}(\bar{X}) - \text{rank}(\bar{Z})$, where (\bar{X}, \bar{Z}) is a maximal complementary solution pair

Hard SDP Instances:

Algorithm for Given Nullity g

Algorithm

- Given: positive integers r > 0 and m > 1: the rank of an optimum X and the number of constraints, resp.
- Let $Q = [Q_P | Q_N | Q_D]$ be an orthogonal matrix, where the dimensions of Q_P , Q_N , Q_D are $n \times r$, $n \times g$, $n \times (n r g)$, respectively, and r > 0. Construct positive semidefinite matrices X and Z as follows:

$$X := Q_P D_X Q_P^T, \qquad Z := Q_D D_Z Q_D^T,$$

where D_X and D_Z are diagonal positive definite.

o cont...

Numerical Results

Definitions
Generating Hard SDP Instances

Generating Hard SDP Instances with Slater Condition

Algorithm cont...

Algorithm cont...

Define

$$A_{1} = [Q_{P}|Q_{N}|Q_{D}] \begin{bmatrix} 0 & 0 & Y_{2}' \\ 0 & Y_{1} & Y_{3}^{T} \\ Y_{2} & Y_{3} & Y_{4} \end{bmatrix} [Q_{P}|Q_{N}|Q_{D}]^{T},$$

where Y_1 , Y_2 , Y_3 , and Y_4 are block matrices of appropriate dimensions, $Y_1 > 0$, Y_4 symmetric, and $Q_D Y_2 \neq 0$.

- Choose $A_i \in \mathcal{S}^n$, i = 2, ..., m, such that $\{A_1 Q_P, A_2 Q_P, ..., A_m Q_P\}$ is a linearly independent set. (Note that $A_1 Q_P = Q_D Y_2 \neq 0$.)
- Set b := A(X), $C := A^*(y) + Z$, with $y \in \Re^m$ randomly generated.

Definitions
Generating Hard SDP Instances
Generating Hard SDP Instances with Slater Condition

Theorem for Generating Hard Instances

Theorem

The data (A, b, C) constructed in the above algorithm gives a hard SDP instance with a strict complementarity nullity g.

Proof Outline

- Step 2 guarantees X, Z ≥ 0, XZ = 0 but strict complementarity fails.
- step 5 guarantees primal-dual feasibility, i.e. XZ are an optimal pair.
- Steps 3,4 guarantee X, Z are a maximal complementary solution pair.

Generating Hard Instances with Slater Condition

Corollary

With data (A, b, C) constructed using above algorithm:

 \bullet If the following additional condition on A_2 is satisfied

$$[Q_P|Q_N]^T A_2[Q_P|Q_N] \succ 0,$$

then Slater's condition holds for the dual program (DSDP).

② If the following additional conditions on A_i , i = 1, ..., m, are satisfied,

trace
$$Y_4 = -\text{trace } Y_1$$

 $\alpha > 0$, trace $A_i X = \alpha \text{trace } A_i$, $i = 2, ..., m$,

then
$$\hat{X} = \alpha I \succ 0$$
 is feasible for (PSDP).

Measures g_t , g_s , κ

g_t, g_s, κ

- $g_t := |\{w_i^d : T_I < w_i^d < T_u\}|$, where $w^d = \frac{1}{2}\lambda \left(X^{-1}Z + ZX^{-1}\right)$; T_I , T_u are two tolerances. (O(1) indicates nullity; $0, \infty$ otherwise)
- $g_s := |\{w_j^s : w_j^s \le T\}|$, where $w^s := \frac{1}{2\sqrt{\mu}}\lambda(X+Z)$; T is a tolerance.
- (proposed by Freund, Ordóñez, and Toh.) given tolerance T, $T^s := \{j : w_i^s \le T\}$.,

$$\kappa := -\sum_{j \in T^{s}} \ln(w_{j}^{s}) / |\{j : w_{j}^{s} \le T\}|.$$
(1)

[small (large) for str. compl holds (fails)]

Randomly Generated Instances

Plots Correlation Matrix SDPLIB Instances

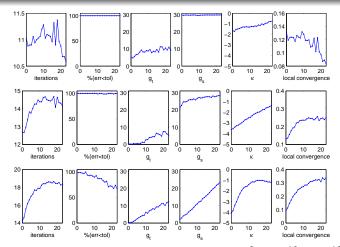
Randomly Generated Instances

Random Instances

- We generate 100 instances for each nullity value 0:23.
- The Slater conditions hold for both primal and dual.
- The x-axis of each figure represents the complementarity nullity ranging from 0 to 23.
- On y-axes from left to right:

iteration numbers; number of instances that satisfy the desired accuracy; measure g_t ; measure g_s ; measure κ ; local convergence rate.

Plots



Slater conditions hold; stop tolerances: 10^{-8} , 10^{-10} , 10^{-12} (using average of instances that attained desired accuracy)

Observations

Observations

- There is a strong correlation between the iteration number to achieve the desired stopping tolerance and the size of the complementarity nullity, when the accuracy requirement is high.
- Large nullity instances cause problems for SDPT3 solver.
- The measures g_t , g_s and κ all improve as the accuracy increases. Measure κ correlates well with the iteration number.
- Local asymptotic convergence rate is slower when nullity is larger.

Randomly Generated Instances Plots Correlation Matrix SDPLIB Instances

Correlation Matrix

The local convergence rate is for stop tolerance is 10^{-12} .

	Nullity	Iterations	g _t	g s	κ	Cvg. Rate
Nullity	1.0000	0.8341	0.9921	0.9993	0.8430	0.9263
Iterations	0.8341	1.0000	0.8417	0.8191	0.9958	0.9763
g_t	0.9921	0.8417	1.0000	0.9897	0.8567	0.9274
$g_{ extsf{s}}$	0.9993	0.8191	0.9897	1.0000	0.8280	0.9164
κ	0.8430	0.9958	0.8567	0.8280	1.0000	0.9785
Cvg. Rate	0.9263	0.9763	0.9274	0.9164	0.9785	1.0000

- nullity correlates well with iterations as well as local convergence rate.
- The measure κ has highest correlation with iterations.

SDPT3 Iteration Numbers on SDPLIB Instances

- Measures g_t , g_s and κ are applied on the SDPLIB instances.
- We only consider those SDP instances (47 such instances), where the error obtained was less than 10⁻⁷.
 The correlation between the measures and the iteration numbers are:

$$corr(g_t, its) = 0.1472, \ corr(g_s, its) = 0.4509,$$
 and $corr(\kappa, its) = 0.4371.$

Low accuracy in solutions yield low correlations.

SDPLIB Instances

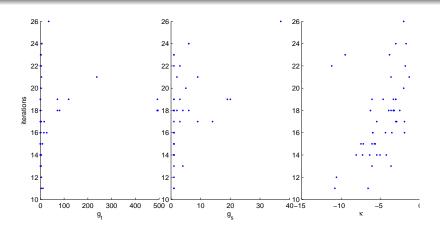


Figure: Scatter plots of g_t , g_s , κ versus # iterations for SDPLIB instances with attained tolerance $< 10^{-7}$.

Conclusion

Generating Hard Instances

We have presented an algorithm for generating hard SDP instances, i.e. problem instances where we can control the complementarity nullity, *g*.

Two Empirical Measures for g

We introduced two empirical measures g_t and g_s for g. These two measures provide accurate measurement of g if high accuracy solutions are used.

Measures: Positive Correlation with Numerical Difficulties

The numerical tests show: number of iterations and the numerical accuracy are positively correlated to g.

SDP Background Hard SDP Instances Measures for Strict Complementarity Null Numerical Results Conclusion

Thanks!! Enjoy ICCOPT/MOPTA

Thanks for your attention! Hope you are enjoying ICCOPT/MOPTA

Generating and Measuring Instances of Hard Semidefinite Programs

Hua Wei and Henry Wolkowicz

ICCOPT II & MOPTA-07