Anchored Grap Realization and Se Localization

Nathan Krislock, Veronica Piccialli, and Henry Woll

University of Rome and University of Waterloo

Outline

Problem Formulation, \boldsymbol{EDMC}

Matrix Reformulation, EDMC

- Semidefinite Programming connection

SDP Relaxation of Hard Constraint $\bar{Y} = PP^T$

Facial Reduction - Reduced Problem Model

Adjoints/Duality for EDMC-R

Primal-Dual Bilinear Optimality Conditions (overdetermined)

Robust Interior-Point algorithm

- Gauss-Newton Direction, crossover, exact p-d feasibility, p

MATLAB demonstration

Concluding Remarks

Problem

- Ad hoc wireless sensor network
- A few anchors (e.g. with GPS/bulky fixed, known locations
- sensors within a given range have known distance measurements (a
- Problem: Determine positions of al
- Parameters: Radio range, # of and level
- Semidefinite Relaxations/Robust A

Problem Applica

- health, military, home
- natural habitat monitoring, earthque detection, weather/current monitoring
- random deployment in inaccessible disaster relief operations

Problem Example with Radio Range

Figure 1: Connected Grap

Problem Formula

- $p^1, \ldots, p^n \in \Re^r$ unknown (sensor) $a^1, \ldots, a^m \in \Re^r$ known (anchor) r embedding dimension (usually
- $A^T := [a^1, a^2, \dots, a^m]$ $X^T := [p^1, p^2]$

$$P^T := \begin{pmatrix} p^1, p^2, \dots, p^n, a^1, a^2, \dots \\ P = \begin{pmatrix} X \\ A \end{pmatrix} \quad \text{rows are sensor/anch}$$

Definitions

- index sets of existing values of distance pairs of sensors, $\{p^i\}_1^n$: \mathcal{N}_e distance values \mathcal{N}_u upper bounds on distances \mathcal{N}_l lower bounds on distances

 Similarly, the index sets $(\mathcal{M}_e, \mathcal{M}_u, \mathcal{M}_u, \mathcal{M}_u)$ pairs from $\{p^i\}_1^n$ (sensors) and $\{a^k\}_1^n$ (anchors)
- partial EDM matrix E of squared d

$$E_{ij} := \left\{ egin{array}{ll} d_{ij}^2 & ext{if} & ij \in \mathcal{N}_e \cup \mathcal{M}_e \ 0 & ext{otherwise}. \end{array}
ight.$$
 Anchored Graph F

Definitions

Similarly, we define

 the (partial) matrix of (squared dist upper bounds

$$U$$
, using $ij \in \mathcal{N}_u \cup \mathcal{M}_u$

 and the (partial) matrix of (squared lower bounds

$$L$$
, using $ij \in \mathcal{N}_l \cup \mathcal{M}_l$

Weighted Least Squares Error

In the case E_{ij} have errors: Let W_p, W_a be weight matrices. We the weighted least squares error.

$$f_1(P) := \sum_{\substack{(i,j) \in \mathcal{N}_e \\ + \sum_{(i,k) \in \mathcal{M}_e}}} (W_p)_{ij} (\|p^i - p^j\|^2 + \sum_{\substack{(i,k) \in \mathcal{M}_e}}} (W_a)_{ik} (\|p^i - p^j\|^2 + \sum_{\substack{(i,k) \in \mathcal{M}_e}} (W_a)$$

HARD (nonconve Constrained LS

EDMC Problem:

min
$$f_1(P)$$
 (weighted least squares s.t. $||p^i - p^j||^2 \le U_{ij} \ \ \forall (i,j) \in \mathcal{N}_u$ ($||p^i - a^k||^2 \le U_{ik} \ \ \forall (i,k) \in \mathcal{M}_u$ $||p^i - p^j||^2 \ge L_{ij} \ \ \forall (i,j) \in \mathcal{N}_l$ ($||p^i - a^k||^2 \ge L_{ik} \ \ \forall (i,k) \in \mathcal{M}_l$

$\mathcal{K}(SDP) = EDN$

 $B = PP^T (SDP)$. $B_{ii} = (p^i)^T p^i$; $B_{ij} = The$ squared distance

$$D_{ij} = \|p^{i} - p^{j}\|^{2} \quad (EDM)$$

$$= (p^{i})^{T}p^{i} + (p^{j})^{T}p^{j}$$

$$= \updownarrow \qquad \updownarrow \qquad \qquad \updownarrow$$

$$= (\operatorname{diag}(B)e^{T} + e\operatorname{diag}(B)^{T}$$

$$= (\mathcal{K}(B))_{ij}$$

 $D = \mathcal{K}(B)$ change $EDMD \leftrightarrow SL$

Löwner Partial O

matrix inner-product $\langle M, N \rangle = \operatorname{trace} R$

Frobenius norm $||M||^2 = \operatorname{trace} M^T M$ In \mathcal{S}^n , $n \times n$ symmetric matrices:

 $B \succeq 0$ (is positive semidefination)

$$\iff$$

$$\exists P \text{ with } B = PP^T, \text{ rank } (B) = \text{rank}$$

the positive semidefinite (Löwner) par

$$A \succeq B \ (A \succ B) \ \text{if} \ A - B \succeq 0 \ (A - B) \ \text{if} \ A = B \succeq 0$$

Anchored Grap

$\begin{array}{c} \text{Matrix Reformula} \\ \text{of } EDMC \end{array}$

Let
$$\bar{Y}:=PP^T=egin{pmatrix} XX^T & XA^T \\ AX^T & AA^T \end{pmatrix}$$

We get the equivalent ${m EDMC}$

$$\begin{array}{ll} \min & f_2(\bar{Y}) := \frac{1}{2} \| W \circ (\mathcal{K}(\bar{Y}) - \\ \text{subject to} & g_u(\bar{Y}) := H_u \circ (\mathcal{K}(\bar{Y}) \\ & g_l(\bar{Y}) := H_l \circ (\mathcal{K}(\bar{Y}) \end{array}$$

hard constraint $\overline{Y} - PP^T$

SDP Relaxation of Hard Constraint

$$\bar{Y} = PP^T = \begin{pmatrix} XX^T & XA^T \\ AX^T & AA^T \end{pmatrix} \quad \text{holo}$$

$$\iff \qquad \qquad \iff$$

$$ar{Y}_{11} = XX^T$$
 and $ar{Y}_{21} = AX^T, ar{Y}_2$

Relax $\bar{Y} = PP^T$ to (Löwner partial order)

$$ar{Y}_{22} = AA^T$$
 $PP^T - \bar{Y} \preceq 0$ quadr co

(But why this relaxation?)

Convex wrt Löwr Partial Order

The constraint $g(P, Y) = PP^T - Y \leq$ \succeq -convex, since each function

$$\phi_Q(P,Y) = \operatorname{trace} Qg(P,Y)$$
 is conve

Note

trace
$$QPP^T$$
 = trace $QPIP^T$
= vec $(P)^T (I \otimes Q)$

Hessian is $I \otimes Q \succeq 0$; and the cone \mathbf{SDP} is self-polar.

Linearization of S Relaxation

$$PP^{T} - \bar{Y} \preceq 0, \qquad P = \begin{pmatrix} X \\ A \end{pmatrix}, \overline{Y}_{22} = \begin{pmatrix} X \\ X \end{pmatrix}, \overline{Y}_{2$$

Facial Reduction

$$Z_s := egin{pmatrix} I & X^T \ X & Y \end{pmatrix}$$
 (NE 2×2 block)
(Lin.Tr. but N

THEOREM:

$$Z = \begin{pmatrix} I & X^T & A^T \\ X & Y & Y_{21}^T \\ A & Y_{21} & AA^T \end{pmatrix} \succeq 0$$

$$\iff$$

$$Z_s \succeq 0$$
 and $Y_{21} = AX^T$

Matrix → Vector Notation I

vector $v = \operatorname{vec} V$ is matrix V taken co

$$\operatorname{sblk}_{21} \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix} = \sqrt{2}X \text{ pulls out the policy of th$$

the $\sqrt{2}$ is for isometry in Frobenius no

$$x := \operatorname{vec} \left(\operatorname{sblk}_{21} \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix} \right) = \sqrt{2}$$

$$y := \operatorname{svec} (Y) \quad (Y = Y^T, \text{ isom})$$

Matrix → Vector Notation II

(adjoints:
$$\operatorname{sblk}_{21}^*(X) = 1$$

$$\operatorname{sBlk}_{21}(X) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix}$$

$$\operatorname{svec}^{-1}(\cdot) = \operatorname{svec}^*(\cdot) = \operatorname{sMat}(\cdot)$$

$$\mathcal{Z}_s^x(x) := \mathrm{sBlk}_{21}(\mathrm{Mat}(x)), \quad \mathcal{Z}_s^y(y) := \mathcal{Z}_s(x,y) := \mathcal{Z}_s^x(x) + \mathcal{Z}_s^y(y), \quad Z_s := \mathrm{sBl}$$

to build
$$Z_s = \begin{pmatrix} I & X^T \ X & Y \end{pmatrix} \in \mathcal{S}^{r+n}$$

Matrix → Vector Notation III

$$\mathcal{Y}^{x}(x) = \mathrm{sBlk}_{21}(A\mathrm{Mat}(x)^{T}), \ \mathcal{Y}^{y}(y) = \mathcal{Y}^{x}(x,y) = \mathcal{Y}^{x}(x) + \mathcal{Y}^{y}(y), \ \overline{Y} = \mathrm{sBlk}_{20}$$

$$ar{E} := W \circ [E - \mathcal{K}(\mathrm{sBlk}_2(AA^T))]$$
 $ar{U} := H_u \circ [\mathcal{K}(\mathrm{sBlk}_2(AA^T))] - \bar{L} := H_l \circ [L - \mathcal{K}(\mathrm{sBlk}_2(AA^T))]$

The unknown matrix \bar{Y} is equal to $\mathcal{Y}(x)$ additional constant 2,2 block), i.e. unlike vectors x,y.

Equivalent Redu Problem Model

(EDMC-R)

min
$$f_3(x,y):=rac{1}{2}\|W\circ (\mathcal{K}(\mathcal{Y}(x,y)))-g_u(x,y):=H_u\circ \mathcal{K}(\mathcal{Y}(x,y))$$
 s.t. $g_u(x,y):=H_u\circ \mathcal{K}(\mathcal{Y}(x,y))$ $g_l(x,y):=ar{L}-H_l\circ \mathcal{K}(\mathcal{Y}(x,y))$ sBlk $g_l(x,y):=g_l(x,y)$

(objective is ℓ_2 rather than ℓ_1 in the literal H. Jin(05), A. So, Y. Ye(05), P. Biswas K. Toh, T. Wang, Y. Ye(06).)

Problems with Relaxation

- 1. $\{(\bar{Y},P):\bar{Y}=PP^T\}\subset\{(\bar{Y},P):\bar{P}$ (But, is Lagrangian relaxation stro
- 2. linearization (using Schur compler results in a constraint that is *NOT* two relaxations *NOT* numerically expressions and the second results in a constraint that is *NOT* numerically expressions and the second results in a constraint that is *NOT* numerically expressions and the second results in a constraint that is *NOT* numerically expressions.
- 3. Least squares problem is (usually) underdetermined.

Lagrangian of EDMC-R

$$L(x, y, \Lambda_u, \Lambda_l, \Lambda) = \frac{1}{2} \|W \circ \mathcal{K}(\mathcal{Y}(x, y) - \bar{E})\|_F^2 + \langle \Lambda_u, H_u \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_l \circ \mathcal{K}(\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_l, \bar{L} - H_$$

where $0 \le \Lambda_u, 0 \le \Lambda_l \in \mathcal{S}^{m+n}, \quad 0 \le \Lambda$

$$\Lambda = \begin{pmatrix} \Lambda_1 & \Lambda_{21}^T \\ \Lambda_{21} & \Lambda_2 \end{pmatrix}, \qquad \langle A, B \rangle = \text{transformation}$$

Matrix → **Vector Variable Notation**

```
\lambda_u := \operatorname{svec}(\Lambda_u), \quad \lambda_l := \operatorname{svec}(\Lambda_u),
```

Adjoints

To differentiate the Lagrangian, we not adjoints of the various linear transformant of \mathcal{K} :

$$\mathcal{D}_{e}(B) = \operatorname{diag}(B) e^{T} + e \operatorname{diag}(B) e^{$$

Primal-Dual Optil Conditions 1

THEOREM: The primal-dual variables a are optimal for EDMC-R if and o

1. Primal Feasibility:

The slack variables satisfy

$$S_{u} = \bar{U} - H_{u} \circ (\mathcal{K}(\mathcal{Y}(x,y))), \ s_{u} = S_{l} = H_{l} \circ (\mathcal{K}(\mathcal{Y}(x,y))) - \bar{L}, \ s_{l} = S_{l}$$

$$Z_s = \mathrm{sBlk}_1(I) + \mathrm{sBlk}_2 \mathrm{sMat}(y) -$$

 $\succeq 0$

Primal-<u>Dual</u> Optil Conditions 2a

2a. Dual Feasibility:

The stationarity equations (⇒ exa

$$(\mathcal{Z}_{s}^{x})^{*}(\Lambda) = \lambda_{21}$$
 (eliminated)
$$= [W \circ (\mathcal{K}\mathcal{Y}^{x})]^{*} (W \circ \mathcal{K}^{x}) + [H_{u} \circ (\mathcal{K}\mathcal{Y}^{x})]^{*} (M \circ \mathcal{K}^{x}) + [H_{u} \circ (\mathcal{K}\mathcal{Y}^{x})]^{*} (M \circ \mathcal{K}^{x}) + [H_{u} \circ (\mathcal{K}\mathcal{Y}^{x})]^{*}$$

$$egin{array}{lll} (\mathcal{Z}^y_s)^*(\Lambda) &=& \lambda_2 & ext{(eliminated)} \ &=& [W\circ (\mathcal{K}\mathcal{Y}^y)]^* \left(W\circ \mathcal{K} + \left[H_u\circ (\mathcal{K}\mathcal{Y}^y)
ight]^* \left(N-\left[H_l\circ (\mathcal{K}\mathcal{Y}^y)
ight]^*
ight) \ &-& [H_l\circ (\mathcal{K}\mathcal{Y}^y)]^* \end{array}$$

Primal-Dual Optil Conditions 2b

2b. Dual Feasibility: Nonnegativity

$$\Lambda = sBlk_1 sMat(\lambda_1) + sBlk_2 sMa$$
$$+sBlk_{21} Mat(\lambda_{21}) \succeq 0;$$

$$\lambda_u \geq 0; \lambda_l \geq 0$$

$$\Lambda = \Lambda(\lambda_1, x, y, \lambda_u, \lambda_l)$$
 (from st

Primal-Dual Opti Conditions 3 (C.S

3. Complementary Slackness:

$$\lambda_u \circ s_u = 0$$
 $\lambda_l \circ s_l = 0$
 $\Lambda Z_s = 0$ (equivalently tra

Perturbed Composition Slack. Condition

$$F_{\mu}(x, y, \lambda_u, \lambda_l, \lambda_1) := \begin{pmatrix} \lambda_u \circ s_u - \mu_u \\ \lambda_l \circ s_l - \mu_l \\ \Lambda Z_s - \mu_c I \end{pmatrix}$$

where
$$s_u = s_u(x,y)$$
, $s_l = s_l(x,y)$, $\Lambda = \Lambda(\lambda_1,x,y,\lambda_u,\lambda_l)$, $Z_s = Z_s(x,y)$ an overdetermined bilinear system where $(m_u + n_u) + (m_l + n_l) + (n + r)^2$ equal $nr + t(n) + (m_u + n_u) + (m_l + n_l) + t(n + n_l)$

Gauss-Newton Search Direction

$$\Delta s := \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \lambda_u \\ \Delta \lambda_l \\ \Delta \lambda_1 \end{pmatrix}$$

overdetermined linearized system is:

$$F'_{\mu}(\Delta s) \cong F'_{\mu}(x, y, \lambda_u, \lambda_l, \lambda_1)(\Delta s) = -B$$

Notation - Composition of Lin. Tr.

$$\mathcal{K}_H^x(x) := H \circ (\mathcal{K}(\mathcal{Y}^x(x)))$$
 $\mathcal{K}_H^y(y) := H \circ (\mathcal{K}(\mathcal{Y}^y(y)))$
 $\mathcal{K}_H(x,y) := H \circ (\mathcal{K}(\mathcal{Y}(x,y)))$

GN: Three blocks Equations

```
1. \lambda_{u} \circ \operatorname{svec} \mathcal{K}_{H_{u}}(\Delta x, \Delta y) + s_{u} \circ \Delta \lambda_{u} =
2. \lambda_{l} \circ \operatorname{svec} \mathcal{K}_{H_{l}}(\Delta x, \Delta y) + s_{l} \circ \Delta \lambda_{l} = \mu
3. \Lambda \mathcal{Z}_{s}(\Delta x, \Delta y) + [\operatorname{sBlk}_{1} (\operatorname{sMat} (\Delta \lambda_{1})) + \operatorname{sBlk}_{2} (\operatorname{sMat} \{(\mathcal{K}_{W}^{y})^{*} \mathcal{K}_{W}(\Delta x, \Delta y) + (\mathcal{K}_{H_{u}}^{y})^{*} (\operatorname{sMat} (\Delta \lambda_{u})) - (\mathcal{K}_{H_{l}}^{y})^{*} (\operatorname{sMat} (\Delta \lambda_{u})) - (\mathcal{K}_{H_{l}}^{y})^{*} (\operatorname{sMat} (\Delta \lambda_{u})) - (\mathcal{K}_{H_{l}}^{x})^{*} + (\mathcal{K}_{H_{u}}^{x})^{*} (\operatorname{sMat} (\Delta \lambda_{u})) - (\mathcal{K}_{H_{l}}^{x})^{*} = \mu_{c} I - \Lambda Z_{s}
```

Initial Str. Feas. S Heuristic

If the graph is connected, we can use stationarity equations and get a strictly primal-dual starting point and *maintainumerical primal-dual feasibility* throus iterations.

Diagonal Preconditioning

Given $A \in \mathcal{M}^{m \times n}$, $m \ge n$ full rank mature using condition number of $K \succ 0$:

$$\omega(K) = \frac{\operatorname{trace}(K)/n}{\det(K)^{1/n}}$$
, the optimal diagonal

$$\min_{D \succ 0} \omega \left((AD)^T (AD) \right), \quad D^* = \text{Diag} \left((AD)^T (AD) \right)$$

(cite Dennis-W.) Therefore, need to evaluate $F'_{\mu}(\cdot)$ (can be done explicitly/efficiently)

(Partial block Cholesky precondioning)

dens: W.75,L.8; n 15, m 5, r 2

nf	optvalue	relaxation	cond.number
0.0000e+000	3.9909e-009	1.1248e-005	3.8547e+006
5.0000e-002	7.5156e-004	4.4637e-002	1.0244e+011
1.0000e-001	3.7103e-003	1.1286e-001	1.9989e+010
1.5000e-001	6.2623e-003	1.3125e-001	1.0065e+010
2.0000e-001	1.3735e-002	1.3073e-001	6.8833e+009
2.5000e-001	2.3426e-002	2.4828e-001	2.4823e+010
3.0000e-001	6.0509e-002	2.3677e-001	3.4795e+010
3.5000e-001	5.5367e-002	3.7260e-001	2.3340e+008
4.0000e-001	7.6703e-002	3.6343e-001	8.9745e+010
4.5000e-001	1.2493e-001	6.9625e-001	3.2590e+010
5.0000e-001	1.3913e-001	3.9052e-001	2.2870e+005
5.5000e-001	8.8552e-002	3.8742e-001	5.8879e+007
6.0000e-001	4.2425e-001	4.1399e-001	4.9251e+012

dens: W .75,L .8; n 15, m 5, r 2

nf	optvalue	relaxation	cond.number
0.0000e+000	3.9909e-009	1.1248e-005	3.8547e+006
5.0000e-002	7.5156e-004	4.4637e-002	1.0244e+011
5.5000e-001	8.8552e-002	3.8742e-001	5.8879e+007
6.0000e-001	4.2425e-001	4.1399e-001	4.9251e+012
6.5000e-001	2.0414e-001	6.6054e-001	2.4221e+010
7.0000e-001	1.2028e-001	3.4328e-001	1.9402e+010
7.5000e-001	2.6590e-001	7.9316e-001	1.3643e+011
8.0000e-001	4.7155e-001	3.7822e-001	6.6910e+009
8.5000e-001	1.8951e-001	5.8652e-001	1.4185e+011
9.0000e-001	2.1741e-001	9.8757e-001	2.9077e+005
9.5000e-001	4.4698e-001	4.6648e-001	2.7013e+006

Table 1: Robust Algorithm for III-pose