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OUTLINE

1. Short intro. to SDP

2. SDP and positive definite matrix completions

3. Euclidean distance matrix (EDM) completions

4. New characterization for EDM;
solving large sparse problems

(Advantages of using X − µZ−1 = 0 form of perturbed
complementary slackness.)
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SDP BACKGROUND and NOTATION

Semidefinite Programming
looks just like

Linear Programming

(PSDP)

p∗ = max traceCX (〈C,X〉)
s.t. AX = b (linear)

X � 0, (X ∈ P) (nonneg)
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� denotes the Löwner partial order
A � B if B −A � 0

Sn denotes n× n symmetric matrices

A : Sn → <m

(AX)i = trace (AiX), for given Ai ∈ Sn

P - cone of positive semidefinite matrices

replaces

<n+ - nonnegative orthant
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DUALITY

payoff function, player Y to player X (Lagrangian)

L(X, y) := trace (CX) + yt(b−AX)

Optimal (worst case) strategy for player X:

p∗ = max
X�0

min
y
L(X, y)

Using the hidden constraint b−AX = 0, recovers primal problem.
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L(X, y) = trace (CX) + yt(b−AX)

= bty + trace (C −A∗y)X

adjoint operator, A∗y =
∑
i yiAi

〈A∗y,X〉 = 〈y,AX〉 , ∀X, y

p∗ = max
X�0

min
y
L(X, y) ≤ d∗ := min

y
max
X�0

L(X, y)

The hidden constraint C −A∗y � 0
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p∗ = max
X�0

min
y
L(X, y) ≤ d∗ := min

y
max
X�0

L(X, y)

dual obtained from optimal strategy of competing player Y;
use hidden constraint C −A∗y � 0

(DSDP)
d∗ = min bty

s.t. A∗y � C

for the primal

(PSDP)

p∗ = max traceCX

s.t. AX = b

X � 0

7



Characterization of optimality for the
dual pair X, y (slack Z � 0)

A∗y − Z = C dual feasibility

AX = b primal feasibility

ZX = 0 complementary slackness

ZX = µI perturbed

Forms the basis for:

interior point methods
(primal simplex method, dual simplex method)
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Positive Definite Completions
of

Partial Hermitian Matrices

• G(V,E) finite undirected graph

• A(G) is a G-partial matrix (aij defined iff {i, j} ∈ E)

• A(G) is a G-partial positive matrix if aij = aji,∀{i, j} ∈ E and
all existing principal minors are positive.

• with J = (V, Ē), E ⊂ Ē a J -partial matrix B(J ) extends the
G-partial matrix A(G) if bij = aij ,∀{i, j} ∈ E

• G is positive completable if every G-partial positive matrix can
be extended to a positive definite matrix.
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G is chordal if there are no minimal cycles of length ≥ 4. (every
cycle of length ≥ 4 has a chord)

THEOREM (Grone, Johnson, Sa, Wolkowicz)
G is positive completable iff G is chordal.

equivalently - strict feasibility for SDP:

traceEijP = aij , ∀{i, j} ∈ E
P � 0

where Eij = eie
t
j + eje

t
k
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Approximate Positive Semidefinite Completions

(with Charlie Johnson

and Brenda Kroschel)

given:

H = Ht ≥ 0 a real, nonnegative (elementwise) symmetric matrix
of weights, with positive diagonal elements Hii > 0, ∀i;
and A = A∗ the given partial Hermitian matrix
(i.e. some elements approximately fixed; others free; for notational
purposes, assume free elements set to 0 if not specified.)
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||A||F =
√

traceA∗A Frobenius norm, ◦ denotes Hadamard product.

f(P ) := ||H ◦ (A− P )||2F

weighted, best approximate,
completion problem

(AC)

µ∗ := min f(P )

subject to KP = b

P � 0,

where K : Hn → Cm linear operator
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Lagrangian:

L(P, y,Λ) = f(P ) + 〈y, b−KP 〉 − trace ΛP

Dual problem:

(DAC)

max f(P ) + 〈y, b−KP 〉 − trace ΛP

subject to ∇f(P )−K∗y − Λ = 0

Λ � 0.
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THEOREM The matrix P̄ � 0 and vector-matrix ȳ, Λ̄ � 0 solve
AC and DAC if and only if

KP̄ = b primal feas.

2H(2) ◦ (P̄ −A)−K∗ȳ − Λ̄ = 0 dual feas.

trace Λ̄P̄ = 0 compl. slack.
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For simplicity and sparsity, discard linear operator K and replace
with appropriate weights in H.

Use (square) perturbed optimality conditions.

2H(2) ◦ (P −A)− Λ = 0 dual feasibility

−P + µΛ−1 = 0 perturbed C.S.

Linearization of second equation
and solve for h and l

h = µΛ−1 − µΛ−1lΛ−1 − P

l =
1
µ
{−Λ(P + h)Λ}+ Λ
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Dual Step First:
(if many elements of P are free)

We can eliminate the primal step h and solve for the dual step l.

l = 2H(2) ◦ h+
(
2H(2) ◦ (P −A)− Λ

)
= 2H(2) ◦

(
µΛ−1 − µΛ−1lΛ−1 − P

)
+ (2H(2) ◦ (P −A)− Λ).

Equivalently, we get the Newton equation

2H(2) ◦ (µΛ−1lΛ−1) + l = 2H(2) ◦ (µΛ−1 −A)− Λ.

l,Λ have same sparsity pattern as H,
order is number of nonzeros/2 in H.
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dim toler Hdens./infty Apsd cond(A) Hpd min/max iters

60 10−6 .01/.001 yes 79.7 no 15/23 16.8

65 10−6 .015/.001 yes 49.9 yes 18/24 21.3

83 10−6 .007/.001 no 235.1 no 24/29 25.5

85 10−5 .008/.001 yes 94.7 no 11/17 13.1

85 10−6 .0075/.001 no 299.9 no 23/27 25.2

87 10−6 .006/.001 yes 74.2 yes 14/19 16.9

89 10−6 .006/.001 no 179.3 no 23/28 15.2

110 10−6 .007/.001 yes 172.3 yes 15/20 17.8

155 10−6 .01/0 yes 643.9 yes 14/18 15.3

655 10−6 .017/0 yes 1.4 no 14/14 14.

755 10−6 .002/0 yes 1.5 no 15/15 15.

data for dual-step-first (20 problems per test): dimension; tolerance for duality gap;
density of nonzeros in H/ density of infinite values in H;
positive semidefiniteness of A; condition number of A; positive definiteness of H;

(only one test for: 655,755)
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Euclidean Distance Matrix Completion Problem

(with Abdo Alfakih)

What are EDMs?
—–
A pre-distance matrix (or dissimilarity matrix):
• an n× n symmetric matrix D = (dij) with nonnegative elements
and zero diagonal
—–
A (squared) Euclidean distance matrix (EDM):
• a pre-distance matrix such that there exists points x1, x2, . . . , xn

in <r such that

dij = ‖xi − xj‖2, i, j = 1, 2, . . . , n.

—–
The smallest value of r is called the embedding dimension of D.
(r is always ≤ n− 1)
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EDM problem:
Given a partial symmetric matrix A with certain elements
specified, the Euclidean distance matrix completion problem
(EDMCP) consists in finding the unspecified elements of A that
make A a EDM.

WHY?
e.g.:
• The shape of an enzyme determines it chemical function. Once
the shape is known, then the proper drug can be designed.

• distance geometry on molecules: Atoms are points in space with
pairwise distances; find a set of points which yield those distances.

19



For approximate EDMCP:
A is a pre-distance matrix, H is an n× n symmetric weight matrix,

f(D) := ‖H ◦ (A−D)‖2F ,

(CDM0)
µ∗ := min f(D)

subject to D ∈ E ,

where E denotes the cone of EDMs.
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DISTANCE GEOMETRY A pre-distance matrix D is a
EDM if and only if D is negative semidefinite on

M :=
{
x ∈ <n : xte = 0

}
,

where e is the vector of all ones.
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Define centered and hollow subspaces

SC := {B ∈ Sn : Be = 0},
SH := {D ∈ Sn : diag (D) = 0}.

Define two linear operators

K(B) := diag(B) et + ediag(B)t − 2B,

T (D) := − 1
2JDJ.

The operator −2T is an orthogonal projection onto SC .

THEOREM The linear operators satisfy

K(SC) = SH ,
T (SH) = SC ,

and K|SC and T|SH are inverses of each other.
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A hollow matrix D is EDM
if and only if
B = T (D) � 0 (positive semidefinite)

D is EDM
if and only if
D = K(B), for some B with Be = 0 and B � 0.

In this case the embedding dimension r is given by the rank of B.
Moreover if B = XXt, then the coordinates of the points
x1, x2, . . . , xn that generate D are given by the rows of X and,
since Be = 0, it follows that the origin coincides with the centroid
of these points.
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For Projection: V n× (n− 1), full column rank with V te = 0.

J := V V † = I − eet

n

is orthogonal projection onto M , where V † denotes Moore-Penrose
generalized inverse.
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The cone of EDMs, E , has empty interior. This can cause problems
for interior-point methods.

V · V : Sn−1 → Sn

V · V : Pn−1 → Pn

Define the composite operators

KV (X) := K(V XV t),

and

TV (D) := V †T (D)(V †)t = − 1
2V
†D(V †)t.
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LEMMA

KV (Sn−1) = SH ,

TV (SH) = Sn−1,

and KV and TV are inverses of each other on these two spaces.

COROLLARY

KV (P) = E ,

TV (E) = P.
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Summary

(Re)Define the closest EDM problem:

f(X) := ‖H ◦ (A−KV (X))‖2F
= ‖H ◦ KV (B −X)‖2F ,

where B = TV (A).

(KV and TV are both linear operators)

(CDM)
µ∗ := min f(X)

subject to X � 0.

27



Primal-Dual Interior-Point Framework:

STEPS:

1. derive a dual program

2. state optimality conditions for log-barrier problem (perturbed
primal-dual optimality conditions)

3. find a search direction for solving the perturbed optimality
conditions

4. take a step and backtrack to stay strictly feasible (positive
definite)

5. Update and go to Step 3 (adaptive update of log-barrier
parameter)
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Step 1. derive a dual program:

Λ ∈ Sn−1,Λ � 0 and y ∈ Rm,
Lagrangian is

L(X, y,Λ) = f(X) + 〈y, b−A(X)〉 − 〈Λ, X〉

primal program (CDM) is

= min
X

max
y

Λ�0

L(X, y,Λ).

dual program is:
= max

y

Λ�0

min
X

L(X, y,Λ),
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The inner minimization of the convex, in X, Lagrangian is
unconstrained so we add the hidden constraint which makes the
minimization redundant.

dual program (DCDM)

max
∇f(X)−A∗y=Λ

Λ�0

f(X) + 〈y, b−A(X)〉 − traceΛX.

or
max f(X) + 〈y, b−A(X)〉 − trace ΛX

subject to ∇f(X)−A∗y − Λ = 0

Λ � 0, (X � 0).
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the duality gap,
f(X)− (f(X) + 〈y, b−A(X)〉 − trace ΛX) ,
in the case of primal and dual feasibility, is given by the
complementary slackness condition:

trace X(K∗V (H(2) ◦ KV (X −B))−A∗y) = 0,

or equivalently

X(K∗V (H(2) ◦ KV (X −B))−A∗y) = 0,

where H(2) = H ◦H.
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THEOREM Suppose that Slater’s condition holds. Then X̄ � 0,
and ȳ, Λ̄ � 0 solve (CDM) and (DCDM), respectively, if and only if
the following three equations hold.

A(X̄) = b prim. feas.

2K∗V (H(2) ◦ KV (X̄ −B))−A∗ȳ − Λ̄ = 0 dual feas.

trace Λ̄X̄ = 0 C.S.

LEMMA Let H be an n× n symmetric matrix with nonnegative
elements and 0 diagonal such that the graph of H is connected.
Then

K∗V (H(2) ◦ KV (I)) � 0,

where I ∈ Sn−1 is the identity matrix.
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Step 2. state optimality conditions for log-barrier problem
(perturbed primal-dual optimality conditions):

The log-barrier problem for (CDM) is

min
X�0

Bµ(X) := f(X)− µ log det(X),

where µ ↓ 0.

For each µ > 0 we take one Newton step for solving the stationarity
condition

∇Bµ(X) = 2K∗V (H(2) ◦ KV (X −B))− µX−1 = 0.

Let
C := 2K∗V (H(2) ◦ KV (B)) = 2K∗V (H(2) ◦A).

Then the stationarity condition is equivalent to

∇Bµ(X) = 2K∗V
(
H(2) ◦ KV (X)

)
− C − µX−1 = 0.
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equating Λ = µX−1 and multiplying through by X

optimality conditions, F :=

 Fd

Fc

 = 0,

2K∗V
(
H(2) ◦ KV (X)

)
− C − Λ = 0 dual feas.

ΛX − µI = 0 pert. C.S.,

(an OVERDETERMINED nonlinear system since ΛX not
symmetric)

estimate of the barrier parameter

µ =
1

n− 1
trace ΛX
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σk centering parameter
F0 set of strictly feasible primal-dual points
F ′ derivative of F

Algorithm 1 (p-d i-p framework:)
Given (X0,Λ0) ∈ F0

for k = 0, 1, 2 . . .
solve for the search direction

F ′(Xk,Λk)

 δXk

δΛk

 =

 −Fd
−ΛkXk + σkµkI


where σk centering, µk = traceXkΛk

(n−1)

(Xk+1,Λk+1) = (Xk,Λk) + αk(δXk, δΛk)

so that (Xk+1,Λk+1) � 0
end (for).
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For the EDM: search direction (Gauss-Newton direction) is the
Frobenius norm lss of F ′s = −F , i.e.

2K∗V
(
H(2) ◦ KV (h)

)
− l = −Fd

Λh+ lX = −Fc.

t(n) = (n+1)n
2 dimension of Sn.

F ′s =

 F ′u1 F ′u2

F ′l1 F ′l2

 h

l

 = rhs =

 rhs1

rhs2

 .

F ′ : <2(t(n−1)) → <t(n−1)+(n−1)2
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Larger Models

Instead of projecting and reducing the dimension to get Slater’s
condition, add a variable and increase the dimension.

Lemma 1 Let

F := {X ∈ Sn : vT e = 0 ⇒ vTXv ≤ 0},
F0 := {X ∈ Sn : X − αeet � 0, for some α ≥ 0},
F1 := {X ∈ Sn : X − αeet � 0, ∀ α ≥ ᾱ,

for some ᾱ ≥ 0}.

Then
ri (F) ⊂ F0 = F1 ⊂ F ⊂ F0. (1)

37



Proof. Suppose that X̄ ∈ ri (F) (i.e.
vT e = 0, v 6= 0⇒ vT X̄v < 0) but X̄ /∈ F0. Then, for each α ≥ 0,
there exists wα with ||wα|| = 1, such that wα → w̄, as α→∞ and

wTα (X̄ − αeet)wα > 0, ∀ α ≥ 0,

i.e.
wTα X̄wα > αwTαee

twα, ∀ α ≥ 0.

Since wα converges and the left-hand-side of the above inequality
must be finite, this implies that etw̄ = w̄T X̄w̄ = 0, a contradiction.
Therefore, ri (F) ⊂ F0. That F0 = F1 is clear.

Now suppose that X̄ − αeet � 0, α ≥ 0. Let vT e = 0. Then
0 ≥ vT (X̄ − αeet)v = vT X̄v, i.e. F0 ⊂ F . The final inclusion comes
from the first and the fact that F is closed.
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Corollary 1 Let

E := {X ∈ SH : vT e = 0 ⇒ vTXv ≤ 0},
E0 := {X ∈ SH : X − αeet � 0, for some α},
E1 := {X ∈ SH : X − αeet � 0, ∀ α ≥ ᾱ,

for some ᾱ}.

Then
E = E0 = E1. (2)

Proof. (Similar to Lemma 1.) For closure, suppose 0 6= Xk ∈ E0,
i.e. diag (Xk) = 0, Xk � αkE, for some αk; and, suppose Xk → X̄.
Since Xk is hollow it has exactly one positive eigenvalue which
must be smaller than αk. However, since Xk converges to X̄,
X̄ ≤ λmax(X̄)E, where λmax(X̄) is the largest eigenvalue of X̄.
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let: E = eet; f(P ) := ‖H ◦ (A− P )‖2F ;
K lin. operator with constraint diag (P ) = 0.
primal problem is:

(CDM)
µ∗ := min f(P )

subject to αE − P � 0

and dual problem (DCDM) is

ν∗ := max f(P ) + 〈y, b−KP 〉 − trace Λ(αE − P )

subject to ∇P f(P )−K∗y + Λ = 0

−trace ΛE = 0

Λ � 0.

(Slater’s holds for primal but fails for dual.)
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(perturbed) Optimality Conditions are:

diag (P ) = 0 primal feas.

2H(2) ◦ (P −A)−Diag (y) + Λ = 0

− trace ΛE = 0

 dual feas.

−(αE − P ) + µΛ−1 = 0, pert. C.S.
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h denotes the step for P

w denotes the step for α

l denotes the step for Λ

s denotes the step for y.

maintain
diag (h) = diag (P ) = 0
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linearization of complementary slackness

−(α+ w)E + (P + h) + µΛ−1 − µΛ−1lΛ−1 = 0,

solve for h

h = −µΛ−1 + µΛ−1lΛ−1 − P + (α+ w)E.

(or solve for l)

linearization dual feasibility

2H(2) ◦ h−Diag (s) + l = −(2H(2) ◦ (P −A)

−Diag (y) + Λ)

−trace lE = trace ΛE
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substitute for h, s
Newton equation is

2H(2) ◦
(
wE + µΛ−1lΛ−1

)
−Diag diag (l) + l

= 2H(2) ◦
{
µΛ−1 +A− αE

}
+ Diag (y)− Λ

diag
(
µΛ−1lΛ−1

)
+ we

= diag
(
µΛ−1

)
− αe

trace (lE) = −trace (ΛE).

square system, order 1 + nnz where nnz are the number of
nonzeros in the upper triangular part of H, (diag (H) = 0).
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F denotes (nnz + n)× 2 matrix
row p contains indices of the p-th nonzero, upper triangular,
element of H + I ordered by columns,

{(Fp1, Fp2)p=1,...nnz+n}
= {ij : Hij 6= 0, i ≤ j, ordered by columns} .

δij is Kronecker delta function
δ(ij)(kl) is 1 if (ij) = (kl), 0 otherwise.

Eij =
(
eie

t
j + etjei

)
/
√

2, ij unit matrix in Sn, where
Eij =

(
eie

t
j + etjei

)
/2 if i = j.

(orthonormal basis of Sn)
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operator equation:

k 6= l, i 6= j LHS =

= traceEkl
{

2H(2) ◦
(
µΛ−1EijΛ−1

)
−Diag diag (Eij)

+Eij}
= µtrace (eketl + ele

t
k)
(
H(2) ◦ Λ−1(eietj + eje

t
i)Λ
−1
)

+ δ(ij)(kl)

= µ
[
2etl
(
H(2) ◦ Λ−1

:,i Λ−1
j:

)
ek + 2etk

(
H(2) ◦ Λ−1

:,i Λ−1
j:

)
el
]

+ δ(ij)(kl);

k 6= l, i 6= j LHS =

= 2µH(2)
kl

(
Λ−1
li Λ−1

jk + Λ−1
ki Λ−1

jl

)
+ δ(ij)(kl)
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k 6= l, i = j LHS =

= traceEkl
{

2µH(2) ◦
[
Λ−1EjjΛ−1

]
−Diag diag (Ejj) + Ejj

}
= 2
√

2µtrace eketl
(
H(2) ◦ Λ−1eje

t
jΛ
−1
)

= 2
√

2µH(2)
kl

(
Λ−1
lj Λ−1

jk

)
;

k = l, i 6= j LHS =

=
√

2µΛ−1
ki Λ−1

jk , k = 1, . . . n;

k = l, i = j LHS =

= µΛ−1
ki Λ−1

ik , k = 1, . . . n.
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last column of LHS, matrix l = 0 and w = 1:

w = 1, k 6= l LHS =

trace
(
Ekl(2H(2) ◦ E)

)
;

w = 1, k = l LHS = 1.

last row of LHS:

i 6= j LHS = = trace (EijE)) =
√

2;

i = j LHS = = 1.
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Newton system is:

sMat [L(svec (l))] = sMat [svec (RHS)] ,

svec (S) vector formed from nonzero elements of columns of upper
triangular part, where strict upper triangular part is multiplied by√

2. (traceXY = svec (X)tsvec (Y ), i.e. isometry) sMat is inverse

Solve for svec (l):

L(svec (l)) = svec (RHS).
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Lpq =

2µH(2)
Fp2 ,Fp1

(
Λ−1
Fp2 ,Fq1

Λ−1
Fq2 ,Fp1

+ Λ−1
Fp1 ,Fq1

Λ−1
Fq2 ,Fp2

)
if p 6= q, k 6= l, i 6= j;

2
√

2µH(2)
Fp2 ,Fp1

(
Λ−1
Fp2 ,Fq2

Λ−1
Fq2 ,Fp1

)
if p 6= q, k 6= l, i = j;

2
√

2µH(2)
Fp2 ,Fp1

(
Λ−1
Fp2 ,Fq2

Λ−1
Fq2 ,Fp1

)
if p = q, k 6= l, i = j;

2µH(2)
Fp2 ,Fp1

(
Λ−1
Fp2 ,Fq1

Λ−1
Fq2 ,Fp1

+ Λ−1
Fp1 ,Fq1

Λ−1
Fq2 ,Fp2

)
+ 1

if p = q, k 6= l, i 6= j;
√

2µΛ−1
Fp1 ,Fq1

Λ−1
Fq2 ,Fp1

if k = l, i 6= j;

50



= 
µΛ−1

Fp1 ,Fq1
Λ−1
Fq1 ,Fp1

if k = l, i = j

2
√

(2)H(2)
Fp2 ,Fp1

if w = 1, k 6= l

1 if w = 1, k = l.

The p-th row calculated using Hadamard product of pairs of
columns of Λ−1,

Λ−1
Fp2 ,F:,1

◦ Λ−1
Fp1 ,F:,2

.

complete vectorization (preliminary numerics are very promising)
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p = kl, k ≤ l, and last row, component of the right-hand-side of the
system is
RHSp =

√
2
(

2H(2)
p ◦

{
µΛ−1

p +Ap − α
}
− Λp

)
, if k 6= l

µΛ−1
kk − α if k = l

−trace (ΛE) last row
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