Semidefinite Programming and Matrix Completions

Henry Wolkowicz

Department of Combinatorics \& Optimization
University of Waterloo

OUTLINE

1. Short intro. to SDP
2. SDP and positive definite matrix completions
3. Euclidean distance matrix (EDM) completions
4. New characterization for EDM; solving large sparse problems
(Advantages of using $X-\mu Z^{-1}=0$ form of perturbed complementary slackness.)

SDP BACKGROUND and NOTATION

$$
\begin{aligned}
& \text { Semidefinite Programming } \\
& \text { looks just like } \\
& \\
& \text { Linear Programming } \\
& p^{*}=\begin{array}{ccc}
\max & \text { trace } C X & (\langle C, X\rangle) \\
\text { s.t. } & \mathcal{A} X=b & \text { (linear) } \\
& X \succeq 0, \quad(X \in \mathcal{P}) & \text { (nonneg) }
\end{array}
\end{aligned}
$$

denotes the Löwner partial order
$A \preceq B$ if $B-A \succeq 0$
\mathcal{S}^{n} denotes $n \times n$ symmetric matrices

$$
\mathcal{A}: \mathcal{S}^{n} \rightarrow \Re^{m}
$$

$$
(\mathcal{A} X)_{i}=\operatorname{trace}\left(A_{i} X\right), \text { for given } A_{i} \in \mathcal{S}^{n}
$$

\mathcal{P} - cone of positive semidefinite matrices
replaces
\Re_{+}^{n} - nonnegative orthant

DUALITY

payoff function, player Y to player X (Lagrangian)

$$
L(X, y):=\operatorname{trace}(C X)+y^{t}(b-\mathcal{A} X)
$$

Optimal (worst case) strategy for player X :

$$
p^{*}=\max _{X \succeq 0} \min _{y} L(X, y)
$$

Using the hidden constraint $b-\mathcal{A} X=0$, recovers primal problem.

$$
p^{*}=\max _{X \succeq 0} \min _{y} L(X, y) \leq d^{*}:=\min _{y} \max _{X \succeq 0} L(X, y)
$$

dual obtained from optimal strategy of competing player Y;
use hidden constraint $C-\mathcal{A}^{*} y \preceq 0$

$$
(\mathbf{D S D P}) \begin{array}{cc}
d^{*}= & \min
\end{array} c b^{t} y
$$

for the primal

$$
\begin{array}{ccc}
p^{*}= & \max & \operatorname{trace} C X \\
(\text { PSDP }) & \text { s.t. } & \mathcal{A} X=b \\
& X \succeq 0
\end{array}
$$

Characterization of optimality for the
dual pair $X, y \quad$ (slack $Z \succeq 0)$

$$
\begin{array}{cc}
\mathcal{A}^{*} y-Z=C & \text { dual feasibility } \\
A X=b & \text { primal feasibility } \\
Z X=0 & \text { complementary slackness } \\
Z X=\mu I \quad \text { perturbed }
\end{array}
$$

Forms the basis for:
interior point methods
(primal simplex method, dual simplex method)

Positive Definite Completions of Partial Hermitian Matrices

- $\mathcal{G}(V, E)$ finite undirected graph
- $A(\mathcal{G})$ is a \mathcal{G}-partial matrix ($a_{i j}$ defined iff $\left.\{i, j\} \in E\right)$
- $A(\mathcal{G})$ is a \mathcal{G}-partial positive matrix if $a_{i j}=\overline{a_{j i}}, \forall\{i, j\} \in E$ and all existing principal minors are positive.
- with $\mathcal{J}=(V, \bar{E}), E \subset \bar{E}$ a \mathcal{J}-partial matrix $B(\mathcal{J})$ extends the \mathcal{G}-partial matrix $A(\mathcal{G})$ if $b_{i j}=a_{i j}, \forall\{i, j\} \in E$
- \mathcal{G} is positive completable if every \mathcal{G}-partial positive matrix can be extended to a positive definite matrix.
\mathcal{G} is chordal if there are no minimal cycles of length ≥ 4. (every cycle of length ≥ 4 has a chord)

THEOREM (Grone, Johnson, Sa, Wolkowicz)
\mathcal{G} is positive completable iff \mathcal{G} is chordal.
equivalently - strict feasibility for SDP:

$$
\begin{gathered}
\operatorname{trace} E_{i j} P=a_{i j}, \quad \forall\{i, j\} \in E \\
P \succ 0
\end{gathered}
$$

where $E_{i j}=e_{i} e_{j}^{t}+e_{j} e_{k}^{t}$

Approximate Positive Semidefinite Completions

(with Charlie Johnson and Brenda Kroschel)
given:
$H=H^{t} \geq 0$ a real, nonnegative (elementwise) symmetric matrix of weights, with positive diagonal elements $H_{i i}>0, \forall i$;
and $A=A^{*}$ the given partial Hermitian matrix
(i.e. some elements approximately fixed; others free; for notational purposes, assume free elements set to 0 if not specified.)
$\|A\|_{F}=\sqrt{\operatorname{trace} A^{*} A}$ Frobenius norm, o denotes Hadamard product.

$$
f(P):=\|H \circ(A-P)\|_{F}^{2}
$$

weighted, best approximate, completion problem

$$
\begin{array}{cccc}
& \mu^{*}:= & \min & f(P) \\
(A C) & & \text { subject to } & K P=b \\
& & & D \succ 0
\end{array}
$$

where $K: \mathcal{H}^{n} \rightarrow \mathcal{C}^{m}$ linear operator

Lagrangian:

$$
L(P, y, \Lambda)=f(P)+\langle y, b-K P\rangle-\operatorname{trace} \Lambda P
$$

Dual problem:

$$
\begin{array}{ccc}
\text { max } & f(P)+\langle y, b-K P\rangle-\operatorname{trace} \Lambda P \\
(D A C) & \text { subject to } & \nabla f(P)-K^{*} y-\Lambda=0 \\
& & \Lambda \succeq 0 .
\end{array}
$$

THEOREM The matrix $\bar{P} \succeq 0$ and vector-matrix $\bar{y}, \bar{\Lambda} \succeq 0$ solve AC and DAC if and only if

$$
\begin{array}{cc}
K \bar{P}=b & \text { primal feas. } \\
2 H^{(2)} \circ(\bar{P}-A)-K^{*} \bar{y}-\bar{\Lambda}=0 & \text { dual feas. } \\
\text { trace } \bar{\Lambda} \bar{P}=0 & \text { compl. slack. }
\end{array}
$$

For simplicity and sparsity, discard linear operator K and replace with appropriate weights in H.

Use (square) perturbed optimality conditions.

$$
\begin{array}{cl}
2 H^{(2)} \circ(P-A)-\Lambda=0 & \text { dual feasibility } \\
-P+\mu \Lambda^{-1}=0 & \text { perturbed C.S. }
\end{array}
$$

Linearization of second equation
and solve for h and l

$$
\begin{aligned}
h & =\mu \Lambda^{-1}-\mu \Lambda^{-1} l \Lambda^{-1}-P \\
l & =\frac{1}{\mu}\{-\Lambda(P+h) \Lambda\}+\Lambda
\end{aligned}
$$

Dual Step First:
(if many elements of P are free)
We can eliminate the primal step h and solve for the dual step l.

$$
\begin{aligned}
l= & 2 H^{(2)} \circ h+\left(2 H^{(2)} \circ(P-A)-\Lambda\right) \\
= & 2 H^{(2)} \circ\left(\mu \Lambda^{-1}-\mu \Lambda^{-1} l \Lambda^{-1}-P\right) \\
& +\left(2 H^{(2)} \circ(P-A)-\Lambda\right) .
\end{aligned}
$$

Equivalently, we get the Newton equation

$$
2 H^{(2)} \circ\left(\mu \Lambda^{-1} l \Lambda^{-1}\right)+l=2 H^{(2)} \circ\left(\mu \Lambda^{-1}-A\right)-\Lambda .
$$

l, Λ have same sparsity pattern as H,
order is number of nonzeros/2 in H.

dim	toler	H dens./infty	A psd	cond (A)	$H \mathrm{pd}$	$\mathrm{min} / \mathrm{max}$	iters
60	10^{-6}	$.01 / .001$	yes	79.7	no	$15 / 23$	16.8
65	10^{-6}	$.015 / .001$	yes	49.9	yes	$18 / 24$	21.3
83	10^{-6}	$.007 / .001$	no	235.1	no	$24 / 29$	25.5
85	10^{-5}	$.008 / .001$	yes	94.7	no	$11 / 17$	13.1
85	10^{-6}	$.0075 / .001$	no	299.9	no	$23 / 27$	25.2
87	10^{-6}	$.006 / .001$	yes	74.2	yes	$14 / 19$	16.9
89	10^{-6}	$.006 / .001$	no	179.3	no	$23 / 28$	15.2
110	10^{-6}	$.007 / .001$	yes	172.3	yes	$15 / 20$	17.8
155	10^{-6}	$.01 / 0$	yes	643.9	yes	$14 / 18$	15.3
655	10^{-6}	$.017 / 0$	yes	1.4	no	$14 / 14$	14.
755	10^{-6}	$.002 / 0$	yes	1.5	no	$15 / 15$	15.

| data for dual-step-first (20 problems per test): dimension; tolerance for duality gap; |
| :--- | :--- | :--- | :--- | :--- | :--- |

density of nonzeros in $H /$ density of infinite values in H;
positive semidefiniteness of A; condition number of A; positive definiteness of H;
(only one test for: 655,755)

Euclidean Distance Matrix Completion Problem

(with Abdo Alfakih)

What are EDMs?

A pre-distance matrix (or dissimilarity matrix):

- an $n \times n$ symmetric matrix $D=\left(d_{i j}\right)$ with nonnegative elements and zero diagonal

A (squared) Euclidean distance matrix (EDM):

- a pre-distance matrix such that there exists points $x^{1}, x^{2}, \ldots, x^{n}$ in \Re^{r} such that

$$
d_{i j}=\left\|x^{i}-x^{j}\right\|^{2}, \quad i, j=1,2, \ldots, n
$$

The smallest value of r is called the embedding dimension of D. (r is always $\leq n-1$)

EDM problem:

Given a partial symmetric matrix A with certain elements specified, the Euclidean distance matrix completion problem (EDMCP) consists in finding the unspecified elements of A that make A a EDM.

WHY?

e.g.:

- The shape of an enzyme determines it chemical function. Once the shape is known, then the proper drug can be designed.
- distance geometry on molecules: Atoms are points in space with pairwise distances; find a set of points which yield those distances.

For approximate EDMCP:
A is a pre-distance matrix, H is an $n \times n$ symmetric weight matrix,

$$
\begin{aligned}
f(D):=\|H \circ(A-D)\|_{F}^{2}, \\
\left(C D M_{0}\right)
\end{aligned}
$$

where \mathcal{E} denotes the cone of EDMs.

DISTANCE GEOMETRY A pre-distance matrix D is a EDM if and only if D is negative semidefinite on

$$
M:=\left\{x \in \Re^{n}: x^{t} e=0\right\}
$$

where e is the vector of all ones.

Define centered and hollow subspaces

$$
\begin{aligned}
& \mathcal{S}_{C}:=\left\{B \in \mathcal{S}^{n}: B e=0\right\} \\
& \mathcal{S}_{H}:=\left\{D \in \mathcal{S}^{n}: \operatorname{diag}(D)=0\right\}
\end{aligned}
$$

Define two linear operators

$$
\begin{gathered}
\mathcal{K}(B):=\operatorname{diag}(B) e^{t}+e \operatorname{diag}(B)^{t}-2 B, \\
\mathcal{T}(D):=-\frac{1}{2} J D J .
\end{gathered}
$$

The operator $-2 \mathcal{T}$ is an orthogonal projection onto \mathcal{S}_{C}.
THEOREM The linear operators satisfy

$$
\begin{aligned}
& \mathcal{K}\left(\mathcal{S}_{C}\right)=\mathcal{S}_{H} \\
& \mathcal{T}\left(\mathcal{S}_{H}\right)=\mathcal{S}_{C}
\end{aligned}
$$

and $\mathcal{K}_{\mid \mathcal{S}_{C}}$ and $\mathcal{T}_{\mid \mathcal{S}_{H}}$ are inverses of each other.

A hollow matrix D is EDM
if and only if
$B=\mathcal{T}(D) \succeq 0$ (positive semidefinite)
D is EDM
if and only if
$D=\mathcal{K}(B)$, for some B with $B e=0$ and $B \succeq 0$.
In this case the embedding dimension r is given by the rank of B. Moreover if $B=X X^{t}$, then the coordinates of the points $x^{1}, x^{2}, \ldots, x^{n}$ that generate D are given by the rows of X and, since $B e=0$, it follows that the origin coincides with the centroid of these points.

For Projection: $V n \times(n-1)$, full column rank with $V^{t} e=0$.

$$
J:=V V^{\dagger}=I-\frac{e e^{t}}{n}
$$

is orthogonal projection onto M, where V^{\dagger} denotes Moore-Penrose generalized inverse.

The cone of EDMs, \mathcal{E}, has empty interior. This can cause problems for interior-point methods.

$$
\begin{aligned}
& V \cdot V: \mathcal{S}_{n-1} \rightarrow \mathcal{S}_{n} \\
& V \cdot V: \mathcal{P}_{n-1} \rightarrow \mathcal{P}_{n}
\end{aligned}
$$

Define the composite operators

$$
\mathcal{K}_{V}(X):=\mathcal{K}\left(V X V^{t}\right)
$$

and

$$
\mathcal{T}_{V}(D):=V^{\dagger} \mathcal{T}(D)\left(V^{\dagger}\right)^{t}=-\frac{1}{2} V^{\dagger} D\left(V^{\dagger}\right)^{t}
$$

LEMMA

$$
\begin{gathered}
\mathcal{K}_{V}\left(\mathcal{S}_{n-1}\right)=\mathcal{S}_{H}, \\
\mathcal{T}_{V}\left(\mathcal{S}_{H}\right)=\mathcal{S}_{n-1},
\end{gathered}
$$

and \mathcal{K}_{V} and \mathcal{T}_{V} are inverses of each other on these two spaces.

COROLLARY

$$
\begin{aligned}
\mathcal{K}_{V}(\mathcal{P}) & =\mathcal{E}, \\
\mathcal{T}_{V}(\mathcal{E}) & =\mathcal{P} .
\end{aligned}
$$

Summary

(Re)Define the closest EDM problem:

$$
\begin{aligned}
f(X): & =\left\|H \circ\left(A-\mathcal{K}_{V}(X)\right)\right\|_{F}^{2} \\
& =\left\|H \circ \mathcal{K}_{V}(B-X)\right\|_{F}^{2},
\end{aligned}
$$

where $B=\mathcal{T}_{V}(A)$.
(\mathcal{K}_{V} and \mathcal{T}_{V} are both linear operators)

$$
(C D M){ }^{\mu^{*}:=} \quad \begin{array}{cc}
\min & f(X) \\
& \text { subject to }
\end{array} X \succeq 0 .
$$

Primal-Dual Interior-Point Framework:

STEPS:

1. derive a dual program
2. state optimality conditions for log-barrier problem (perturbed primal-dual optimality conditions)
3. find a search direction for solving the perturbed optimality conditions
4. take a step and backtrack to stay strictly feasible (positive definite)
5. Update and go to Step 3 (adaptive update of log-barrier parameter)

Step 1. derive a dual program:

$\Lambda \in \mathcal{S}_{n-1}, \Lambda \succeq 0$ and $y \in R^{m}$,
Lagrangian is

$$
L(X, y, \Lambda)=f(X)+\langle y, b-\mathcal{A}(X)\rangle-\langle\Lambda, X\rangle
$$

primal program (CDM) is

$$
=\min _{X} \max _{y} L(X, y, \Lambda) .
$$

dual program is:

$$
=\max _{\substack{y \\ \Lambda \succeq 0}} \min _{X} L(X, y, \Lambda),
$$

The inner minimization of the convex, in X, Lagrangian is unconstrained so we add the hidden constraint which makes the minimization redundant.
dual program (DCDM)

$$
\max _{\substack{\nabla f(X)-\mathcal{A}^{*} y=\Lambda \\ \Lambda \succeq 0}} f(X)+\langle y, b-\mathcal{A}(X)\rangle-\operatorname{trace} \Lambda X .
$$

or
$\max \quad f(X)+\langle y, b-\mathcal{A}(X)\rangle-\operatorname{trace} \Lambda X$
subject to $\quad \nabla f(X)-\mathcal{A}^{*} y-\Lambda=0$
$\Lambda \succeq 0,(X \succeq 0)$.
the duality gap,
$f(X)-(f(X)+\langle y, b-\mathcal{A}(X)\rangle-\operatorname{trace} \Lambda X)$,
in the case of primal and dual feasibility, is given by the complementary slackness condition:

$$
\operatorname{trace} X\left(\mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(X-B)\right)-\mathcal{A}^{*} y\right)=0
$$

or equivalently

$$
X\left(\mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(X-B)\right)-\mathcal{A}^{*} y\right)=0
$$

where $H^{(2)}=H \circ H$.

THEOREM Suppose that Slater's condition holds. Then $\bar{X} \succeq 0$, and $\bar{y}, \bar{\Lambda} \succeq 0$ solve (CDM) and (DCDM), respectively, if and only if the following three equations hold.

$$
\begin{array}{cc}
\mathcal{A}(\bar{X})=b & \text { prim. feas. } \\
2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(\bar{X}-B)\right)-\mathcal{A}^{*} \bar{y}-\bar{\Lambda}=0 & \text { dual feas. } \\
\operatorname{trace} \bar{\Lambda} \bar{X}=0 & \text { C.S. }
\end{array}
$$

LEMMA Let H be an $n \times n$ symmetric matrix with nonnegative elements and 0 diagonal such that the graph of H is connected. Then

$$
\mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(I)\right) \succ 0
$$

where $I \in \mathcal{S}_{n-1}$ is the identity matrix.

Step 2. state optimality conditions for log-barrier problem (perturbed primal-dual optimality conditions):

The log-barrier problem for (CDM) is

$$
\min _{X \succ 0} B_{\mu}(X):=f(X)-\mu \log \operatorname{det}(X)
$$

where $\mu \downarrow 0$.
For each $\mu>0$ we take one Newton step for solving the stationarity condition

$$
\nabla B_{\mu}(X)=2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(X-B)\right)-\mu X^{-1}=0 .
$$

Let

$$
C:=2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(B)\right)=2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ A\right)
$$

Then the stationarity condition is equivalent to

$$
\nabla B_{\mu}(X)=2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(X)\right)-C-\mu X^{-1}=0
$$

equating $\Lambda=\mu X^{-1}$ and multiplying through by X
optimality conditions, $F:=\binom{F_{d}}{F_{c}}=0$,

$$
\begin{array}{lll}
2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(X)\right)-C-\Lambda & =0 & \text { dual feas. } \\
\Lambda X-\mu I & =0 & \text { pert. C.S., }
\end{array}
$$

(an OVERDETERMINED nonlinear system since ΛX not symmetric)
estimate of the barrier parameter

$$
\mu=\frac{1}{n-1} \operatorname{trace} \Lambda X
$$

```
\sigma
```

\mathcal{F}^{0} set of strictly feasible primal-dual points F^{\prime} derivative of F

Algorithm 1 ($p-d i-p$ framework:)
Given $\left(X^{0}, \Lambda^{0}\right) \in \mathcal{F}^{0}$
for $k=0,1,2 \ldots$.
solve for the search direction

$$
F^{\prime}\left(X^{k}, \Lambda^{k}\right)\binom{\delta X^{k}}{\delta \Lambda^{k}}=\binom{-F_{d}}{-\Lambda^{k} X^{k}+\sigma_{k} \mu_{k} I}
$$

where σ_{k} centering, $\mu_{k}=\frac{\operatorname{trace} X^{k} \Lambda^{k}}{(n-1)}$

$$
\begin{aligned}
& \qquad\left(X^{k+1}, \Lambda^{k+1}\right)=\left(X^{k}, \Lambda^{k}\right)+\alpha_{k}\left(\delta X^{k}, \delta \Lambda^{k}\right) \\
& \text { so that }\left(X^{k+1}, \Lambda^{k+1}\right) \succ 0
\end{aligned}
$$

end (for).

For the EDM: search direction (Gauss-Newton direction) is the Frobenius norm lss of $F^{\prime} s=-F$, i.e.

$$
\begin{aligned}
2 \mathcal{K}_{V}^{*}\left(H^{(2)} \circ \mathcal{K}_{V}(h)\right)-l & =-F_{d} \\
\Lambda h+l X & =-F_{c} .
\end{aligned}
$$

$t(n)=\frac{(n+1) n}{2}$ dimension of \mathcal{S}^{n}.

$$
F^{\prime} s=\left[\begin{array}{cc}
F_{u 1}^{\prime} & F_{u 2}^{\prime} \\
F_{l 1}^{\prime} & F_{l 2}^{\prime}
\end{array}\right]\binom{h}{l}=r h s=\binom{r h s_{1}}{r h s_{2}} .
$$

$F^{\prime}: \Re^{2(t(n-1))} \rightarrow \Re^{t(n-1)+(n-1)^{2}}$

Larger Models

Instead of projecting and reducing the dimension to get Slater's condition, add a variable and increase the dimension.

Lemma 1 Let

$$
\begin{aligned}
& \mathcal{F}:=\left\{X \in \mathcal{S}^{n}: v^{T} e=0 \quad \Rightarrow \quad v^{T} X v \leq 0\right\}, \\
& \mathcal{F}_{0}:=\left\{X \in \mathcal{S}^{n}: X-\alpha e e^{t} \preceq 0, \quad \text { for some } \alpha \geq 0\right\}, \\
& \mathcal{F}_{1}:=\left\{X \in \mathcal{S}^{n}: X-\alpha e e^{t} \preceq 0, \quad \forall \alpha \geq \bar{\alpha},\right. \\
&\text { for some } \bar{\alpha} \geq 0\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{ri}(\mathcal{F}) \subset \mathcal{F}_{0}=\mathcal{F}_{1} \subset \mathcal{F} \subset \overline{\mathcal{F}_{0}} \tag{1}
\end{equation*}
$$

Proof. \quad Suppose that $\bar{X} \in \operatorname{ri}(\mathcal{F})$ (i.e. $\left.v^{T} e=0, v \neq 0 \Rightarrow v^{T} \bar{X} v<0\right)$ but $\bar{X} \notin \mathcal{F}_{0}$. Then, for each $\alpha \geq 0$, there exists w_{α} with $\left\|w_{\alpha}\right\|=1$, such that $w_{\alpha} \rightarrow \bar{w}$, as $\alpha \rightarrow \infty$ and

$$
w_{\alpha}^{T}\left(\bar{X}-\alpha e e^{t}\right) w_{\alpha}>0, \quad \forall \alpha \geq 0
$$

i.e.

$$
w_{\alpha}^{T} \bar{X} w_{\alpha}>\alpha w_{\alpha}^{T} e e^{t} w_{\alpha}, \quad \forall \alpha \geq 0
$$

Since w_{α} converges and the left-hand-side of the above inequality must be finite, this implies that $e^{t} \bar{w}=\bar{w}^{T} \bar{X} \bar{w}=0$, a contradiction. Therefore, $\operatorname{ri}(\mathcal{F}) \subset \mathcal{F}_{0}$. That $\mathcal{F}_{0}=\mathcal{F}_{1}$ is clear.

Now suppose that $\bar{X}-\alpha e e^{t} \preceq 0, \alpha \geq 0$. Let $v^{T} e=0$. Then $0 \geq v^{T}\left(\bar{X}-\alpha e e^{t}\right) v=v^{T} \bar{X} v$, i.e. $\mathcal{F}_{0} \subset \mathcal{F}$. The final inclusion comes from the first and the fact that \mathcal{F} is closed.

Corollary 1 Let

\[

\]

Then

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}_{0}=\mathcal{E}_{1} . \tag{2}
\end{equation*}
$$

Proof. (Similar to Lemma 1.) For closure, suppose $0 \neq X_{k} \in \mathcal{E}_{0}$, i.e. $\operatorname{diag}\left(X_{k}\right)=0, X_{k} \preceq \alpha_{k} E$, for some α_{k}; and, suppose $X_{k} \rightarrow \bar{X}$. Since X_{k} is hollow it has exactly one positive eigenvalue which must be smaller than α_{k}. However, since X_{k} converges to \bar{X}, $\bar{X} \leq \lambda_{\max }(\bar{X}) E$, where $\lambda_{\max }(\bar{X})$ is the largest eigenvalue of \bar{X}.
let: $E=e e^{t} ; f(P):=\|H \circ(A-P)\|_{F}^{2}$;
\mathcal{K} lin. operator with constraint $\operatorname{diag}(P)=0$.
primal problem is:

$$
(\mathrm{CDM})^{\mu^{*}:=} \begin{array}{cc}
\min & f(P) \\
& \text { subject to }
\end{array} \quad \alpha E-P \succeq 0
$$

and dual problem (DCDM) is

$$
\begin{aligned}
& \nu^{*}:=\quad \max \quad f(P)+\langle y, b-K P\rangle-\operatorname{trace} \Lambda(\alpha E-P) \\
& \text { subject to } \\
& \nabla_{P} f(P)-\mathcal{K}^{*} y+\Lambda=0 \\
& - \text { trace } \Lambda E=0 \\
& \Lambda \succeq 0 .
\end{aligned}
$$

(Slater's holds for primal but fails for dual.)
(perturbed) Optimality Conditions are:

$$
\begin{array}{cc}
\operatorname{diag}(P)=0 & \text { primal feas. } \\
2 H^{(2)} \circ(P-A)-\operatorname{Diag}(y)+\Lambda=0 \\
-\operatorname{trace} \Lambda E=0 & \} \\
-(\alpha E-P)+\mu \Lambda^{-1}=0, & \text { dual feas. } \\
\text { pert. C.S. }
\end{array}
$$

linearization of complementary slackness

$$
-(\alpha+w) E+(P+h)+\mu \Lambda^{-1}-\mu \Lambda^{-1} l \Lambda^{-1}=0
$$

solve for h

$$
h=-\mu \Lambda^{-1}+\mu \Lambda^{-1} l \Lambda^{-1}-P+(\alpha+w) E .
$$

(or solve for l)
linearization dual feasibility

$$
\begin{aligned}
2 H^{(2)} \circ h-\operatorname{Diag}(s)+l= & -\left(2 H^{(2)} \circ(P-A)\right. \\
& -\operatorname{Diag}(y)+\Lambda) \\
-\operatorname{trace} l E= & \operatorname{trace} \Lambda E
\end{aligned}
$$

substitute for h, s
Newton equation is

$$
\begin{array}{r}
2 H^{(2)} \circ\left(w E+\mu \Lambda^{-1} l \Lambda^{-1}\right)-\operatorname{Diag} \operatorname{diag}(l)+l \\
=2 H^{(2)} \circ\left\{\mu \Lambda^{-1}+A-\alpha E\right\}+\operatorname{Diag}(y)-\Lambda \\
\operatorname{diag}\left(\mu \Lambda^{-1} l \Lambda^{-1}\right)+w e \\
=\operatorname{diag}\left(\mu \Lambda^{-1}\right)-\alpha e \\
\operatorname{trace}(l E)=-\operatorname{trace}(\Lambda E) .
\end{array}
$$

square system, order $1+n n z$ where $n n z$ are the number of nonzeros in the upper triangular part of $H,(\operatorname{diag}(H)=0)$.
F denotes $(n n z+n) \times 2$ matrix
row p contains indices of the p-th nonzero, upper triangular, element of $H+I$ ordered by columns,

$$
\begin{aligned}
& \left\{\left(F_{p 1}, F_{p 2}\right)_{p=1, \ldots n n z+n}\right\} \\
& \quad=\left\{i j: H_{i j} \neq 0, i \leq j, \text { ordered by columns }\right\}
\end{aligned}
$$

$\delta_{i j}$ is Kronecker delta function
$\delta_{(i j)(k l)}$ is 1 if $(i j)=(k l), 0$ otherwise.
$E_{i j}=\left(e_{i} e_{j}^{t}+e_{j}^{t} e_{i}\right) / \sqrt{2}, i j$ unit matrix in \mathcal{S}^{n}, where
$E_{i j}=\left(e_{i} e_{j}^{t}+e_{j}^{t} e_{i}\right) / 2$ if $i=j$.
(orthonormal basis of \mathcal{S}^{n})

operator equation:

$$
\begin{aligned}
& k \neq l, i \neq j \mathrm{LHS}= \\
& =\operatorname{trace} E_{k l}\left\{2 H^{(2)} \circ\left(\mu \Lambda^{-1} E_{i j} \Lambda^{-1}\right)-\operatorname{Diag} \operatorname{diag}\left(E_{i j}\right)\right. \\
& \left.\quad \quad+E_{i j}\right\} \\
& =\mu \operatorname{trace}\left(e_{k} e_{l}^{t}+e_{l} e_{k}^{t}\right)\left(H^{(2)} \circ \Lambda^{-1}\left(e_{i} e_{j}^{t}+e_{j} e_{i}^{t}\right) \Lambda^{-1}\right) \\
& \quad+\delta_{(i j)(k l)} \\
& =\mu\left[2 e_{l}^{t}\left(H^{(2)} \circ \Lambda_{:, i}^{-1} \Lambda_{j:}^{-1}\right) e_{k}+2 e_{k}^{t}\left(H^{(2)} \circ \Lambda_{:, i}^{-1} \Lambda_{j:}^{-1}\right) e_{l}\right] \\
& \quad+\delta_{(i j)(k l)} ; \\
& k \neq l, i \neq j \operatorname{LHS}= \\
& =2 \mu H_{k l}^{(2)}\left(\Lambda_{l i}^{-1} \Lambda_{j k}^{-1}+\Lambda_{k i}^{-1} \Lambda_{j l}^{-1}\right)+\delta_{(i j)(k l)}
\end{aligned}
$$

$$
\begin{aligned}
& k \neq l, i=j \mathrm{LHS}= \\
& =\operatorname{trace} E_{k l}\left\{2 \mu H^{(2)} \circ\left[\Lambda^{-1} E_{j j} \Lambda^{-1}\right]-\operatorname{Diag} \operatorname{diag}\left(E_{j j}\right)+E_{j j}\right\} \\
& =2 \sqrt{2} \mu \operatorname{trace} e_{k} e_{l}^{t}\left(H^{(2)} \circ \Lambda^{-1} e_{j} e_{j} \Lambda^{-1}\right) \\
& =2 \sqrt{2} \mu H_{k l}^{(2)}\left(\Lambda_{l j}^{-1} \Lambda_{j k}^{-1}\right) ; \\
& k=l, i \neq j \mathrm{LHS}= \\
& \quad=\sqrt{2} \mu \Lambda_{k i}^{-1} \Lambda_{j k}^{-1}, \quad k=1, \ldots n ; \\
& k=l, i=j \operatorname{LHS}= \\
& =\mu \Lambda_{k i}^{-1} \Lambda_{i k}^{-1}, \quad k=1, \ldots n .
\end{aligned}
$$

last column of LHS, matrix $l=0$ and $w=1$:

$$
\begin{array}{r}
w=1, k \neq l \mathrm{LHS}= \\
\operatorname{trace}\left(E_{k l}\left(2 H^{(2)} \circ E\right)\right) ; \\
w=1, k=l \mathrm{LHS}=1 .
\end{array}
$$

last row of LHS:

$$
\begin{aligned}
i \neq j \mathrm{LHS} & \left.=\operatorname{trace}\left(E_{i j} E\right)\right)=\sqrt{2} \\
i=j \mathrm{LHS} & =1
\end{aligned}
$$

Newton system is:

$$
\operatorname{sMat}[L(\operatorname{svec}(l))]=\operatorname{sMat}[\operatorname{svec}(R H S)],
$$

$\operatorname{svec}(S)$ vector formed from nonzero elements of columns of upper triangular part, where strict upper triangular part is multiplied by $\sqrt{2}$. (trace $X Y=\operatorname{svec}(X)^{t} \operatorname{svec}(Y)$, i.e. isometry) sMat is inverse Solve for svec (l):

$$
L(\operatorname{svec}(l))=\operatorname{svec}(R H S)
$$

$$
\begin{aligned}
& L_{p q}= \\
& \left\{\begin{array}{c}
2 \mu H_{F_{p_{2}}, F_{p_{1}}}^{(2)}\left(\Lambda_{F_{p_{2}}, F_{q_{1}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{1}}}^{-1}+\Lambda_{F_{p_{1}}, F_{q_{1}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{2}}}^{-1}\right) \\
\text { if } p \neq q, k \neq l, i \neq j ; \\
2 \sqrt{2} \mu H_{F_{p_{2}}, F_{p_{1}}}^{(2)}\left(\Lambda_{F_{p_{2}}, F_{q_{2}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{1}}}^{-1}\right) \\
\text { if } p \neq q, k \neq l, i=j ; \\
2 \sqrt{2} \mu H_{F_{p_{2}}, F_{p_{1}}}^{(2)}\left(\Lambda_{F_{p_{2}}, F_{q_{2}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{1}}}^{-1}\right) \\
\text { if } p=q, k \neq l, i=j ; \\
2 \mu H_{F_{p_{2}}, F_{p_{1}}}^{(2)}\left(\Lambda_{F_{p_{2}}, F_{q_{1}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{1}}}^{-1}+\Lambda_{F_{p_{1}}, F_{q_{1}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{2}}}^{-1}\right)+1 \\
\text { if } p=q, k \neq l, i \neq j ; \\
\sqrt{2} \mu \Lambda_{F_{p_{1}}, F_{q_{1}}}^{-1} \Lambda_{F_{q_{2}}, F_{p_{1}}}^{-1} \\
\text { if } k=l, i \neq j ;
\end{array}\right.
\end{aligned}
$$

$=$

$$
\begin{cases}\mu \Lambda_{F_{p_{1}}, F_{q_{1}}}^{-1} \Lambda_{F_{q_{1}}, F_{p_{1}}}^{-1} & \text { if } k=l, i=j \\ 2 \sqrt{(2)} H_{F_{p_{2}}, F_{p_{1}}}^{(2)} & \text { if } w=1, k \neq l \\ 1 & \text { if } w=1, k=l\end{cases}
$$

The p-th row calculated using Hadamard product of pairs of columns of Λ^{-1},

$$
\Lambda_{F_{p_{2}}, F_{:, 1}}^{-1} \circ \Lambda_{F_{p_{1}}, F_{:, 2}}^{-1} .
$$

complete vectorization (preliminary numerics are very promising)
$p=k l, k \leq l$, and last row, component of the right-hand-side of the system is
$R H S_{p}=$

$$
\left\{\begin{array}{lr}
\sqrt{2}\left(2 H_{p}^{(2)} \circ\left\{\mu \Lambda_{p}^{-1}+A_{p}-\alpha\right\}-\Lambda_{p}\right), & \text { if } k \neq l \\
\mu \Lambda_{k k}^{-1}-\alpha & \text { if } k=l \\
-\operatorname{trace}(\Lambda E) & \text { last row }
\end{array}\right.
$$

