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OUTLINE
. Short intro. to SDP
. SDP and positive definite matrix completions
. Euclidean distance matrix (EDM) completions

. New characterization for EDM:;

solving large sparse problems

(Advantages of using X — uZ~! = 0 form of perturbed

complementary slackness.)




SDP BACKGROUND and NOTATION

Semidefinite Programming
looks just like

Linear Programming

trace C'X ((C, X))
AX =10 (linear)
X >0, (Xe€P) (nonneg)




< denotes the Lowner partial order
A<BiftB—A*>0

S™ denotes n x n symmetric matrices

A:S8" =R

(AX); = trace (4;X), for given A; € 8"

P - cone of positive semidefinite matrices

replaces

' - nonnegative orthant




DUALITY

payoff function, player Y to player X (Lagrangian)

L(X,y) = trace (CX) + ¢y (b — AX)

Optimal (worst case) strategy for player X:

" = in L(X
p" = maxmin L(X, y)

Using the hidden constraint b — AX = 0, recovers primal problem.




trace (CX) + y*(b — AX)
bty + trace (C — A*y) X

adjoint operator, A*y =) . v;A,

<A*y7X> — <y7“4X>7 VX,y

= in L(X,y) < d* := mi L(X
p" = maxmin L(X, y) < min max L(X, y)

The hidden constraint C — A*y <0




* = in L(X,y) < d* := mi L(X
p" =maxmin L(X,y) < min max L(X, y)

dual obtained from optimal strategy of competing player Y;
use hidden constraint C — A*y <0

d* = min bly

(DSDP)
st. Ay >=C

for the primal

max traceCX
st. AX =0
X >0




Characterization of optimality for the
dual pair X,y (slack Z > 0)

Ay — 272 =C dual feasibility
AX =b primal feasibility

ZX =0 complementary slackness

ZX =ul  perturbed

Forms the basis for:

interior point methods

(primal simplex method, dual simplex method)




Positive Definite Completions
of

Partial Hermitian Matrices
G(V, F) finite undirected graph
A(G) is a G-partial matrix (a,; defined iff {i,j} € F)

A(G) is a G-partial positive matrix if a;; = a;;,V{¢,j} € F and

all existing principal minors are positive.

with J = (V, E), E C E a J-partial matrix B(J) extends the
G-partial matrix A(G) if b;; = a,;,V{i,j} € E

G is positive completable if every G-partial positive matrix can

be extended to a positive definite matrix.




G is chordal if there are no minimal cycles of length > 4. (every
cycle of length > 4 has a chord)

THEOREM (Grone, Johnson, Sa, Wolkowicz)
G is positive completable iff G is chordal.

equivalently - strict feasibility for SDP:

trace E;; P = a;;, YV{i,j} € E
P >0

where E;; = eieﬁ- + ejel




Approximate Positive Semidefinite Completions

(with Charlie Johnson
and Brenda Kroschel)

given:

H = H' > 0 a real, nonnegative (elementwise) symmetric matrix

of weights, with positive diagonal elements H;; > 0, Vz;

and A = A* the given partial Hermitian matrix

(i.e. some elements approximately fixed; others free; for notational
purposes, assume free elements set to 0 if not specified.)
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|A|| 7 = Vtrace A* A Frobenius norm, o denotes Hadamard product.

f(P):=|H o (A= P)|%

weighted, best approximate,
completion problem

p* = min f(P)
(AC) subject to KP =1b
P >0,

where K : 'H™ — C™ linear operator




Lagrangian:

L(P,y,A) = f(P)+ (y,b — KP) — trace AP

Dual problem:

max f(P)+ (y,b — KP) — trace AP
(DAC) subject to VI(P)—K*y—A=0
A > 0.




THEOREM The matrix P = 0 and vector-matrix 1, A = 0 solve
AC and DAC if and only if

KP=b primal feas.
2H® o (P —A) - K*j—A =0  dual feas.

trace AP =0 compl. slack.




For simplicity and sparsity, discard linear operator K and replace
with appropriate weights in H.

Use (square) perturbed optimality conditions.

2H(?) o (P — A) — A =0 dual feasibility
—P+uAt=0 perturbed C.S.

Linearization of second equation

and solve for h and [

h=pA"l — yA" YA - P

[ = %{—A(PM)AHA




Dual Step First:

(if many elements of P are free)

We can eliminate the primal step h and solve for the dual step [.

[ = 2H®oh+ (2H® o(P—A) - A)
= 2H® o (,uA_l — puATHATL — P)
+ (2H@ o (P — A) — A)

Equivalently, we get the Newton equation

2H® o (uA=HA™Y) +1=2H® o (uA™1 — A) — A.

[, A have same sparsity pattern as H,

order is number of nonzeros/2 in H.




toler Hdens./infty cond(A) min/max
10— 6 .01/.001 79.7 15/23 16.
10— 6 .015/.001 49.9 18/24 21.
10— 6 .007,/.001 235.1 24/29 25.
10—° .008/.001 94.7 11/17 13.
10— 6 .0075/.001 299.9 23/27 25.
10— 6 .006/.001 74.2 14/19 16.
10— 6 .006,/.001 no 179.3 23/28 15.
110 | 106 .007,/.001 yes 172.3 15/20 17.

W 0o N © N = O Ww

155 10— 6 .01/0 yes 643.9 14/18 15.
655 10— 6 .017/0 yes 1.4 14/14 14.
755 | 106 .002/0 yes 1.5 15/15 15.

data for dual-step-first (20 problems per test): dimension; tolerance for duality gap;

density of nonzeros in H/ density of infinite values in H;
positive semidefiniteness of A; condition number of A; positive definiteness of H;

(only one test for: 655,755)




Euclidean Distance Matrix Completion Problem

(with Abdo Alfakih)
What are EDMs?

A pre-distance matrix (or dissimilarity matrix):
e an n X n symmetric matrix D = (d;;) with nonnegative elements

and zero diagonal

A (squared) Euclidean distance matrix (EDM):
e a pre-distance matrix such that there exists points z!, 22,..., 2"
in R" such that

. 2 . .
di; = ||z = 27|, 4,5=1,2,...,n.

The smallest value of r is called the embedding dimension of D.
(r is always <n — 1)




EDM problem:

Given a partial symmetric matrix A with certain elements
specified, the Euclidean distance matrix completion problem
(EDMCP) consists in finding the unspecified elements of A that
make A a EDM.

WHY?

e.g.:
e The shape of an enzyme determines it chemical function. Once
the shape is known, then the proper drug can be designed.

e distance geometry on molecules: Atoms are points in space with

pairwise distances; find a set of points which yield those distances.




For approximate EDMCP:

A is a pre-distance matrix, H is an n X n symmetric weight matrix,

f(D) = |H o (A= D)l

p* o= min f(D)

(CDMy)
subject to D €€,

where £ denotes the cone of EDMs.




DISTANCE GEOMETRY A pre-distance matrix D is a
EDM if and only if D is negative semidefinite on

M::{xeﬁ?”:aﬁtez()},

where e i1s the vector of all ones.




Define centered and hollow subspaces

= {B&€S8": Be=0}

= {D e 8" :diag (D) = 0}.
Define two linear operators

KC(B) := diag(B)e!+ ediag(B)' — 2B,

T(D) = —1JDJ.

The operator —27 is an orthogonal projection onto S¢.

THEOREM The linear operators satisfy

K(Sc) = S,
T(SH) — SC?

and s, and 7;s,, are inverses of each other.



A hollow matrix D is EDM
if and only if
B =T (D) = 0 (positive semidefinite)

D is EDM
if and only if
D = K(B), for some B with Be =0 and B = 0.

In this case the embedding dimension r is given by the rank of B.
Moreover if B = X X?, then the coordinates of the points

zt, 2%, ..., 2" that generate D are given by the rows of X and,
since Be = 0, it follows that the origin coincides with the centroid

of these points.




For Projection: V n x (n — 1), full column rank with V'e = 0.

eel

Ji=VVi=1-—

n

is orthogonal projection onto M, where V1 denotes Moore-Penrose

generalized inverse.




The cone of EDMs, &, has empty interior. This can cause problems

for interior-point methods.

V'VISn_l —>Sn

V'VZPn_l —>7Dn

Define the composite operators




Kv(Sn-1) = Sm,
TV(SH) — Sn—17

and Ky and 7y are inverses of each other on these two spaces. W

COROLLARY




Summary

(Re)Define the closest EDM problem:

F(X) = ||Ho (A - Kv(X))|7
= ||H o Ky(B — X)||2,

where B = Ty (A).

(Ky and 7y are both linear operators)

u* o= min f(X)

(CDM)
subject to X >~ 0.



Primal-Dual Interior-Point Framework:

STEPS:
. derive a dual program

. state optimality conditions for log-barrier problem (perturbed

primal-dual optimality conditions)

. find a search direction for solving the perturbed optimality

conditions

. take a step and backtrack to stay strictly feasible (positive
definite)

. Update and go to Step 3 (adaptive update of log-barrier

parameter)




Step 1. derive a dual program:

AeS,_1,A>0and y e R™,

Lagrangian is

primal program (CDM) is

= minmax L(X,y, A).
X Y
AS0

dual program is:

= maxmin L(X,y, A),
v X
A>0




The inner minimization of the convex, in X, Lagrangian is
unconstrained so we add the hidden constraint which makes the

minimization redundant.

dual program (DCDM)

max  f(X)+ (y,b — A(X)) — traceA X.

VI(X)—A*y=A
A>0

max f(X)+ (y,b— A(X)) — trace AX
subject to ViAX)—A*y—A=0
A=0,(X = 0).




the duality gap,
f(X) o (f(X) + <y7b - A(X)> o traceAX) )
in the case of primal and dual feasibility, is given by the

complementary slackness condition:

trace X (K (H® o Ky (X — B)) — A*y) =0,

or equivalently
X (K (H®) o Ky (X = B)) — A"y) = 0.

where H?) = Ho H.




THEOREM Suppose that Slater’s condition holds. Then X > 0,
and ¢, A = 0 solve (CDM) and (DCDM), respectively, if and only if
the following three equations hold.

A(X)=b prim. feas.
2K5 (H® o Ky (X — B)) — A*y— A =0 dual feas.
trace AX =0 C.S.

LEMMA Let H be an n X n symmetric matrix with nonnegative
elements and 0 diagonal such that the graph of H is connected.

Then

Ky (H® o Ky (1)) - 0,

where I € §,,_1 is the identity matrix.




Step 2. state optimality conditions for log-barrier problem
(perturbed primal-dual optimality conditions):

The log-barrier problem for (CDM) is

min B, (X) := f(X) — plog det(X),

where p | 0.

For each > 0 we take one Newton step for solving the stationarity

condition

VB, (X)=2K;(H® o Ky(X — B)) —uX"' =0.

Let
C:=2K%(H® o Ky (B)) = 2K (H® o A).

Then the stationarity condition is equivalent to

VB, (X) = 2K (H<2> o ICV(X)) _C—puX"t=o0.




equating A = ¢ X ! and multiplying through by X

optimality conditions, F' :=
Fe

2KC (H® o Ky (X)) —C — A 0 dual feas.
AX — ul 0 pert. C.S.,

(an OVERDETERMINED nonlinear system since AX not

symmetric)

estimate of the barrier parameter

1
[ = trace AX
n—1




o centering parameter
FO set of strictly feasible primal-dual points
F’ derivative of F

Algorithm 1 (p-d i-p framework:)
Given (X° A% ¢ FY

for k=0,1,2...

solve for the search direction

oX* —Fy
A" — AR XF + op ol

F'(X* AR

trace X*AF
(n—1)

where oy centering, [y =

(Xk—l—l’Ak:—Fl) _ (Xk,Ak) 4+ Ckk(5Xk,5Ak)

so that (X1 AFTL) O
end (for).




For the EDM: search direction (Gauss-Newton direction) is the

Frobenius norm Iss of F's = —F, i.e.

2UCt, (H® o Ky (h)) — 1
Ah+1X

t(n) = (n—|—21)n dimension of §".

/ /
Ful Fu2
/ /
Fll Fl2

s =

F-op2(t(n=1)) _, ypt(n—1)+(n—1)




Larger Models

Instead of projecting and reducing the dimension to get Slater’s
condition, add a variable and increase the dimension.

Lemma 1 Let
(XeS":vle=0 = vI'Xv<0},
{(XeS8": X —aee! X0, for some a >0},
(XeS": X —aec! 20, Va>a,

for some & > 0}.

ri (F) C Fo=F1 CFCFo.




Proof. Suppose that X € 1i(F) (i.e.
vle =0,v # 0= vI'Xv <0) but X ¢ Fy. Then, for each o > 0,

there exists w, with ||we|| = 1, such that w, — w, as a — oo and

wl (X — aeewy, >0, Va>0,

T Tt
w, Xwy > aw, ee Wy, Vo> 0.

Since w, converges and the left-hand-side of the above inequality
must be finite, this implies that e!w = w! Xw = 0, a contradiction.
Therefore, ri (F) C Fy. That Fy = F; is clear.

Now suppose that X — aee? <0, a > 0. Let vl'e = 0. Then
0> vl (X — aeet)v = v Xv, i.e. Fy C F. The final inclusion comes
from the first and the fact that F is closed. N




Corollary 1

(X eS8y :vle=0 = vIXv<0},
{X €Sy : X —aeet X0, for some a}l,
{(XeSy: X —aee X0, Va>a,

for some a}.

£=E =& (2)

Proof. (Similar to Lemma 1.) For closure, suppose 0 # X € &,

i.e. diag (Xx) =0, X =< axFE, for some aj; and, suppose X — X.
Since X}, is hollow it has exactly one positive eigenvalue which

must be smaller than ayj. However, since X converges to X,
X < Mmax(X)E, where A\pax(X) is the largest eigenvalue of X. I




let: E = ec'; f(P):=|Ho (A~ P)|;
JC lin. operator with constraint diag (P) = 0.

primal problem is:

p* = min f(P)

(CDM)
subject to aF — P > 0

and dual problem (DCDM) is

max f(P)+ (y,b — KP) — trace A(aFl — P)
subject to Vpf(P)—K*y+A=0
—trace AE =0
AX0.

(Slater’s holds for primal but fails for dual.)




(perturbed) Optimality Conditions are:

diag (P) =0 primal feas.
2H(?) o (P — A) — Diag (y) + A =0

dual feas.
— trace AE =0

—(aE — P) +puA~1 =0, pert. C.S.




denotes the step for
denotes the step for
denotes the step for
denotes the step for

maintain

diag (h) = diag (P) =0




linearization of complementary slackness
—(a+w)E+ (P+h)+pA~t —pA~HATY = 0,
solve for h
h = —pA P+ puA AT — P+ (a+w)E.

(or solve for [)

linearization dual feasibility

2H®) o b — Diag (s) + —(2H® o (P — A)
— Diag (y) + A)
—tracelF trace AE




substitute for h, s

Newton equation 1is

2H® o (wE + pA~1A™!) — Diagdiag (1) + !
=2H® o {yA~' + A — aE} + Diag (y) — A
diag (pA~HATY) + we

= diag (,uA_l) — ae
trace (IF) = —trace (AF).

square system, order 1 + nnz where nnz are the number of

nonzeros in the upper triangular part of H, (diag (H) = 0).




F' denotes (nnz + n) x 2 matrix
row p contains indices of the p-th nonzero, upper triangular,

element of H + I ordered by columns,

{(th Fp2)p:1,...nnz—|—n}
={ij : H;; # 0,7 < j, ordered by columns} .

0i; is Kronecker delta function
O(izy(kty is 1 if (i) = (Kl), O otherwise.

E;; = (ez-e; + eg-ei) /+/2, ij unit matrix in S”, where
E;; = (eieg + eg-ez-) /2 if i = j.
(orthonormal basis of S™)




operator equation:

k41,047 LHS =

— trace Ey {2H(2) o (,uA_lEZ-jA_l) — Diag diag (F;;)
+Eij}

= ptrace (exel + egel) (HP o A~ (el + ejel) A1)

+ 0(i) (k1)
= | 2€ (H(2) o A:Z.lAj_zl) ex + 2et (H(2) o A:,L-lA;l) el
+ 0(ij) (k1)
k#1107 LHS =
= o (A7 AGE + AGAGY) + biycan




k#1,1=j LHS =

= 2+/2utrace eyet (H(Q) o A_lejegA_l)
(2) (A—1A-1).

= 2v2pH,; (Alj Ajk) )

k=1,i+jLHS=

= V2ulh AL, k=1,...n;
k=1,i=jLHS =
:,LLAl;-lAZ-_kl, k=1,...n.




last column of LHS, matrix [ = 0 and w = 1:

w=1,k#1[ LHS =
trace (Ep(2H® o F)) ;
w=1k=1LHS = 1.

last row of LHS:

i # j LHS = trace (E;; E)) = V2;
i = LHS = 1.




Newton system is:

sMat [L(svec (1))] = sMat [svec (RHS)],

svec (S) vector formed from nonzero elements of columns of upper

triangular part, where strict upper triangular part is multiplied by

V2. (trace XY = svec (X )!svec (Y), i.e. isometry) sMat is inverse

Solve for svec (1):

L(svec (1)) = svec (RHS).




2wl o (ARL p AFL g AT R AL )
fp#q, k#L 1 #7;
2\/_MH1<V2) F, <AFp12,F AFq12,F )

ifp#q, k#I1, i=7;
Q\f,qug) F, (AFl F, AF1 F, )

p2»
p2>

p2» p2» q2>

ifp=gq, k#I, 1 =7;
2:LLH1(72> F, (AFl F, AF1 F +AF F, AF1 F, )+1

p2» p2>» a2 p1>» a2

ﬁp:%k#LZ#ﬁ
\/_MA Fp, ,F AFq12,F

it k=1, 1 # 7;




(pAT L A . ifk=1i=]

p1-°>- 41 91>~ P1

2,/(2)HY .. ifw=1, k#1

P27~ P1

1 ifw=1, k=1

\

The p-th row calculated using Hadamard product of pairs of

columns of A=,

ALl

D2

—1
O
F:,l AFplaF:,2.

complete vectorization (preliminary numerics are very promising)




p = kl, k <[, and last row, component of the right-hand-side of the
system 1s

RHS, =

(V2 (287 o {uAt + Ay —a} — A,), ik

,u./\,;k:,l — it k=1
—trace (AF) last row

\




