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I. Introduction 

We consider the following mathematical programming problem: 

p = inf{f(x):  A x  = b, x ~>s0}, (P) 

where f :  X ~ R is a differentiable functional on X, A: X -~ Y is a continuous linear 
operator, X and Y are normed spaces, b e Y, and S c  X is a convex cone, i.e. 
S + S c S and AS c S, for all A I> 0. The cone S induces the cone par t ia l  order 

X>-sy  iff x - y e S .  

Our study of the model (P) was stimulated by the following best interpolation 
problem considered in [8]: let ~, qJl, • • •, th, be given in Lz[0, 1] with 2>I 0; find x* 

to solve 

min{l[x[[~: (x, 0i) = (x, ~i), i=  1 , . . . ,  n, x ~ 0 } ,  (1.1) 

where ( . , . )  and [[. 112 are the inner product and norm in L2, respectively. The 
problem (1.1) is of type (P). In this paper  we see that we can derive the explicit 
solution of (1.1), given in [8], by using a Lagrange multiplier approach.  

The property that distinguishes (P) is the linear programming type of constraints. 
In the case that X and Y are finite dimensional spaces, S is a polyhedral cone, and 
f ( x )  = c ' x  is a linear functional, then there exists a duality theory for (P), see e.g. 

[1]. For example, if the dual program is defined as 

d = sup{y'b: A'y '<~s  ÷ c, y ' e  Y*} (D) 
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where S ÷ is the 'polar cone' of S and Y* is the dual space of Y, then, if p is finite, 
we get that p = d, d is attained, and 'complementary slackness' between the solution 
vectors holds. The well known ordinary linear program, where S is the nonnegative 
orthant, falls into this case. Corresponding results for S not necessarily polyhedral 
are given in [9]. These results require looking at the 'faces' of  S unless a constraint 
qualification holds. 

Problems can arise if X and Y are not finite dimensional or if S is not polyhedral. 

Example 1.1. Consider the nonpolyhedral problem in finite dimensions, where 
X - - R  3, 

S = {x E R3: xl >1 O, 2xlx2 >! x~}, (1.2) 

and 

A = [ 1  0 0], b = 0 ,  c'=(O 0 1). 

Then p = 0 and x* = (0 0 0)' is clearly an optimum for (P). However, the constraint 
in the dual program (D) is 

- y = s + ~ S + = S ,  y ~ R ,  (1.3) 

which is clearly inconsistent. This shows that d = -00 is the optimal value of (D). 

Example 1.2. Consider the following best interpolation problem of type (1.1): let 
n = 2 and 

~Ol(t) = {~ - 2 t  i f 0 ~  t~<½, 
if½< t~< 1, 

t~2( t ) = t, 

{01 if0<~ t~<½' 
~ ( t ) =  i f l < t ~ < l "  

The Kuhn-Tucker  conditions for (1.1) for x* feasible are: 

X* = A 11pl "-~- A21~2 "~- S + ' 
(1.4) 

S + t> 0 ,  S+X * =--- O. 

We see that x*-= 0 on [0, ½], the support of  ~/q, since (x*, ~bl) = (~, ~1). Also A2> 0, 
since s+x*=-O and 0#x*~>0.  Thus A~<0, which still leaves (A~b~+AztP2)(t)>0, 
for t near ½, i.e. the system (1.4) is inconsistent. Note that the constraint x~>0 
is a very simple constraint. We obtain the same difficulty if we replace the 
objective function f(x)=[[x]l ~ with the linear objective function c'x, where 

c' = ½Vf(x*) = x*. 
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Constraint qualifications for programs of type (P) are given in e.g. [5, 7]. They 
usually require a 'Slater point', i.e. a feasible point x c in t  S. In the above example, 
S is the nonnegative orthant in L2 and has empty interior. 

In Section 2 we present our constraint qualification and several equivalent formula- 
tions. Section 3 contains the main result; see Theorem 3.1 and Corollary 3.1. Here 
we see that the constraint qualification yields strong duality. In Section 4 we present 
several examples including a proof of the explicit solution of the best interpolation 
problem presented in [8]. In Section 5 we show how to extend our results when the 
constraint qualification fails. 

2. Preliminaries and the constraint qualification 

In this section we discuss the constraint qualification to be used in our optimality 
conditions. We also present several equivalent formulations. However, we first 
introduce the notations and definitions needed in the sequel. 

We consider the program 

p = inf{f(x):  A x  = b, x ~  S} (P) 

introduced in Section 1. We let X* and Y* denote the continuous dual spaces of 
X and Y respectively, both equipped with the w*-topology. Given any set K in 
X, the polar cone of K is the set 

K + =  {x' ~ X*:  x ' x  >~O if  x ~ K} .  (2.1) 

Here x ' x  denotes the bilinear form in the duality between X and X*. Correspond- 
ingly, if K '  is in X*, 

K '+ = [x c X :  x ' x  >I 0 if x' ~ K'}. (2.2) 

Note that 

K ++ = cone K, (2.3) 

the closure of the convex cone generated by K. The  annihilator of a set L, in X or 
X*, is denoted by L ± and is defined by 

L J- = L + n ( - L )  +. 

The feasible set of (P) is 

F = { x ~ X :  A x = b , x ~ S } .  

We assume that F ~ 0. We let ~ be any generating set for S +, i.e. 

cone ~ = S ÷. (2.4) 

Then, if S is closed, x ~ S is equivalent to the constraints 

s+x>~O i f s+~  ~. 
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The equality set of  constraints  is 

3 ~= = {s + ~ ~ :  A x  = b, x c S implies s+x = 0}. (2.5) 

This nota t ion  differs slightly f rom that  in the li terature in that  the constraint  A x  = b 

is not included in ~= .  (See e.g. [2, 3, 4].) 
We assume that  the l inear  opera tor  A is cont inuous.  We let A' ,  ~ (A) and N ( A )  

denote the adjoint ,  range space and null space of  A respectively. We use dim to 
denote  dimension.  

We will emp loy  the fol lowing constraint  qualif ication in Section 3. 

c o n e ( F  - S) = X. (CQ) 

We will refer  to it as (CQ).  
We now present  several equivalent  formulat ions .  Here  R+ denotes  the nonnegat ive  

real line and  R+ b is the set o f  all nonnegat ive  mult iples of  b. 

P r o p o s i t i o n  2.1. The following f ive statements (2.6a)-(2.6e) are equivalent: 

c o n e ( F  - S) = X, (2.6a) 

(S  n A - I (R+ b))  - S = X,  (2.6b) 

p =  c {0}, (2.6c) 

S + n F ± = {0}, (2.6d) 

S + n ( - F )  + = {0}. (2.6e) 

Moreover, each o f  the above implies the following two equivalent statements: 

(S, R+)+,N' (A,  - b ) =  (X, R),  (2.60 

(s.) (A;) 
R+ n ~ ={0}. (2.6g) 

Proof.  Tha t  (a) and (b) are equivalent  is clear. Now suppose  that  (a) holds. Let 
s + 6 S  +, t / > 0 a n d  

(;) s =11 - b y "  ' y" a net in Y*. 

I f  x c F, then 

s+x = (lim A ' y ' ) x  = lira y" Ax = l im y'~ b = - t  ~ O. 
n n n 

But s+x >! 0, since x e F, s o  t = 0 = s+x. Thus 

s + ( F -  S)  <~ O, (2.7) 
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which,  by (a) implies  that  s + =  0, i.e. we have  shown that  (a) implies (g). That  (f) 
and (g) are equivalent  follows f rom the fact that  

( K  n L) + =  K + + L  + 

for closed convex cones K and L. Note  that  K ± = K ÷, when  K is a subspace ,  and 
that  ~ ( B ' )  ± =  W(B),  for  any cont inuous l inear operator .  Now (a) fails if and only 
if there exists 0 # x '  e X *  such that  

x'(F-S)~O, (2.8) 

if and only if x'F<~O and x'S>~O if  and  only if (c) fails. That  (c) is equivalent  to 
both  (d) and (e) is clear f rom (2.5). Recall  that  F c  S. [] 

It  is not  true that  (g) (or  (f)) implies (c) (or  its equivalents)  in general.  For,  let 
A = [~ o], b = 0, and S = span{(1, 0)'}. Then  ~ ( A ' )  n S ÷ = {0} while 

S + n F ± = S + ~ (S ~ N ( A ) )  l = span{(0, 1)'} n R 2 # {0}. 

The set ~ =  in (2.6c) is defined differently in the literature. For,  consider  the 
abstract  convex p rog ram 

min{ f (x ) :  g(x)<<-sO, x ~ /2} 

where g: X -  Y is S-convex  a n d / 2  c X is convex.  Then,  see e.g. [3], 

~ =  = {s + ~ 8~: x ~/2, g (x )  <<-sO implies s+g(x)  = 0}. (2.9) 

( I f  we set g = I, the identi ty operator ,  a n d / 2  = {x: A x  = b}, then the two definitions 
coincide.) For  the ordinary  convex p rog ram in finite dimensions ,  ~ = = 0 is equivalent  
to Slater 's  condi t ion (see e.g. [2]), i.e. there exists ~ c / 2  such that  g ( ~ ) < 0 .  

In  finite d imensions  we conclude the fol lowing s t ronger  statement.  

Corol lary 2.1. I f  X is finite dimensional, or S ÷ is w*-compactly based, then each o f  
the f ive statements (2.6a) to (2.6e) is equivalent to 

3~  ~ int S such that A~  = b. (2.10) 

Proof .  Let us show the equivalence with (2.6d). First suppose  X is finite 

dimensional .  I f  (2.10) holds,  then s + ; > 0  for  all 0 ~  s÷~ S ÷, i.e. (2.6d) holds.  
Conversely,  if  (2.10) fails, then, since X is finite dimensional ,  either int S - -  0 and 
there exists 0 ~ ~ ~ S X c  S + n  F ±, or int S n F = 0 and we can app ly  the H a h n -  
Banach  T h e o r e m  to find 0 ~ q5 ~ S + c~ ( - F )  ÷. Since F c S, we conclude that  q5 ~ S + n 
F ±" 

Now,  if S ÷ is w*-compac t ly  based,  i.e. S + = c o n e ( ~ ) ,  with 0 ~  convex and  
w*-compac t ,  and X *  is not  necessari ly finite d imensional ,  then the result follows 
f rom L e m m a  2.2 and Corol lary  2.1 in [4]. [ ]  

Note  that  the finite d imens ion  assumpt ion  can be replaced by  n o n e m p t y  relative 
interior. 
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3. Main results 

We now develop the duality theory for the program (P). We first consider the 

special case when f ( x )  is linear, i.e. f ( x )  = c'x, for some c' in X*.  In this case the 

dual p rogram we consider  is 

d = sup{by':  A'y'<-s+C ', y ' ~  Y*}. (D) 

We obtain condit ions for the optimal values to be equal, i.e. p -- d, and for d to be 
attained (see Theorem 3.1). The following lemma uses the closure condit ion (3.2) 

as a constraint  qualification. 

Lemma 3.1. Suppose that p is finite and f ( x ) =  e'x, e' c X * ,  in (P). Define 

B = ( A , - b ) ,  K =  R+ ' 

and ~ t  

Then 

~ ( B ' ) +  K + be closed. (3.2) 

p = d and d is attained by some y* c Y*.  

Moreover, i f  p = c' x* with x* ~ F, then 

(A 'y*  - c ')x* = O. 

Proof. We homogenize  the problem. The optimality o f  p yields 

A x  - tb = O, (x, t) ~ (S, R+) implies c 'x  - tp ~ O. (3.3) 

Note  that if t = 0, A x  = O, 0 ~ x c S, and e'x  < 0, then p : -oo;  while if t > 0, x 6 S, 

then A ( t - l x )  = b which implies c ' ( t - l x )  ~ p .  N o w  let a = (c',  - p ) ,  y = (~'). Then the 

above becomes 

B y = O ,  y c K  implies ay>>-O. 

Thus 

a ~ (N(B)  c~ K )  ÷ = ~ (B') + K ÷ c ~ (B')  + K ÷ since 0 c K ÷ 

= ~ ( B ' ) + K  ÷ by (3.2). (3.4) 

Therefore 

e ' = A ' y ' + s  +, - p = - b y ' + t ,  (s +, t ) c ( S  +, R+), y '  c Y*,  

i.e. e'>~s+A'y ' and p <~ by'. That p>~ by' is clear by weak duality, so we conclude 

p = d = by'. Moreover,  if  p is attained at x*, then 

d = p = c ' x * = e ' x * - y ' ( A x * - b )  since x* c F, 

= ( c ' -  a ' y ' ) x *  + y 'b  >! d, 

i.e. ( e ' - A ' y ' ) x * = O .  [] 
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To apply the lemma we need to find conditions which guarantee the closure 
condition in (3.2). We will apply the following closure conditions; see e.g. [6, pp. 
104, 105]. 

Lemma 3.2. Let  X be a Hausdor f f  linear topological space and let A,  B be closed 

convex subsets o f  X.  I f  A is locally compact and the recession cones CA n Ca -- {0}, 
then B - A is closed in X.  (Here  the recession cone o f  a set A is CA = {X C X :  x + A c A}.) 

[] 

Corollary 3.1. Let  N be a f ini te dimensional subspace o f  X and P a closed convex 

cone in X such that N n P = {0}. Then N + P is closed in X.  [] 

We now present several conditions which guarantee the closure condition (3.2). 
We denote: 

I c o n e ( F -  S) = X, 
II  S ÷is locally compact,  

I I I  dim ~ ( A )  is finite, (3.5) 

IV S is polyhedral (the intersection of a finite number  of  closed halfspaces), 
V ~ ( A ' )  is closed. 

Theorem 3.1. 
following three s tatements  holds: 

(a) I, I I  and V, 
(b) I and I l I ,  
(c) I I I  and IV, 

then 

p = d and d is attained by y* c Y*.  

In addition, i f  p = c' x* with x* ~ F, then 

( A ' y*  - c ')x* = 0 (complementary slackness).  

Suppose that p is f inite and f ( x )  = e'x, c' ~ X *  in (P). I f  one o f  the 

(3.6) 

(3.7) 

Proof. By Lemma 3.1, we need only show that the closure condition (3.2) holds. 
By Proposition 2.1, (d) condition I implies that 

( ~ )  ~ K + = {o}. (3.8)  

For, s u p p o s e t h a t ( ~ ) e ~ ( B , ) n K + , i . e .  , , -  S + A y n - z n ~ z c  a n d - b y "  = t , ~ t > ~ O .  But  

then if x c F, we see that 

0 <- xz  = lira xz ,  = l i m ( A x ) y "  = lirn by" = - t <~ O, 
n n n 

i.e. z ~ F "  which, by (2.6d), implies z = 0. 
I f  I I I  holds then dim ~ ( A ' )  is also finite and so ~ ( A ' )  is closed. Since I I I  or V 

must hold, let us show that ~ ( A ' )  closed implies ~ ( B ' )  closed. Suppose that y" ~ Y* 
and A'y"  ~ z, by ' -~  t, i.e. B'y ,  ~ (~). Then there exists y '  c Y* such that A'y '  = z. 
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First, suppose that A~ = b, ~ c X. (Recall that we have assumed F ¢ ~).) Then 

• A l t = lira by'. = h m ( a x ) y ,  = lim ~ ( a ' y ' )  = ~a 'y '= by', 

i.e. B'y,--> B'y = z. Then ~(B ' )  is closed. 
Since ~ (B ' )  is closed, we see that (3.8) together with II or III satisfies the 

hypotheses of Lemma 3.2 or Corollary 3.1. Thus (3.2) holds. If  statement (c) holds, 
then the closure condition is always satisfied since K ÷ is finitely generated. [] 

Note that we do not have to assume F ~ )  in the above. For if b~ ~(A) ,  then 
N ( A ' ) c  )¢'(b). Let ~= by' and let n ' c N ( A ' ) / N ( b )  such that bn'= t - ? .  Then we 
again see that B(y'  + n')= (~). 

To obtain symmetric duality between the primal and dual programs (P) and (D), 
we need an additional assumption. We shall employ the following generalized 
Farkas' lemma of Craven and Koliha. 

Lemma 3.2 [5, Theorem 2]. Suppose that A(  S) is closed in Y. Then the following are 
equivalent: 

Ax  = b, x c S is consistent; (3.9a) 

A ' y' c S + implies by' >i O. [] (3.9b) 

Theorem 3.3. Suppose that f ( x ) =  c'x, c ' c X ,  and that A (S )  is closed. I f  one of  the 
three statements (a), (b) or (c) in Theorem 3.1 holds, then 

(i) if  one of  the problems is inconsistent, then the other is inconsistent or unbounded; 
(ii) let the two problems be consistent with x ~ F and y' feasible for (D), then 

c'x>~ by' (weakduality); (3.10) 

(iii) /f both (P) and (D) are consistent, then their optimal values are equal and 
(D) has an optimal solution (strong duality); 

(iv) if  x and y' are feasible for (P) and (D) respectively, then they are optimal i f  

and only if  

( c ' -  A 'y ' )x  = O. 

ProoL Suppose that (P) is inconsistent. Then by Lemma 3.3, there exists ~b'~ Y* 
such that A '~b ' c -S  + and b~b'>0. Thus, if (D) is consistent, then it must be 
unbounded. Conversely, if (P) is consistent and bounded, then Theorem 3.1 implies 
that D is consistent and bounded. This proves (i). 

If  both programs have feasible solutions x and y' respectively, then 

c'x = c'x + y'(b - A x )  = ( c ' - A ' y ' ) x  + y'b>~ y'b, (3.11) 

which proves (ii). 
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Now, if x and y' are feasible solutions as above, then both programs are bounded 
by (ii) and so Theorem 3.1 implies that p -- d, d is attained in (D) and complementary 
slackness holds. This proves (iii) and necessity in (iv). Sufficiency in (iv) follows 
from (ii) and 

p < < - c ' x = c ' x + y ' ( b - A x )  since x ~ F, 

= ( c ' - A ' y ' ) x + y ' b  

=y 'b  by (3.11), 

~<d. [] 

The general symmetric dual pair, with closed cones S and T, 

min{c*x: A x  >! Tb, x >~ s 0}, (~) 

max{by*: A'y* <<-s ÷ c*, y* ~>T+0} (I)) 

can be treated by the above results by replacing the constraints in (P) with [ A -  I]  x 
(y) = b, X>~sO, y>~rO. For (P) to be the dual of I) one needs to assume that X and 
Y are reflexive Banach spaces, see e.g. [7]. 

The above results immediately yield a characterization of optimality for (P) if f 
is a convex function. 

Corollary 3.2. Suppose that p is finite and f is convex and Frdchet differentiable in 
(P). I f  one of  the three statements (a), (b) or (c) of  Theorem 3.1 hold, then x* ~ F 

solves (P) i f  and only i f  the ( Kuhn-Tucker  type) system 

Vf(x*) - A'y* = s + , 
(3.12) 

s÷x *=0,  s + ~ S ÷, y* ~ Y*, 

is consistent, where Vf(x*) denotes the derivative at x*. 

Proof. Let c' = Vf(x*). The feasible point x* solves (P) if and only if it solves the 
linearized program 

i n f { c ' ( x -  x*): A x  = b, x ~ S}. (3.13) 

By Theorem 3.1, we conclude that the system (3.12) is consistent. Note that we can 
replace c ' ( x - x * )  in (3.13) with c'x, since c'x* is a fixed constant. 

Conversely, if (3.12) holds and x~ F, then 

c'x = c'x + y * ( b - A x )  = ( c ' - A ' y * ) x  + y*b 

/> y*b = y*b + ( c ' -  A 'y*)x* 

= c ' x*+y*(b  - A x * )  = c'x*, 

i.e. x* solves (3.13) and so also (P). [] 
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4. Examples and applications 

In this section we present several examples illustrating the theory including 
examples where the (CQ) in Theorem 3.1 fails. The model program (P) appears 
naturally in many situations. Our work was stimulated by the approximation theory 
problem presented in Example 1.2 and solved in Example 4.1. 

Example 4.1. We consider the problem of  finding the 'best' interpolant discussed 
in [8], where a nonnegativity constraint is added to eliminate undesirable inflection 
points. The problem reduces to the following model in L2[0, 1]. Let £, 4'~, 4'2, • • •, 4', 
in L2[0, 1] be given with ~ > 0 .  Find x* in L2[0, 1] which solves 

min{llxll2: (x, 4',)= (~, 4',), i =  1 . . . .  , n, and x I> 0}. (4.1) 

Define the linear operator A: L2-> R" as 

Ax = (y,), Yi = (x, 4',), (4.2) 

and let b = (b,), b, = (~, q,,). 
Thus we see that (4.1) is a problem of type (P). Let us assume that ~= c {0}. Note 

that a solution x* exists, since it is the closest point in a convex set to the origin, 
and also note that Corollary 3.2 is applicable. Thus x* c F solves (4.1) if and only 
if 

x * = A ' y * + s  +, s+x*=0,  s+ ~ S  +, y * e R  ~. 

Now this says that x* is the positive part of A'y*. In other words, if we define, 
almost everywhere, 

[A 'y* ( t )  i fA'y*(t)>O, (4.3) 
(A'y*)+(t) = otherwise, 

then we have shown, in the case ~= c {0}, that the solution x* of  (4.1) is the unique 

solution of the system 

A(A'y*)+ = b, y*~ Y*. (4.4) 

We complete this problem by considering the case P= ¢ {0} in Example 5.1. Note 
that P = ¢  {0} in Example 1.2. 

Example 4.2. Consider the simple program 

p = i n f { c ' x : f [ x ( t ) d t = l , x ( t ) ~ O } .  

Here X =/-,2[0, 1] and S = {x: x t> 0} has no interior. But our constraint qualification 
holds, i.e. we see that ~ c {0} by considering the functional e(t) = 1. We can apply 
Theorem 3.1 and solve the trivial dual program 

d = max{y ~ R: y - c(t) <~ O, a.e. in [0, 1]}, 
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i.e. p=d  is the (essential infimum) ess - in fc ( t )  in [0, 1]. We can now conclude 
several facts. First p = d is finite if and only if c is essentially b o u n d e d  below. Also, 
since complemen ta ry  slackness holds,  i.e. since (y* - c(t))x*(t) = 0, y* = ess-inf c( t)  
must  hold  if p is at tained.  We see that  p is a t ta ined if and only if the measure  

/x{t: c(t) = y * }  = a > 0  

and in this case 

x.(t)={lo/a if c(t)=y*, 
otherwise. 

Example 4.3. Let X = Lp [0, 1], 1 ~< p ~< 0o, and S = {x ~ X:  x/> 0 a.e.} be the nonnega-  
tive or thant  in X. Cons ider  the mixed equal i ty- inequal i ty  constra ined program.  

p = inf{c'x:  AlX = bl, A2x >~ bE, x ~>s0}, (PEI)  

where Ai:X-> R m', and mi is a positive integer i =  1, 2. Then,  the 'Slater  type '  
condi t ion 

3 ~ c X  s. t .  AlX=bl, A2x>b2, x>O a.e. (4.5) 

is a constraint  qualif ication for  (PEI).  This can be seen by  adding slack variables 
to the second constraint ,  thus changing (PEI)  to a p rog ram of  type (P), and then 
applying Theo rem 3.1. Note  that  if E is a measurab le  subset  o f  [0, 1] with posit ive 
measure ,  then  the Lebesgue integral 

f ]x(t)lqdlx(t)>O, 
E 

for  1 ~< q <~ 0o. This implies  that  p - c  {0}, i.e. (CQ) holds. 
The Slater constraint  qualification, which requires ~ ~ int S, is more  restrictive 

than (4.5) even in Loo, where int S is nonempty ,  Also, it can be shown that  (CQ) is 
in fact equivalent  to (4.5). These facts remain  true when  the interval [0, 1] is replaced 
by a o--finite measure  space. 

5. Duality without the constraint qualification 

We now extend our  results to include the case when  our  constraint  qualif ication 
(CQ) may  fail, i.e. when P= ¢ {0}. The structure of  our  p rob lem allows for  the finite 
d imensional  type of  app roach  used in [3]. This app roach  uses the faces of  the cone 
S. We also comple te  Example  4.1. 

Definition 5.1. (a) K is a face of  a convex cone S if K is a convex cone, and 

sbs2~S, sl+s2~K implies Sl, SEEg. (5.1) 
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(b) S s denotes the (unique) smallest face of S which contains the feasible set F. 

implies 

Proposition 5.1. The statement 

S s = S (5.3a) 

~ -  c S ±. (5.3b) 

I f  the relative interior (in S -  S) ri S ~ 0, then (b) implies (a). 

Proof. Suppose (b) fails, i.e. 0 ~ q5 c ~=,  th ~ S ±. Then K = {th} ± n S is a proper face 
of S. Thus 

S S c K ~ S .  

Conversely, suppose that ri S ¢ 0 and S s is a proper face of S. Since S s is a proper 

face, we see that 

S f n r i  S = 0 .  

The Hahn-Theorem yields 0 # 4~ 6 X* such that 

~ s > 0  f o r a l l s c r i S ,  ~bs~0 fo r a l l~ b cS  ¢. 

Since S s c S, we conclude that 

S f c {~b} ± n S ~ S, (5.4) 

i.e. ~ b ~ = , 4 ~ S  ±. [] 

If S is finite dimensional, then the above Proposition states that (5.3)(a) and (b) 
are equivalent. We now present the duality result without (CQ). 

Theorem 5.1. Suppose that (CQ), i.e. statement (3.5)I, is replaced by the following: 

I' replace the dual program (D) with (I)), the optimal value d with d, 
and S + with S s+. 

Then Theorem 3.1 and Corollary 3.2 still hold. 

(Note that S f is just the intersection of all the faces o f  S which contain F.) 
Now consider the 'enlarged' dual program 

(D) d=sup{by ' :  A'y'<~sS+C',y'~ Y*}, (5.2) 

i.e. we replace S + with the larger dual cone S i+. 
We shall see that using (I)) rather than (D) enables us to allow ~ ¢ {0}. We 

first present the following preliminary result connecting ~ -  and S y. 
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Proof.  Since F c S y, we see that  the op t imal  value p, of  the original p rog ram (P), 

satisfies the new p rog ram 

p = i n f { f ( x ) :  A x =  b, x e SY, x e U}, (P) 

where the subspace  U = S y -  S y replaces the space X. We now see that  ~ =  c {0} as 
a subset  o f  U*. For  if  ~b e ~ = c  U*, then SYc {4~} ± which implies ~b = 0  since 
U = S y -  S y. Therefore ,  we can apply  our  results to (P), where we consider  f and 
,4 to be f and A restricted to U. let us only  consider  Theorem 3.1. Corol la ry  3.2 
follows similarly. 

We get the dual  p rog ram 

d = sup{by':  ,4 'y '<~j+U,y 'e  Y*}. (1)) 

Here  g' is ¢' restricted to U and 4 ' :  Y*-~ U*. We know f rom Theo rem 3.1, when  
p = d, d is a t ta ined and complemen ta ry  slackness holds. The p r o o f  is comple ted  if 
we show that  A'y'<~sS+U if  and only if A'y'<~sS+C ', where we consider  S i+ bo th  in 
X *  and in U* depending  on the context.  But this clearly holds since (A 'y ' ) l v  
(restricted to U) equals (A I u)'Y'. (Note  that  ? ' -  tidy' = s + c S y+ c U* iff s ( c ' -  A 'y ' )  
0, for  all s e S  y, itt sc ' - (As)y '>~O,  for  all s e S  y, if[ s ( c ' - A ' y ' ) ~ O ,  for  all s e S  y, 

since A ~ - A  on SY.) [] 

Corollary 5.1. Suppose that ri S # 0 and that statement (CQ),  i.e. (3.5)I, is replaced 
by the following: 

I" ~ = c S ±. 

Then Theorem 3.1 and Corollary 3.2 still hold. 

Proof. The result follows f rom the Theo rem since Proposi t ion 5.1 yields S I = S. []  

Example  5.1. We now comple te  the der ivat ion of  the explicit solut ion of  the best  
in terpola t ion p rob lem begun in Example  4.1. Theo rem 5.1 implies that  the solut ion 
x* satisfies 

x* = A ' y' + s+, s+ e S f +, s + x * = 0 .  (5.5) 

Let T = be the maximal  set, by set inclusion, such that  it has posit ive measure  and  
x e F implies x---0 a.e. on T =. Then 

S y = {x/> 0: x -= 0 a.e. on T=}, S y+ = {x: x I> 0 a.e. on [0, 1] /T=}.  

Since x* -=0  on T =, and since, as in Example  4.1, x*=-(A'y ' )+ on [0, 1 ] / T  =, we 
see that  

x*( t) = (A'y')+( t )xT(  t) (5.6) 

where XT is the characterist ic funct ion of  T = [ 0 ,  1 ] \ T  =, i.e. (5.6) and A x * =  b 
characterizes the solut ion x*. This cor responds  to the solution given in [8]. 
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