This contains a list of my refereed publications. It also includes problem solutions; student theses; unpublished techreports. A complete (gzipped) bib file can be obtained with URL http://orion.math.uwaterloo.ca:80/~hwolkowi/henry/reports/publs.bib.gz

The order of the list is:

1. Books and special issues first.
2. Chapters in Books second
3. Papers in refereed Journals third
4. Papers in refereed Conference Proceedings fourth
5. Technical Reports fifth
6. Theses (including students’ theses) sixth

References


[31] N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz. A restricted dual
peaceman-rachford splitting method for a strengthened dnn relaxation for


quadratic relaxation of the quadratic knapsack problem. *European Journal
EJOR Editors Choice Articles, January 2020.

[34] *Extending cover inequalities for the quadratic knapsack problem to relax-
ations in lifted space*, The Latin-Iberoamerican Conference on Operations
Research, Waterloo, Ontario, 2018. 34 pages, research report, CLAIO.


positive definite Toeplitz completions. In *Operator Theory, Analysis and
the State Space Approach: In Honor of Rien Kaashoek*, volume 271, pages

[38] G. Reid, F. Wang, and H. Wolkowicz. An SDP-based method for the real
radical ideal membership test. *SYNASC2017*, International Symposium

matrix completion using nuclear norm with facial reduction. Technical
report, University of Waterloo, Waterloo, Ontario, 2017. in progress.

[40] S. Ma, F. Wang, L. Wei, and H. Wolkowicz. Robust principal component

[41] D. Drusvyatskiy, S. Sremac, and H. Wolkowicz. Three views of facial
reduction in cone optimization. Technical report, University of Waterloo,

[42] D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in

[43] I. Davidson and H. Wolkowicz. Rank restricted semidefinite matrices and
image closedness. Technical report, University of Waterloo, Waterloo,


[90] O. Grodzevich and H. Wolkowicz. Regularization using a parameterized

[91] M. Gonzalez-Lima, H. Wei, and H. Wolkowicz. A stable primal-dual ap-
proach for linear programming under nondegeneracy assumptions. *Com-

[92] S. Al-Homidan and H. Wolkowicz. Approximate and exact completion


[94] L. Tunçel and H. Wolkowicz. Strengthened existence and uniqueness condi-
tions for search directions in semidefinite programming. *Linear Algebra

[95] H. Wolkowicz. Solving semidefinite programs using preconditioned conju-

[96] M.F. Anjos and H. Wolkowicz. Geometry of semidefinite max-cut re-
approaches for hard discrete optimization (Waterloo, ON, 2001).

[97] C. Fortin and H. Wolkowicz. The trust region subproblem and semidefinite

[98] A.Y. Alfakih and H. Wolkowicz. Two theorems on Euclidean distance

[99] M.F. Anjos and H. Wolkowicz. Semidefinite programming for discrete op-
timization and matrix completion problems. *Discrete Appl. Math.*, 123(1-
way, NJ).


[101] M.F. Anjos and H. Wolkowicz. Strengthened semidefinite relaxations via
a second lifting for the Max-Cut problem. *Discrete Appl. Math.*, 119(1-

[102] H. Wolkowicz. A note on lack of strong duality for quadratic problems with
Interior point methods (Budapest, 2000).

[103] J.L. Nazareth, H. Wolkowicz, and M. Zhu. The quasi-Cauchy relation and
Dedicated to John E. Dennis, Jr., on his 60th birthday.


[175] R.J. Stern and H. Wolkowicz. A note on generalized invariant cones and 

[176] R.J. Stern and H. Wolkowicz. Exponential nonnegativity on the ice cream 


1994.


[184] V. Piccialli and H. Wolkowicz. Solution to problem 34-6.1. IMAGE-The 


in Euclidean spaces. Technical Report CORR 98-12, University of Water- 

for large sparse Euclidean distance matrix completion problems. Technical 


