
A Peaceman-Rachford Splitting Method for

the Protein Side-Chain Positioning Problem

Forbes Burkowski* Haesol Im � Henry Wolkowicz �

Sunday 19th March, 2023

Abstract

We formulate a doubly nonnegative (DNN) relaxation of the protein side-chain position-
ing (SCP) problem. We inherit the natural splitting of variables that stems from the facial
reduction technique in the semidefinite relaxation. We solve the relaxation using a variant
of the Peaceman-Rachford splitting method. Our numerical experiments show that we solve
almost all instances of the NP-hard SCPproblem to optimality.

Keywords: Protein structure prediction, Side-chain positioning, Doubly-nonnegative relax-
ation, facial reduction, Peaceman-Rachford splitting method

Contents

1 Introduction 2
1.1 Notation . 3
1.2 Contributions and Outline . 3

2 Model Derivation 4
2.1 Problem Formulation as IQP . 4
2.2 SDPRelaxation . 5

2.2.1 Gangster Constraint GĴ (Y) = E00 . 6
2.2.2 Facial Reduction . 7

2.3 DNNRelaxation . 7

3 The Algorithm 10
3.1 Update Formulae . 10

3.1.1 R-Update . 11
3.1.2 Y -Update . 11

3.2 Bounding . 11
3.2.1 Lower Bounds from Lagrange Relaxation 11
3.2.2 Upper Bounds from Nearest Binary Feasible Solutions 12

4 Numerical Experiments with Real-World Data 12
4.1 Stopping Criteria and Parameter Settings . 13
4.2 Energy Matrix Computation . 13

4.2.1 Removing Collisions . 14
4.3 Experiments with Real-World Data . 15

4.3.1 A Tighter Relaxation . 16

*Professor Emeritus, Cheriton School of Computer Science, University of Waterloo, Canada
�Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Canada,

Research supported by NSERC

1

http://www.math.uwaterloo.ca/~hwolkowi/

5 Conclusions 17

Index 18

Bibliography 19

A Additional Numerics 21

List of Figures

2.1 A Diagram of the Protein Side-Chain Positioning Problem 4
2.2 An illustration of the index set J ; members of J correspond to the off-diagonal

elements of diagonal blocks of W indicated by the symbol ◦. 6

List of Tables

4.1 Computational results on selected PDB instances 16
4.2 The solver optimal values of the DNN and SDP relaxations on selected instances 16
A.1 Computation results on selected PDB instances up to 100 amino acids 21
A.2 Computation results on selected PDB instances up to 200 amino acids 22
A.3 Computation results on selected PDB instances up to 300 amino acids 23

1 Introduction

The protein side-chain positioning (SCP) problem is one of the most important subproblems of
the protein structure prediction problem. We formulate the SCP problem as an integer program
and derive its doubly nonnegative, DNN, relaxation. We then use a variation of the Peaceman-
Rachford splitting method (PRSM) to solve the DNN relaxation.

The applications of SCP extend to ligand binding [18, 21] and protein-protein docking with
backbone flexibility [22,27]. A protein is a macromolecule consisting of a long main chain back-
bone that provides a set of anchors for a sequence of amino acid side-chains. The backbone
is comprised of a repeating triplet of atoms (nitrogen, carbon, carbon) with the central carbon
atom being designated as the alpha carbon. An amino acid side-chain is a smaller (1 to 18 atoms)
side branch that is anchored to an alpha carbon. The positions of the atoms in a side-chain can
be established by knowing the 3D position of its alpha carbon and the dihedral angles defined
by atoms in the side-chain. The number of dihedral angles varies from 1 to 4 depending on the
length of the side-chain. This is true for 18 of the 20 amino acids with glycine and alanine being
exceptions because their low atom counts preclude dihedral angles.

It has been observed that the values of dihedral angles are not uniformly distributed. They
tend to form clusters with cluster centers that are equally separated (+60, 180, -60). Conse-
quently, if the dihedral angles are unknown we at least have a reasonable estimate of their values
by appealing to these discretized values. With this strategy being applied, a side-chain with one
dihedral angle would have three possible sets of positions for its atoms. We refer to each set of
atomic positions as a rotamer. A side-chain with two dihedral angles will have 3 times 3 or 9
different arrangements of the atoms (i.e. 9 rotamers). Three dihedral angles will result in 27
rotamers and four dihedral angles will give 81 rotamers.

In the SCP problem we are given a fixed backbone and a designation of the amino acid type
for each alpha carbon. To solve the problem it is required that each amino acid is assigned a
particular rotameric setting with the objective of avoiding any collisions with neighbouring amino

2

acids that are given their rotameric settings. Avoiding collisions will lower the overall energy of
the protein and, in fact, even with all possible collisions circumvented we want to have an energy
evaluation that is minimal.

The SCPproblem is proven to be NP-hard [1]. The nature of the SCPproblem has motivated
the development of many heuristic based algorithms [3,4,7,9,24,28] and many of these approaches
rely on the graph structure of the problem. Other approaches for solving SCP problems have
been proposed. These range from probabilistic approaches [16, 19, 25], integer programming [2,
13,17], to semidefinite programming [5,8]. Our approach is based on a semidefinite programming
relaxation. Given a rotamer library, the SCPproblem can be formulated as an integer quadratic
problem (IQP). We then obtain a semidefinite programming (SDP) relaxation to the IQP via
a lifting of variables and facial reduction (FR). We finally obtain a doubly nonnegative (DNN)
relaxation by adding nonnegativity constraints and some additional constraints to the SDP that
help strengthen our relaxation.

The facial reduction originating from the SDP relaxation delivers a natural splitting of vari-
ables. This elegant splitting of variables fits into the framework of the splitting methods. The
framework gives an efficient procedure of engaging constraints that are difficult to process si-
multaneously, see e.g., [15, 20, 23]. We solve the DNN relaxation using a variation of the
so-called Peaceman-Rachford splitting method (PRSM). Using the PRSM, we examine the
strength of our approach in the numerical experiments. The usage of splitting method for the
DNN relaxation allows for an effective treatment for handling implicit redundant constraints
and the ill-posed data that stems from collisions between rotamers.

1.1 Notation

We let Rn,Rm×n denote the standard real Euclidean spaces; Sn denotes the Euclidean space of
n-by-n real symmetric matrices; Sn+ (Sn++, resp) denotes the cone of n-by-n positive semidefinite
(definite, resp) matrices. We write X � 0 if X ∈ Sn+, and X � 0 if X ∈ Sn++. We use
range(X) and null(X) to denote the range of X and the null space of X, respectively. Given
X ∈ Rn×n, we use trace(X) to denote the trace of X. Given two matrices X,Y ∈ Rm×n, we let
〈X,Y 〉 = trace(XY T) denote the usual trace inner product between X and Y ; X ◦ Y denote the
element-wise, or Hadamard, product of X and Y . Given a closed convex set C in a Euclidean
space, we let NC(x) denote the normal cone at x ∈ C with respect to C. Given X ∈ Rn×n, we use
diag(X) to denote the vector formed from the diagonal entries of X. Then Diag(v) = diag∗(v)
is the adjoint linear transformation that forms the diagonal matrix from the vector v. Given
a collection of matrices {Ai}mi=1, we let BlkDiag(A1, . . . , Am) denote the block diagonal matrix
with the i-th diagonal block Ai. We let ēn denote the n-dimensional vector with each entry set
to 1 and we omit the subscript when the dimension is clear. Given a positive integer m, we often
use the notation [m] to mean the set of positive integers {1, . . . ,m}.

1.2 Contributions and Outline

We present the process for formulating the model in Section 2. We formulate the SCP problem as
an integer quadratic program, IQP, and obtain the SDP and DNN relaxations. The derivation
for the SDP relaxation is first presented in [5] via Lagrangian relaxation. Here, we present a
much simpler derivation for the SDP relaxation via direct lifting of the variables. In Section 3
we present a variation of the PRSM for solving the DNN relaxation as well as our strategies to
obtain upper and lower bounds to the SCP problem. We show that the splitting method engages
implicit redundant constraints safely that arise from the facial reduction. In Section 4 we use the

3

real-world data from the Protein Data Bank1 to examine the strength of our approach. We show
that the usage of splitting method to the DNN relaxation effectively handles collisions between
rotamers that are indicated by large values in the data. Moreover, the numerical experiments
demonstrate that our approach provably solves almost all instances2 to the global optimum of
the NP-hard protein SCP problem.

2 Model Derivation

The goal of this section is to obtain the DNN relaxation of the SCP problem. We start by
presenting a formulation of the SCP as an IQP in Section 2.1. We then derive its SDP relaxation
in Section 2.2. We continue the derivation by identifying redundant constraints in the IQP and
in the SDP relaxation in order to obtain a complete (stable) DNN relaxation in Section 2.3.

2.1 Problem Formulation as IQP

We are given a collection of disjoint sets Vi, i = 1, . . . , p. Each set Vi has mi members and we
index its members

Vi := {v1
i , v

2
i , . . . , v

mi
i }, for all i = 1, . . . , p.

We call each set Vi a rotamer set and its members rotamers. We use n0 =
∑p

i=1mi and V =
∪pi=1Vi. The protein side-chain positioning problem seeks to

1. select exactly one rotamer vji , from each set Vi, where j ∈ [mi] (see Figure 2.13); and

2. minimize the sum of the weights (energy) determined by chosen rotamers, and the energy
between each chosen rotamer and the backbone.

alpha carbon

rotamer

possible conformation

Figure 2.1: A Diagram of the Protein Side-Chain Positioning Problem

Viewing the rotamers as a set of nodes of a graph, we can realize the SCP problem as a
discrete optimization problem over a graph. We construct a matrix E ∈ Sn0 to record the energy
values between rotamers and the backbone. We use the matrix entries Euv, with u 6= v, to denote
the edge weights between two distinct rotamers (nodes); while the diagonal entries Euu denote
the weight between the rotamer u and the backbone. This yields a symmetric matrix E, where
Euv = ∞ if both rotamers u, v are in the same set. We note that the multiplication 0 · ∞ = 0
when adding up the weights (energies). Alternatively, we can set these weights to 0 and add a

1https://www.rcsb.org/
2Out of 131 test problems, one problem had a positive gap; five other problems had gaps of approximately 10−6.
3Vi indicates the i-th rotamer set and vji indicates the j-th candidate in the i-th rotamer set Vi.

4

https://www.rcsb.org/

constraint to choose exactly one rotamer from each set, which is what we do. Thus each diagonal
block of E, of size mi, can be assumed to be a diagonal matrix. We can make this simplification
without loss of generality since we are looking to only choose one rotamer per set Vi.

We are looking to solve the following integer quadratic program over the indicator vector x:

p∗IQP := min
x

∑
u,v
Euvxuxv

s.t.
∑
u∈Vk

xu = 1, k = 1, . . . , p

x =
[
wT1 wT2 . . . wTp

]T
wi ∈ {0, 1}mi , i = 1, . . . , p.

(2.1)

The constrains in (2.1) forces that exactly one element of vi is set to be 1, consequently modelling
that exactly one rotamer is chosen for each rotamer set Vi. We construct the block diagonal
matrix

A = BlkDiag(ēTm1
, ēTm2

, · · · , ēTmp
) ∈ Rp×n0 . (2.2)

We then use Ax = b to work with a concise representation of the first equality constraint in (2.1).
Finally, we obtain the following representation of the SCPproblem:

(IQP)

p∗IQP = min
x

xTEx

s.t. Ax = ēp
x ∈ {0, 1}n0 .

(2.3)

2.2 SDPRelaxation

The problem (2.3) is NP-hard and hence we resort to a relaxation. We define

Ê := BlkDiag(0, E) ∈ Sn0+1, E00 := e0e
T
0 ∈ Sn0+1,

where e0 is the first unit vector. In this section we aim to obtain the following SDP relaxation
to the discrete optimization problem (2.3):

(SDP)

p∗SDP := min
R,Y

trace(ÊY)

GĴ (Y) = E00

Y = V RV T

R ∈ Sn0+1−p
+ ,

(2.4)

where GĴ (·) and V are explained in Section 2.2.1 and Section 2.2.2, respectively. A variant of
the relaxation (2.4) is proposed by [5] via Lagrangian relaxation to (2.3). Here we present a
simpler derivation of the model (2.4) via a simple direct lifting.

The first step for deriving the SDP relaxation (2.4) is to lift the variable dimension. Given x ∈
Rn0 , we lift to symmetric matrix space using the rank-one lifted matrix

Yx :=

[
1
x

] [
1
x

]T
=

[
1 xT

x xxT

]
∈ Sn0+1.

For the SDP relaxation, we index the rows and columns starting from 0, i.e., the row and column
indices are {0, 1, . . . , n0}. This lifting allows for an alternative representation of the objective
function

xTEx =

〈[
0 0
0 E

]
,

[
1
x

] [
1
x

]T〉
=
〈
Ê, Yx

〉
.

In the remaining of this section we show how this lifting process gives rise to the constraints of
the model (2.4):

5

1. the linear (gangster) constraint GĴ (Y) = E00 (Section 2.2.1);

2. Y = V RV T , where R ∈ Sn0+1−p
+ (Section 2.2.2).

2.2.1 Gangster Constraint GĴ (Y) = E00

Given a matrix W ∈ Sn0 , we define the set of indices

J :=

{(
j∑
i=1

mi−1 + k,

j∑
i=1

mi−1 + `

)
: j ∈ {1, . . . , p− 1}, k, ` ∈ {2, . . . ,mi − 1}, k 6= `

}
.

Here, mi is the cardinality of rotamer set Vi, and m0 = 0. In other words, J is the set of
off-diagonal indices of the mi-by-mi diagonal blocks of W ∈ Sn0 ; see Figure 2.2 for a visual

Figure 2.2: An illustration of the index set J of 0’s; members of J correspond to the off-diagonal
elements of diagonal blocks of W indicated by the symbol ◦.

illustration of the positioning of these indices. Note that these indices correspond to exactly

Wuv = xuxv = 0, u 6= v, u, v ∈ Vi,

i.e., the constraint on any two distinct rotamers in the same rotamer set cannot be chosen.
With the above set of indices, we define the mapping

GJ : Sn0 → R|J | by GJ (W) = (Wij)ij∈J .

By abuse of notation, we also view the mapping GJ as an operator from Sn0 to Sn0 to mean

GJ : Sn0 → Sn0 , (GJ (W))i,j =

{
Wi,j if (i, j) or (j, i) ∈ J ,

0 otherwise.

The map GJ can also be viewed as the operator on Sn0 defined by GJ (W) = (ATA − I) ◦W
with A defined in (2.2). Recall ◦ is the element-wise matrix product. In plain words, GJ (W)
is the projection that chooses elements of W corresponding to the index set J . The constraint
GJ (W) = 0 is often called the gangster constraint and it is due to the fact that elements of W
associated with J are set to be zero (shoots holes in the matrix).

We now define the set of pairs of indices

Ĵ := {(0, 0)} ∪ J ⊂ {0, 1, . . . , n0} × {0, 1, . . . , n0}

to directly work with the lifted variable in Sn0+1. We define the analogous mapping GĴ with Ĵ :

GĴ : Sn0+1 → R|Ĵ | by GĴ (Y) = (Yij)ij∈Ĵ .

This yields the gangster constraint in projection and operator equivalent forms, respectively,

GĴ (Y) = e0 ∈ R1+|J |, GĴ (Y) = E00.

6

2.2.2 Facial Reduction

We now derive the constraint Y = V RV T and R ∈ Sn0+1−p
+ . Let x be a feasible solution to (2.3)

and we observe the following implications:

Ax = ēp =⇒
[

1
x

]T [−ēTp
AT

]
= 0

=⇒
[

1
x

] [
1
x

]T [−ēTp
AT

] [
−ēTp
AT

]T
= 0

=⇒

〈[
1
x

] [
1
x

]T
︸ ︷︷ ︸

=Yx

,

[
−ēTp
AT

] [
−ēTp
AT

]T
︸ ︷︷ ︸

=:K

〉
= 0.

Since both arguments in the last inner product are positive semidefinite, we obtain the useful
property:

〈K,Yx〉 = 0 =⇒ KYx = 0 =⇒ range(Yx) ⊆ null(K). (2.5)

In other words, null(K) captures the range that the feasible points can have.
We now exploit the property (2.5) to restrict the range of the variable. We find a full-column

rank matrix V ∈ R(n0+1)×(n0+1−p) such that

range(V) = null(K) = null

([
−ēTp
AT

]T)
.

For our purposes we choose V with normalized columns. Since A is full-row rank, we get that
rank(K) = p. Finally, we can capture any feasible Yx using V :

Yx ∈ V Sn0+1−p
+ V T .

This is the well-known facial reduction technique, see e.g., [10]. The matrix K functions as an
exposing vector for the feasible set. The matrix V is known as a facial range vector.

The remaining step for the SDP relaxation is simple. We note that rank(Yx) = 1 and this
leaves the feasible region nonconvex. We discard the rank restriction on the variable Yx to work
with a convex feasible region and the variable of the form

Y = V RV T where R ∈ Sn0+1−p
+ .

This completes the derivation of the relaxation in (2.4). It is known that there is a R̂ ∈ Sn0+1−p
++

feasible to (2.4); see [5].

2.3 DNNRelaxation

We continue with the SDP relaxation derived in Section 2.2 to complete our relaxation by adding
additional constraints to (2.4). In Theorem 2.1 below, we obtain two additional properties of the
model (2.4).

Theorem 2.1. Suppose that (R, Y) are feasible to (2.4). Then the following hold.

1. The first column of Y is equal to the diagonal of Y .

2. trace(R) = 1 + p.

7

Proof. We recall that range(V) = null(K) = null
([
−ēp A

])
. Hence we have[

−ēp A
]
Y =

[
−ēp A

]
V RV T = 0RV T = 0. (2.6)

We then exploit the structure of
[
−ēp A

]
Y . We first partition Y as follows:

Y =

1 Y T

10 Y T
20 · · · Y T

p0

Y10 Y11 Y12 · · · Y1p
...

...
...

...
...

Yp0 Yp1 Yp2 · · · Ypp

 ∈ Sn0+1, (2.7)

where Yii ∈ Smi , Yij ∈ Rmi×mj , Yi0 ∈ Rmi , ∀i, j ∈ [p]. We use Y col `
ij to denote the `-th column

of the (i, j)-th block of Y and Yi0,` to denote the `-th coordinate of the vector Yi0 ∈ Rmi . Then
expanding

[
−ēp A

]
Y with the block representation (2.7) yields[

−ēp A
]
Y =

[
a0 A1 · · · Ap

]
∈ Rp×(n0+1),

where

a0 =

−1 + ēTm1

Y10

−1 + ēTm1
Y20

...
−1 + ēTmp

Yp0

 ∈ Rp, (2.8)

and, for each i ∈ [p],

Ai =

−Yi0,1 + ēTm1
Y col 1

1i −Yi0,2 + ēTm1
Y col 2

1i · · · −Yi0,mi + ēTm1
Y colmi

1i
...

...
. . .

...

−Yi0,1 + ēTmj
Y col 1
ii −Yi0,2 + ēTmj

Y col 2
ii · · · −Yi0,mi + ēTmj

Y colmi
ii

...
...

. . .
...

−Yi0,1 + ēTmp
Y col 1

1p −Yi0,2 + ēTmp
Y col 2

1p · · · −Yi0,mi + ēTmp
Y colmi

1p

∈ Rp×mi .

By (2.6), we have Ai = 0, ∀i ∈ [p]. Thus, for each i ∈ [p], the i-th row of Ai yields

Yi0,` = ēTmi
Y col `
ii , ` ∈ [mi].

Since GĴ (Y) = E00 holds, we see that

diag(Yii) = Yi0, ∀i ∈ [p].

Therefore, we conclude that the first column and the diagonal of Y are identical.
We now show that trace(R) = 1 + p. By (2.6), we have the vector a0 from (2.8) is 0. Thus,

1 = ēTmi
, for all i = 1 . . . , p. By Item 1, we obtain

ēTmi
Yi0 = 1, ∀i ∈ [p].

Since diag(Yii) = Yi0, ∀i ∈ [p], we must have that trace(Yii) = 1, ∀i ∈ [p]. Hence Y = V RV T

gives
1 + p = trace(Y) = trace(V RV T) = trace(R),

where the last equality holds since V TV = I.

8

Item 1 of Theorem 2.1 is known in the literature; see [5]. This property is discovered by using
the Lagrangian dual. Here, we displayed an alternative derivation that exploits the steps during
the direct lifting.

We recall that the original model (2.3) has the binary constraint on its variable x. We also

recall that the direct lifting yields a variable of the form

[
1 xT

x xxT

]
∈ Sn0+1. Hence, we strengthen

our model by including the constraint Yi,j ∈ [0, 1], ∀i, j.
We define the sets

R := {R ∈ Sn0+1−p : R � 0, trace(R) = p+ 1},
Y := {Y ∈ Sn0+1 : GĴ (Y) = E00, 0 ≤ Y ≤ 1}.

By including additional constraints trace(R) = 1+p and 0 ≤ Y ≤ 1 to the SDP relaxation (2.4),
we complete our model, the DNN relaxation to (2.3):

(DNN)

p∗DNN := min
R,Y

trace(ÊY)

Y = V RV T

R ∈ R
Y ∈ Y.

(2.9)

We remark that both (DNN) and (SDP) are relaxations to (IQP), but (DNN) is a strength-
ened model than (SDP), i.e.,

p∗SDP ≤ p∗DNN ≤ p∗IQP.

We also remark that there are redundant constraints in the model (2.9). These (implicit) re-
dundant constraints result in numerical instabilities when they are not treated carefully. In
Section 2.3 below, we use the splitting method to distribute constraints to two different subprob-
lems. We benefit from the usage of the splitting method in two distinct ways; we handle the
numerically difficult problem into two separate easier subproblems; and we avoid the numerical
instabilities that arise from the redundant constraints.

We demonstrate the strength of (DNN) in Section 4.3.1. The DNN relaxation has a linear
objective with an onto linear equality constraint, and compact, convex, feasible set constraints.
The first-order optimality conditions for (2.9) are

0 ∈ −V TZV +NR(R), (dual feasibility with respect to R)

0 ∈ Ê + Z +NY(Y), (dual feasibility with respect to Y)

Y = V̂ RV̂ T , R ∈ R, Y ∈ Y, (primal feasibility)

(2.10)

where NR(R),NY(Y) are the normal cones and Z is a Lagrange multiplier associated with the
constraint Y = V RV T . Theorem 2.2 below states that some elements of the dual optimal
multiplier Z∗ are known in advance.

Theorem 2.2. Let (R∗, Y ∗) be an optimal pair for (2.9), and let

ZA :=
{
Z ∈ Sn0+1 : Zi,i = −(Ê)i,i, Z0,i = Zi,0 = −(Ê)0,i, i = 1, . . . , n0

}
.

Then there exists Z∗ ∈ ZA such that (R∗, Y ∗, Z∗) solves (2.10).

Proof. The proof uses the optimality conditions (2.10) and Theorem 2.1. The proof can be found
in [15, Theorem 2.11].

9

3 The Algorithm

In this section we present the algorithm for solving the DNN relaxation (2.9). For β > 0, we
define the augmented Lagrangian LA of the model (2.9):

LA(R, Y, Z) := 〈Ê, Y 〉+ 〈Z, Y − V RV T 〉+
β

2
‖Y − V RV T ‖2F . (3.1)

We define the projection operator PZ0(Z) onto the set

Z0 =
{
Z ∈ Sn0+1 : Zi,i = Z0,i = Zi,0 = 0, i = 1, . . . , n0

}
.

In other words, the projection operator PZ0(Z) sets the first column, first row and and the
diagonal elements of Z to be 0, except for the (0, 0)-th entry.

We use the restricted dual Peaceman-Rachford splitting method, rPRSM (Algorithm 3.1), a
variation of the strictly contractive Peaceman-Rachford splitting method to solve the model (2.9).
We note that the ordinary PRSM updates the dual multipliers without the projection operator

Algorithm 3.1 rPRSM [15] for solving (2.9)

Initialize: Y 0 ∈ Sn0+1, Z0 ∈ ZA, β ∈ (0,∞), γ ∈ (0, 1)
while termination criteria are not met do
Rk+1 = argmin

R∈R
LA(R, Y k, Zk)

Zk+ 1
2 = Zk + γβ · PZ0

(
Y k − V Rk+1V T

)
Y k+1 = argmin

Y ∈Y
LA(Rk+1, Y, Zk+ 1

2)

Zk+1 = Zk+ 1
2 + γβ · PZ0

(
Y k+1 − V Rk+1V T

)
end while

PZ0 . The projection on the dual multiplier Z is motivated from an endeavour to have a better
dual multiplier at each iteration. We recall that some of the elements of the optimal dual
multipliers are known by Theorem 2.2. The algorithm fixes these known elements to be the
optimal elements at every iteration. We leave the details of the convergence proof of rPRSM
scheme to [15, Theorem 3.2].

Remark 3.1. The model (2.9) can be solved by using a standard SDP solver. The nonnegativity
of each element of Y is considered using cutting planes in [5]. However, this approach becomes
more computationally challenging as the number of cutting planes increases. Splitting methods
engage the polyhedral constraints 0 ≤ Y ≤ 1 in an economic manner. We incorporate the
positive semidefinite constraint and the nonnegativity constraint very efficiently. We deal with
the positive semidefinite and trace constraint in the R-subproblem, and then deal with the interval
and gangster constraints in the Y -subproblem.

3.1 Update Formulae

In this section we present the formulae for the R and Y updates in Algorithm 3.1. The update
rules are discussed in [15]. We include the formulae for completeness.

10

3.1.1 R-Update

In this section we present the update rule for the R-subproblem. The formula for the R-
subproblem, with LA defined in (3.1), is as follows:

Rk+1 = argmin
R∈R

LA(R, Y k, Zk)

= argmin
R∈R

∥∥∥Y k − V RV T + 1
βZ

k
∥∥∥2

F

= argmin
R∈R

∥∥∥R− V T (Y k + 1
βZ

k)V
∥∥∥2

F

= PR
(
V T
(
Y k + 1

βZ
k
)
V
)

= U Diag
(
P∆p+1(d)

)
UT ,

where the second equality holds by completing the square; the third equality holds due to V TV =
I; and the last equality follows from the eigenvalue decomposition

V T

(
Y k +

1

β
Zk
)
V = U Diag(d)UT ,

and P∆p+1(·) is the projection operator onto the simplex ∆p+1 = {z ∈ Rn0+1−p : ēT z = 1 + p}.

3.1.2 Y -Update

The update rule for Y is as follows:

Y k+1 = argmin
Y ∈Y

LA(Rk+1, Y, Zk+ 1
2)

= argmin
Y ∈Y

∥∥∥Y − (V Rk+1V T − 1
β (Ê + Zk+ 1

2)
)∥∥∥2

F

= Pbox

(
GĴ c

(
V Rk+1V T − 1

β (Ê + Zk+ 1
2)
))

,

(3.2)

where Pbox is the projection onto the polyhedral set {Y ∈ Sn0+1 : 0 ≤ Y ≤ 1}.

3.2 Bounding

In this section we present some strategies for computing lower and upper bounds to (IQP).

3.2.1 Lower Bounds from Lagrange Relaxation

We now discuss a strategy for computing a valid lower bound to p∗IQP. Exact solutions of the
DNN relaxation (2.9) provide lower bounds to (IQP). However, we often terminate algorithms
when the stopping criteria are met for a pre-defined tolerance and we never set the tolerance to
be exactly 0 in practice. A near optimal point Ỹ can result in

p∗DNN ≤ 〈Ê, Ỹ 〉 and p∗IQP < 〈Ê, Ỹ 〉

and produce an invalid lower bound to p∗IQP. Hence, we provide a method for computing a valid
lower bound to (IQP) for avoiding this issue.

We follow the approaches in [12,15,23] and obtain lower bounds via the dual to the DNN relaxation
in (2.9). We define the dual functional g : Sn0+1 → R by

g(Z) := min
R∈R,Y ∈Y

〈Ê, Y 〉+ 〈Z, Y − V RV T 〉.

11

Let Z̄ ∈ Sn0+1 be given. W note that

min
R∈R,Y ∈Y

〈Ê, Y 〉+ 〈Z̄, Y − V RV T 〉 = min
Y ∈Y
〈Ê + Z̄, Y 〉+ min

R∈R
〈−V T Z̄V,R〉

= min
Y ∈Y
〈Ê + Z̄, Y 〉 − (p+ 1)λmax(V T Z̄V),

where λmax is the maximum eigenvalue function. Hence we compute a valid lower bound to the
optimal value p∗DNN of the model (2.9) by using weak duality:

p∗DNN = max
Z

g(Z) ≥ g(Z) = min
Y ∈Y
〈Ê + Z, Y 〉 − (p+ 1)λmax(V TZV),

where the first equality holds since the constraint qualification holds for the model (2.9). We
note that the computation for min

Y ∈Y
〈Ê + Z, Y 〉 is inexpensive.

3.2.2 Upper Bounds from Nearest Binary Feasible Solutions

In this section we discuss two strategies for computing upper bounds to the SCPproblem. These
strategies are derived from those presented in [5] and we include them here for completeness. We
obtain upper bounds by finding feasible solutions to the original integer model in (2.3). Let
(Rout, Y out, Zout) be the output of the algorithm.

1. Let xapprox ∈ Rn0 be the second through to the last elements of the first column of Y out.
Note that 0 ≤ xapprox ≤ 1. Then the nearest feasible solution to (IQP) from xapprox can
be found by solving the following projection:

min
x

{
‖x− xapprox‖2 : Ax = ēp, x ∈ {0, 1}n0

}
. (3.3)

It is shown in [5] that solving (3.3) is equivalent to solving the following linear program:

min
x
{〈x, xapprox〉 : Ax = ēp, x ≥ 0} . (3.4)

2. We now let xapprox be the second through to the last elements of the most dominant
eigenvector of Y out. Note that we again have 0 ≤ xapprox ≤ 1, by the Perron-Frobenius
theorem. We again obtain the nearest feasible solution to xapprox by solving (3.4).

Remark 3.2. In fact, solving (3.4) does not require using any LP software; we can obtain the
optimal solution for (3.4) as follows. We partition xapprox into p subvectors of sizes mi = |Vi|,
for i = 1, . . . , p. Let xi ∈ Rmi be the subvector of xapprox associated with i-th rotamer set Vi, i.e.,
xapprox = [x1;x2; . . . ;xp]. We define x̂i ∈ Rmi as follows:

x̂ij =

{
1, if xij = max

`∈[mi]

{
xi`
}

0, otherwise.

If there is subvector x̂i with more than one 1 in its components, we pick only one 1 and set the
remaining to be 0. We then form x̂ = [x̂1; x̂2; . . . ; x̂p] ∈ Rn0. It is clear that x̂ is feasible for (2.1).
We use x̂TEx̂ as an upper bound to the SCP problem.

4 Numerical Experiments with Real-World Data

We present the numerical experiments for Algorithm 3.1. This section is organized as follows.
In Section 4.1 we present the parameter settings and stopping criteria. In Section 4.2 we explain
how we process the data from the Protein Data Bank (PDB) to obtain the energy matrix E. In
Section 4.3 we finally present the numerical results using rPRSM and show that we provably
solve many instances to optimality. We use the bounding strategies presented in Section 3.2 to
prove optimality.

12

4.1 Stopping Criteria and Parameter Settings

Stopping Criteria We terminate rPRSM when either of the following conditions is satisfied.

1. Maximum number of iterations, denoted by “maxiter” is achieved.

2. For given tolerance ε, the following bound on the primal and dual residuals holds for st
sequential times:

max

{
‖Y k − V RkV T ‖F

‖Y k‖F
β‖Y k − Y k−1‖F

}
< ε.

3. Let {l1, . . . , lk} and {u1, . . . , uk} be sequences of lower and upper bounds discussed in
Section 3.2.1 and Section 3.2.2, respectively. Any of the lower bounds achieve the best
upper bound, i.e.,

min{l1, . . . , lk} ≥ max{u1, . . . , uk}.

Parameter Settings We use the following parameters related to the implementation of Algo-
rithm 3.1:

β = max{b0.5 ∗ n0/pc, 1}, γ = 0.99.

The parameters related to stopping criteria are:

maxiter = p(n0 + 1) + 104, ε = 10−10, st = 100.

For the initial iterates for rPRSM, we use

Y 0 = 0, Z0 = PZA
(Y 0).

4.2 Energy Matrix Computation

In this section we briefly describe the process for acquiring the energy matrix E. Our implemen-
tation relies on the usage of a Python script executing as an extension of the UCSF Chimera4

application. A detailed implementation can be found in [6, Chapter 7]. We used protein data
files from the PDB to obtain the coordinates of all atoms in the protein. To get the energy
values required by the algorithm, the native side chain conformations were replaced by rotamers
extracted from a rotamer library provided by the Dunbrack Laboratory [11].

Some approaches use an energy evaluation based on a piece-wise linear approximation of
the Lennard-Jones potential formula (e.g., [7, 28]). Here, we used the Lennard-Jones potential
formula, which provides a more accurate energy value computation. In brief, the Lennard-Jones
potential formula engages the Euclidean distance between a pair of atoms with some parameters
dependant on the type of amino acids. A more detailed explanation of these energy computations
can be found in [6, Chapter 6-7]. We finally used a strategy (known as ‘dead end elimination’)
to reduce the size of the rotamer sets associated with each amino acid. The basic idea behind
this strategy is that a rotamer can be removed from its rotamer set if there is another rotamer in
that set that gives a better energy value regardless of the rotamer selections for the neighbouring
amino acids. Among various approaches for the dead end elimination, we followed the Goldstein’s
criteria [14].

Let U be a side-chain conformation of a protein. The energy of the conformation U is

E(U) =

n0∑
i=1

Eself(ui) +

n0−1∑
i=1

n0∑
j=i+1

Epair(ui, uj),

4The UCSF Chimera software can be found in https://www.cgl.ucsf.edu/chimera/download.html.

13

https://www.cgl.ucsf.edu/chimera/download.html

where ui is a side-chain conformation of an amino acid, Eself(ui) is the energy corresponding to
ui and the backbone, and Epair(ui, uj) is the energy formed by ui and uj , a rotamer associated
with a neighbouring amino acid. In our formulation, we placed Eself(ui) along the diagonal of E
and Epair(ui, uj) on the appropriate off-diagonal positions of E as shown in Section 2.1.

4.2.1 Removing Collisions

We typically observe some very large elements in E. This is due to the collisions between rotamers
and they are indicated by huge values Ei,j >> 0 that are often greater than 1010. These huge
values occur due to a part of the Lennard-Jones potential formula that involves the Euclidean
distance between two distinct rotamers that goes to the denominator of a fraction.

In general, having very large values in data is prone to numerical instabilities. If every nonzero
elements of E are large, the usual approach is to scale E to avoid large values. However, the
matrix E often has elements that are more than 10 digits as well as elements that are 1 digit.
When there is a large discrepancy among the elements of E, scaling E would make the relatively
small values close to 0 and lead to loss of precision in the solution. However, this ill-posed data
does not take place as a problem in our implementation. Recall that we update the Y iterate (3.2)
as follows:

Y k+1 = PY
(
GĴ c

(
V Rk+1V T − 1

β (Ê + Zk+ 1
2)
))

= PY
(
GĴ c

(
− 1
β Ê +

[
V Rk+1V T − 1

βZ
k+ 1

2

]))
.

For simplicity, we let T := − 1
β Ê +

[
V Rk+1V T − 1

βZ
k+ 1

2

]
. If the (̂i, ĵ)-th element of Ê =

BlkDiag(0, E) is very large, the projection PY sets the (̂i, ĵ)-element of T to 0 since Tî,ĵ << 0.

Hence, for those positions (̂i, ĵ) with very large energy values, the constraint Yî,ĵ = 0 is implic-
itly imposed. We can interpret this as having implicit gangster constraints on these elements.
Consequently, the large elements do not contribute to the objective value since Êî,ĵYî,ĵ = 0.

We can also take advantage of large values in the data to increase the number of the gangster
indices (eliminate edges in the graph).

Lemma 4.1. Suppose that x is feasible for (IQP), and let u = xTEx be its objective value. Let
NE =

∑
{(i,j):E(i,j)<0}Ei,j and suppose that

Ei0,j0 > u−NE , for some i0, j0

holds. Then for any optimal solution x∗ to (IQP), we have x∗i0x
∗
j0

= 0.

Proof. Let x∗ be an optimal solution to (IQP). Let U∗ be the set of indices formed by the positive

entries of

(
1
x∗

)(
1
x∗

)T
. We note that, for any index set S, we have

∑
(i,j)∈S

Ei,j =
∑

(i,j)∈S∩{(i,j):Ei,j≥0}

Ei,j +
∑

(i,j)∈S∩{(i,j):Ei,j<0}

Ei,j ≥ 0 +NE = NE .

Suppose to the contrary that x∗ holds x∗i0x
∗
j0

= 1, i.e., x∗i0 = x∗j0 = 1. Then we reach the following
contradiction:

p∗IQP = 〈x∗, Ex∗〉 = Ei0,j0 +

Ei0,j0 +
∑

(i,j)∈U∗\{(i0,j0)}

Ei,j

 ≥ Ei0j0 +NE > u.

14

Corollary 4.2. Let i0 be an index such that Ei0,i0 > u−NE, where u,NE defined in Lemma 4.1.
Then, for any optimal solution x∗ to (IQP), we have

Yx∗ :=

(
1
x∗

)(
1
x∗

)T
∈
{
Y ∈ Sn0+1 : Y (:, i0) = 0, Y (i0, :) = 0

}
.

Proof. Let i0 be an index such that Ei0,i0 > u−NE . Then x∗i0 = 0 by Lemma 4.1. We note that
Yx∗ is a positive semidefinite matrix. If a diagonal entry of a positive semidefinite is zero, then
its corresponding column and row must be 0.

By Lemma 4.1 and Corollary 4.2, if we detect entries i0, j0 with the property Ei0,j0 > u−NE ,
then we may strengthen the model by adding the constraints

K =

{
Y ∈ Sn0+1 :

Y (i0, j0) = Y (j0, i0) = 0, for i0 6= j0 such that Ei0,j0 > u−NE

Y (:, i0) = 0, Y (i0, :) = 0, for i0 such that Ei0,i0 > u−NE

}
.

This can be easily realized by adding more members to the gangster index set Ĵ .

4.3 Experiments with Real-World Data

In this section we provide numerical experiments with real-world data from Protein Data Bank
and discuss the strengths of the DNN relaxation. We observe the useful aspects of the DNN
relaxation through the numerical experiments. The DNN relaxation provides an effective treat-
ment for avoiding numerical instabilities that originate from the large positive values in the data
matrix E. Moreover, we observe that the DNN relaxation provides superior performance over
the SDP relaxation.

We select instances listed in [7] with proteins that have up to 300 amino acids. All instances
in Table 4.1 are tested using MATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R)
Core(TM) i5-11400 @ 2.60GHz 2.60 GHz with 32 Gigabyte memory. The following list defines
the column headers used in Table 4.1; we use the same headers to the additional numerical
experiments that are displayed in Appendix A.

1. name: instance name;

2. p: the number of amino acids;

3. n0: the total number of rotamers;

4. lbd: the lower bound obtained by running rPRSM;

5. ubd: the upper bound obtained by running rPRSM;

6. rel-gap: relative gap of each instance using rPRSM, where

relative gap := 2
|best feasible upper bound− best lower bound|
|best feasible upper bound + best lower bound + 1|

;

7. iter: number of iterations used by rPRSM with tolerance ε = 10−10;

8. time(sec): CPU time (in seconds) used by rPRSM.

15

Problem Data Numerical Results Timing
name p n0 lbd ubd rel-gap iter time(sec)
10 2IGD 50 126 -78.50608 -78.50608 5.39611e-15 500 19.43
20 1VQB 75 406 -96.94940 -96.94940 4.34568e-14 900 179.35
30 2ACY 84 580 -146.32254 -146.32254 1.06468e-14 7800 2610.24
40 2TGI 100 355 -14.03554 -14.03554 2.46249e-13 1300 136.30
50 2SAK 111 214 -239.86975 -239.86975 1.08995e-12 500 25.50
60 2CPL 132 819 -284.97180 -284.97180 9.75693e-15 5900 3292.98
70 1CV8 146 730 -213.13554 -213.13554 3.28738e-13 5600 2572.99
80 2ENG 162 867 82.01797 82.01797 1.33295e-13 14200 8274.48
90 1A7S 179 524 -239.78218 -239.78218 1.00542e-14 1200 314.57
100 1MRJ 208 1178 -295.13711 -295.13711 1.70740e-13 2300 2421.15
110 1EZM 239 1497 -217.36581 -217.36581 3.49620e-13 2300 3876.18
120 1SBP 256 1704 -271.08838 -271.08838 3.59996e-14 40000 609487.29
130 3PTE 284 2006 161.17216 161.17216 5.09815e-15 13500 250604.17

Table 4.1: Computational results on selected PDB instances

Discussion We observe from the last two columns of Table 4.1 that many instances are solved
within good relative gaps. In fact, most of the instances display relative gaps that are essentially 0.
We recall from (3.4) that we obtain the upper bounds via finding feasible solutions to (IQP).
We recall from Section 3.2.2 that we obtain the upper bounds via finding feasible solutions
to (IQP). That we have the relative gap essentially 0 grants us the attainment of the globally
optimal solutions to the SCP problem. Approaches involving heuristic algorithms do not provide
a natural means of certifying optimality, relying solely on a comparison of the rotameric solution
with naive χ1 and χ2 angles from the PDB while ignoring optimality of the discretized solution.
We highlight that we provide not only the globally optimal solutions but also a way to certify
their optimality.

4.3.1 A Tighter Relaxation

We illustrate the strengths of the DNN relaxation by computing the near optimal values of
the DNN relaxaion and the SDP relaxation. In our test, we selected five small instances. As
discussed above, some elements of the energy matrix E are typically very large due to the
collisions in rotamers, typically at least 10 digits. These cause numerical difficulties when a
standard interior point solver is used. Hence, in our test, we set the entries Ei,j = min{104, Ei,j},
∀i, j, in order to avoid the difficulties from having these large elements. We used the rPRSM
for DNN relaxation and used SDPT35 for solving the SDP relaxation. The displayed values in

problem # instance DNNrelaxation SDPrelaxation
1 1AIE -46.96 -2460.53
2 2ERL 55.33 -18241.26
3 1CBN -40.43 -22380.58
4 1RB9 -76.97 -23936.35
5 1BX7 16.96 -23965.88

Table 4.2: The solver optimal values of the DNN and SDP relaxations on selected instances

Table 4.2 are the best lower bounds found from the rPRSM and the optimal values reported by
SDPT3. We observe in Table 4.2 that the DNN relaxation shows superior performances over the

5https://www.math.cmu.edu/~reha/sdpt3.html, version SDPT3 4.0, [26].

16

https://www.math.cmu.edu/~reha/sdpt3.html

SDP relaxations in the relaxation values; the DNN relaxation for the SDP problem provides a
much tighter relaxation than the SDP relaxation.

5 Conclusions

We presented a simple way of formulating the relaxation of the SCP problem. We began by
formulating the SCPproblem into an IQP and derived the facially reduced SDP relaxation.
We then identified some redundant constraints to the IQP to complete the DNN relaxation.
FR allowed for a natural splitting of the variables and provided a perfect environment for us-
ing splitting methods. Hence we adopted the rPRSM to solve the DNN relaxation of the
SCPproblem. We illustrated the efficiency of our approach using data from the Protein Data
Bank. In particular, we solved many instances chosen from the Protein Data Bank to optimality.

17

Index

Y col `
ij , 8
A, 5
E, edge weights, 4
E00, 5
GJ , gangster operator, 6
GĴ , gangster operator, 6
K, 7
NE , 14
X � 0, 3
X � 0, 3
Yx, 5
[m] = {1, . . . ,m}, 3
〈·, ·〉, 3
BlkDiag, 5
BlkDiag, 3
Diag, 3
Rm×n, 3
Rn, 3
Sn+, 3
Sn++, 3
ēn, 3
J , 6
LA(R, Y, Z), augmented Lagrangian, 9
NC , 3
PZ0(Z), 10
Pbox, 11
R, 9
V, 4
Vi, i-th rotamer set, 4
Y, 9
diag, 3
Ê, 5
Ĵ , 6
λmax, 11
e0, the first unit vector, 5
g, dual functional, 11
i-th rotamer set, Vi, 4
mi, 4
n0, total number of rotamers, 4, 5
p∗DNN, optimal value of DNN relaxation, 9
p∗IQP, optimal value of IQP , 4
st, 12
V = ∪pi=1Vi, 4
ZA, 9
DNN, doubly nonnegative relaxation, 2, 3
FR, facial reduction, 3

IQP, integer quadratic problem, 2
PRSM, Peaceman-Rachford splitting method,

10
SCP, side-chain positioning, 2, 4
SDP, semidefinite programming, 3
DNN, 9
IQP, 5
SDP, 5

augmented Lagrangian, LA(R, Y, Z), 9

collisions, 14

dead end elimination, 13
doubly nonnegative (DNN), 3
dual functional, g, 11

edge weights, E, 4
exposing vector, 7

facial reduction, 7
facial reduction (FR), 3

gangster constraint, 6
gangster operator, GJ , 6
gangster operator, GĴ , 6

integer quadratic problem (IQP), 3

normal cone, 3

optimal value of DNN relaxation, p∗DNN, 9
optimal value of IQP , p∗IQP, 4

PDB, Protein Data Bank, 12
Peaceman-Rachford splitting method (PRSM),

2, 3
Protein Data Bank, PDB, 12
protein side-chain positioning problem, 4

restricted dual Peaceman-Rachford splitting method,
rPRSM , 10

rotamer, 4

semidefinite programming (SDP), 3
side-chain positioning (SCP), 2

the first unit vector, e0, 5
total number of rotamers, n0, 5
trace, 3

18

References

[1] T. Akutsu. Np-hardness results for protein side-chain packing. Genome Informatics, 8:180–
186, 1997. 3

[2] E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Mauller. A combinatorial approach to
protein docking with flexible side chains. Journal of computational biology, 9(4):597–612,
2002. 3

[3] D. Bahadur, T. Akutsu, E. Tomita, and T. Seki. Protein side-chain packing problem: A
maximum edge-weight clique algorithmic approach. Journal of bioinformatics and compu-
tational biology, 3 1:103–26, 2004. 3

[4] M.J. Bower, F.E. Cohen, and R.L. Dunbrack. Prediction of protein side-chain rotamers
from a backbone-dependent rotamer library: a new homology modeling tool. Journal of
Molecular Biology, 267(5):1268–1282, 1997. 3

[5] F. Burkowski, Y-L. Cheung, and H. Wolkowicz. Efficient use of semidefinite programming
for selection of rotamers in protein conformations. INFORMS J. Comput., 26(4):748–766,
2014. 3, 5, 7, 9, 10, 12

[6] F.J. Burkowski. Computational and Visualization Techniques for Structural Bioinformatics
Using Chimera. Chapman & Hall/CRC mathematical and computational biology series.
Chapman and Hall/CRC, London, 2015. 13

[7] A.A. Canutescu, A.A. Shelenkov, and R.L. Dunbrack. A graph-theory algorithm for rapid
protein side-chain prediction. Protein science, 12(9):2001–2014, 2003. 3, 13, 15

[8] B. Chazelle, C. Kingsford, and M. Singh. A semidefinite programming approach to side chain
positioning with new rounding strategies. INFORMS J. Comput., 16(4):380–392, 2004. 3

[9] J. Desmet, M. De Maeyer, B. Hazes, and I. Lasters. The dead-end elimination theorem and
its use in protein side-chain positioning. Nature (London), 356(6369):539–542, 1992. 3

[10] D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in conic optimization.
Foundations and Trends® in Optimization, 3(2):77–170, 2017. 7

[11] R.L. Dunbrack, Jr. and M. Karplus. Backbone-dependent rotamer library for proteins appli-
cation to side-chain prediction. Journal of Molecular Biology, 230(2):543–574, March 1993.
13

[12] J. Eckstein. Deriving solution value bounds from the ADMM. Optimization Letters, 2020.
11

[13] O. Eriksson, Y. Zhou, and A. Elofsson. Side chain-positioning as an integer programming
problem. In Algorithms in bioinformatics (Århus, 2001), volume 2149 of Lecture Notes in
Comput. Sci., pages 128–141. Springer, Berlin, 2001. 3

[14] R.F. Goldstein. Efficient rotamer elimination applied to protein side-chains and related spin
glasses. Biophysical Journal, 66(5):1335 – 1340, 1994. 13

[15] N. Graham, H. Hu, H. Im, X. Li, and H. Wolkowicz. A restricted dual Peaceman-Rachford
splitting method for a strengthened DNN relaxation for QAP. INFORMS J. Comput.,
34(4):2125–2143, 2022. 3, 9, 10, 11

19

[16] L. Holm and C. Sander. Database algorithm for generating protein backbone and side-chain
co-ordinates from a c it trace : Application to model building and detection of co-ordinate
errors. Journal of Molecular Biology, 218(1):183–194, 1991. 3

[17] C.L Kingsford, B. Chazelle, and M. Singh. Solving and analyzing side-chain positioning prob-
lems using linear and integer programming. Bioinformatics (Oxford, England), 21(7):1028–
1039, 2005. 3

[18] V. Laudet and H. Gronemeyer. 3 - ligand binding. In V. Laudet and H. Gronemeyer, editors,
The Nuclear Receptor FactsBook, Factsbook, pages 37 – 41. Academic Press, London, 2002.
2

[19] C. Lee. Predicting protein mutant energetics by self-consistent ensemble optimization. Jour-
nal of Molecular Biology, 236(3):918–939, 1994. 3

[20] X. Li, T.K. Pong, H. Sun, and H. Wolkowicz. A strictly contractive Peaceman-Rachford
splitting method for the doubly nonnegative relaxation of the minimum cut problem. Com-
put. Optim. Appl., 78(3):853–891, 2021. 3

[21] L.L Looger, M.A Dwyer, J.J Smith, and H.W Hellinga. Computational design of receptor
and sensor proteins with novel functions. Nature (London), 423(6936):185–190, 2003. 2

[22] N.A. Marze, S.S. Roy-Burman, W. Sheffler, and J.J. Gray. Efficient flexible backbone
protein-protein docking for challenging targets. Computer applications in the biosciences,
34(20):3461–3469, 2018. 2

[23] D.E. Oliveira, H. Wolkowicz, and Y. Xu. ADMM for the SDP relaxation of the QAP. Math.
Program. Comput., 10(4):631–658, 2018. 3, 11

[24] R. Samudrala and J. Moult. Determinants of side chain conformational preferences in protein
structures. Protein engineering, 11(11):991–997, 1998. 3

[25] P.S. Shenkin, H. Farid, and J.S. Fetrow. Prediction and evaluation of side-chain conforma-
tions for protein backbone structures. Proteins: Structure, Function, and Bioinformatics,
26(3):323–352, 1996. 3

[26] K.C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3—a MATLAB software package for
semidefinite programming, version 1.3. Optim. Methods Softw., 11/12(1-4):545–581, 1999.
Interior point methods. 16

[27] C. Wang, P. Bradley, and D. Baker. Protein-protein docking with backbone flexibility.
Journal of molecular biology, 373(2):503–519, 2007. 2

[28] J. Xu and B. Berger. Fast and accurate algorithms for protein side-chain packing. Journal
of the ACM (JACM), 53(4):533–557, 2006. 3, 13

20

A Additional Numerics

Problem Data Numerical Results Timing
name p n0 lbd ubd rel-gap iter time(sec)
1 1AIE 26 34 -46.95892 -46.95892 1.04802e-15 200 0.10
2 2ERL 34 103 55.33285 55.33284 1.17985e-12 200 5.85
3 1CBN 37 112 -40.42751 -40.42751 1.68402e-14 300 7.77
4 1RB9 41 105 -76.96501 -76.96501 7.11964e-13 1000 26.39
5 1BX7 41 99 16.96026 16.96026 5.21525e-12 300 7.25
6 2FDN 42 51 -59.43091 -59.43092 3.71094e-14 200 0.04
7 1MOF 46 94 -79.05580 -79.05580 3.52629e-12 200 4.03
8 1CTF 47 74 -97.18893 -97.18893 4.64633e-13 200 2.81
9 1NKD 50 199 -51.78466 -51.78466 4.40639e-12 2680 192.65
10 2IGD 50 126 -78.50608 -78.50608 5.39611e-15 500 14.67
11 2SN3 53 112 -5.56818 -5.56818 6.73872e-13 700 16.77
12 1MSI 54 112 -87.46958 -87.46958 1.72043e-13 700 19.39
13 1AHO 54 140 24.66925 24.66925 4.19224e-14 1500 56.22
14 1COR 60 131 15.58314 15.58314 4.58637e-12 1000 32.31
15 1CTJ 61 258 -103.32705 -103.32705 1.64217e-12 1872 162.80
16 1RZL 65 121 17.26470 17.26470 1.22992e-11 2468 68.52
17 1TIF 66 614 -155.17859 -155.17859 4.69196e-14 1000 350.89
18 1BDO 69 221 -136.29933 -136.29933 8.93377e-15 1000 75.06
19 1OPD 70 112 -139.64632 -139.64632 1.18233e-13 300 5.98
20 1VQB 75 406 -96.94940 -96.94940 4.34568e-14 900 147.36
21 1IUZ 75 221 -150.88238 -150.88238 1.25791e-14 3200 227.45
22 1ABA 76 376 -137.59962 -137.59963 9.05546e-15 600 88.43
23 1FNA 76 131 -172.01313 -172.01313 3.64100e-14 800 23.32
24 1CYO 78 220 -75.36668 -75.36668 1.36739e-14 700 48.50
25 1FUS 79 302 -4.66627 -4.66627 1.11145e-12 3000 312.35
26 2MCM 80 123 -135.14024 -135.14024 8.30816e-13 400 10.30
27 1SVY 80 147 -141.92437 -141.92437 6.21219e-13 400 14.51
28 1A68 81 424 -178.12555 -178.12555 2.54581e-15 1500 249.80
29 1YCC 84 223 -79.21270 -79.21270 2.11079e-12 955 66.26
30 2ACY 84 580 -146.32254 -146.32254 1.06468e-14 7800 2175.04
31 1BM8 85 687 -119.54537 -119.54537 2.02428e-14 1300 509.88
32 1BKF 89 339 -170.80514 -170.80514 1.60935e-14 1000 117.73
33 3CYR 91 137 -144.06405 -144.06405 2.48290e-12 1900 52.09
34 3VUB 92 544 -229.38312 -229.38312 7.41813e-16 1400 349.67
35 1JER 96 462 -120.78401 -120.78400 1.15131e-12 3232 633.90
36 2HBG 97 275 -178.42210 -178.42210 2.70839e-13 500 42.98
37 1POA 97 470 278.08280 278.08280 2.02964e-12 5463 1099.55
38 1C52 99 256 -223.31096 -223.31096 2.41281e-15 2700 203.46
39 2A0B 99 642 -161.45228 -161.45228 1.75494e-16 5200 1800.90
40 2TGI 100 355 -14.03554 -14.03554 2.46249e-13 1300 153.95

Table A.1: Computation results on selected PDB instances up to 100 amino acids

21

Problem Data Numerical Results Timing
name p n0 lbd ubd rel-gap iter time(sec)
41 3NUL 101 285 -154.87542 -154.87542 1.28046e-15 2300 307.34
42 1WHI 101 298 -247.13457 -247.13457 6.94375e-14 1500 199.52
43 1PDO 104 453 -188.29848 -188.29848 9.10541e-12 5754 1456.33
44 3LZT 105 530 -48.81821 -48.81821 8.48591e-13 1100 300.50
45 1DHN 105 519 -133.77464 -133.77464 1.35468e-13 2000 535.83
46 1KUH 106 580 -155.56590 -155.56590 2.18536e-15 2296 743.57
47 1ECA 108 655 -169.74717 -169.74717 1.66944e-16 25200 12563.89
48 1BFG 108 410 -191.73261 -191.73262 8.54577e-14 900 210.84
49 1RIE 108 930 -117.91809 -117.91809 1.57208e-14 20200 17809.01
50 2SAK 111 214 -239.86975 -239.86975 1.08995e-12 500 37.26
51 1BGF 112 1180 -239.65571 -239.65571 1.52549e-13 56400 71503.54
52 2END 118 707 -8.22833 -8.22833 1.08596e-12 16100 8511.24
53 2SNS 119 634 620.86546 620.86546 1.79304e-14 6900 3082.12
54 1BD8 121 347 -219.12419 -219.12419 9.42666e-12 4970 760.81
55 1NPK 122 709 -205.56059 -205.56059 6.77231e-13 59075 31212.37
56 1A6M 124 613 -55.41007 -55.41008 4.93096e-14 22800 7608.82
57 2RN2 127 830 -198.37189 -198.37189 1.41057e-13 6073 4053.13
58 1RCF 130 733 -86.59895 -86.59775 1.38011e-05 100000 56927.20
59 1LCL 131 1246 -217.16433 -217.16433 2.53317e-14 3800 4821.11
60 2CPL 132 819 -284.97180 -284.97180 9.75693e-15 5900 3329.39
61 1VHH 133 844 -21.33604 -21.33604 3.59566e-14 3200 1843.96
62 1BJ7 135 917 -64.37915 -64.37915 5.69493e-14 11300 8946.94
63 119L 136 970 -234.21535 -234.21535 8.01617e-14 34200 30890.87
64 1RA9 136 1018 -185.07235 -185.07235 5.13076e-14 4400 4839.16
65 1L58 137 962 -285.60167 -285.60167 1.31131e-14 15600 13812.60
66 2ILK 142 708 -121.02712 -121.02712 1.82770e-13 4700 2750.13
67 1KOE 144 710 -13.87537 -13.87537 1.27269e-11 4124 2490.08
68 1HA1 146 538 -213.93793 -213.93793 1.44469e-13 3700 1229.31
69 1CEX 146 415 174.95279 174.95279 2.40438e-11 11447 2426.49
70 1CV8 146 730 -213.13554 -213.13554 3.28738e-13 5600 3442.13
71 153L 149 846 -170.13061 -170.13061 3.03488e-13 2100 1554.46
72 1BS9 150 935 103.16569 103.16569 1.31052e-13 2500 1736.57
73 2PTH 151 1198 -190.97344 -190.97344 1.39085e-13 1900 2233.17
74 1XNB 151 1233 -147.30040 -147.30040 2.69217e-15 13300 16562.76
75 1AQB 152 713 29.24537 29.24537 9.30418e-14 39300 17795.39
76 1LBU 152 1225 38.14603 38.14603 1.91397e-13 9900 11673.18
77 1KID 153 653 -351.91160 -351.91160 2.90337e-15 6600 2607.24
78 1CHD 154 489 -164.21510 -164.21510 3.27846e-14 19300 4097.50
79 1AMM 158 1480 -288.62671 -288.62671 2.75245e-15 3300 5793.13
80 2ENG 162 867 82.01797 82.01797 1.33295e-13 14200 8284.65
81 1G3P 165 921 -70.30769 -70.30769 6.66312e-14 7000 4469.99
82 1THV 167 902 5.12749 5.12749 4.63732e-12 4200 2637.88
83 1PPN 170 1259 -56.69346 -56.69346 1.23365e-13 11589 14139.22
84 1IAB 173 775 321.20652 321.20652 2.04964e-14 26500 13017.74
85 1DIN 175 1110 -264.73564 -264.73548 5.84356e-07 100000 93357.26
86 2AYH 176 1269 8428.18154 6089367.83709 1.99447e+00 100000 135879.29
87 1ZIN 177 853 -353.00431 -353.00431 3.18384e-14 23800 13742.52
88 1BYI 177 818 -242.78881 -242.78881 2.33646e-14 2400 1298.65
89 2BAA 178 1165 -43.77265 -43.77265 1.95480e-12 4600 4785.88
90 1A7S 179 524 -239.78218 -239.78218 1.00542e-14 1200 284.88
91 1WAB 183 1063 -317.46713 -317.46713 9.40337e-14 8500 7357.75
92 1MUN 185 1047 -378.01261 -378.01261 1.15635e-14 9500 7883.00
93 1LST 192 946 -244.76861 -244.76861 1.28627e-14 32300 21374.44
94 1GCI 194 1052 -205.63185 -205.63185 2.79899e-14 10300 8885.03
95 3CLA 198 857 -26.72768 -26.72768 9.89051e-14 3900 2287.99

Table A.2: Computation results on selected PDB instances up to 200 amino acids

22

Problem Data Numerical Results Timing
name p n0 lbd ubd rel-gap iter time(sec)
96 1AL3 201 1077 119.66598 119.66598 3.39407e-14 12500 10188.87
97 1ARB 202 1466 -61.52823 -61.52823 3.41363e-14 8900 14632.82
98 1XJO 202 776 -171.92443 -171.92443 8.24179e-15 3700 1455.50
99 1NLS 203 1060 -297.73578 -297.73578 5.33677e-15 2500 1976.08
100 1MRJ 208 1178 -295.13711 -295.13711 1.70740e-13 2300 2149.63
101 1OAA 208 854 -317.83422 -317.83422 1.44174e-12 3842 1823.52
102 2DRI 210 906 -398.45564 -398.45564 2.56465e-15 6200 3225.99
103 2CBA 223 1018 -86.52145 -86.52145 5.34000e-14 3400 2407.24
104 2POR 224 1304 -83.22221 -83.22221 5.55044e-14 6700 8044.39
105 3SEB 224 1412 77.15838 77.15852 1.84867e-06 100000 137194.81
106 1MLA 227 1322 -484.10542 -484.10542 1.68910e-14 62900 75257.79
107 1DCS 232 1170 -342.68600 -342.68600 1.39133e-14 8000 7459.07
108 1AKO 234 1387 -244.65691 -244.65691 1.18251e-14 7400 9809.00
109 1PDA 239 891 -423.50226 -423.50226 4.96037e-15 9100 4520.68
110 1EZM 239 1497 -217.36581 -217.36581 3.49620e-13 2300 3919.92
111 1C3D 243 1679 -400.69876 -400.69876 1.04846e-14 22100 134094.53
112 1RHS 244 1973 -341.20443 -341.20443 1.41400e-14 7300 62136.57
113 8ABP 245 1743 -273.90715 -273.90716 2.27865e-15 9000 59868.98
114 1CVL 246 910 -537.04249 -537.04249 2.11494e-16 14800 7522.51
115 1RYC 248 1831 -202.60568 -202.60568 4.81378e-14 15200 84674.22
116 1MRP 248 1648 -350.97062 -350.97062 1.39088e-14 11000 34303.23
117 1IXH 252 1134 -289.75241 -289.75241 4.11267e-14 1300 1087.30
118 1FNC 253 1940 -310.60999 -310.60999 6.54656e-13 34321 292924.91
119 1TCA 255 1062 -422.15387 -422.15387 4.24994e-14 8700 6424.87
120 1SBP 256 1704 -271.08838 -271.08838 3.59996e-14 40000 156330.60
121 2CTC 264 1536 -213.88596 -213.88596 2.17419e-14 15100 43642.85
122 1PGS 265 2190 -16.14049 -16.14049 2.28785e-12 21300 269611.15
123 1MSK 271 1798 -162.51007 -162.50978 1.77573e-06 100000 771330.61
124 1BG6 271 784 -452.62383 -452.62383 3.13620e-15 12700 4935.11
125 1ARU 271 939 -314.40612 -314.40589 7.15908e-07 100000 53858.54
126 1A8E 274 1096 -249.85499 -249.85499 3.58741e-14 96500 78746.74
127 1AXN 278 2343 -300.34291 -300.34291 7.55789e-15 12500 207625.02
128 1TAG 279 1330 -253.22167 -253.22167 1.68029e-14 4300 5038.43
129 1ADS 280 1560 733.91439 733.91440 1.39319e-13 18273 65301.22
130 3PTE 284 2006 161.17216 161.17216 5.09815e-15 13500 59169.60
131 1CEM 292 2400 -24.20196 -24.20196 3.85446e-14 7000 47701.70

Table A.3: Computation results on selected PDB instances up to 300 amino acids

23

	Introduction
	Notation
	Contributions and Outline

	Model Derivation
	Problem Formulation as IQP
	SDPRelaxation
	Gangster Constraint G(Y) = E00
	Facial Reduction

	DNNRelaxation

	The Algorithm
	Update Formulae
	R-Update
	Y-Update

	Bounding
	Lower Bounds from Lagrange Relaxation
	Upper Bounds from Nearest Binary Feasible Solutions

	Numerical Experiments with Real-World Data
	Stopping Criteria and Parameter Settings
	Energy Matrix Computation
	Removing Collisions

	Experiments with Real-World Data
	A Tighter Relaxation

	Conclusions
	Index
	Bibliography
	Additional Numerics

