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Abstract6

We consider the problem of finding the best approximation point from a polyhedral set,7

and its applications, in particular to solving large-scale linear programs. The classical best8

approximation problem has many various solution techniques as well as applications. We study9

a regularized nonsmooth Newton type solution method where the Jacobian is singular; and we10

compare the computational performance to that of the classical projection method of Halpern-11

Lions-Wittmann-Bauschke (HLWB).12

We observe empirically that the regularized nonsmooth method significantly outperforms the13

HLWBmethod. However, the HLWBmethod has a convergence guarantee while the nonsmooth14

method is not monotonic and does not guarantee convergence due in part to singularity of the15

generalized Jacobian.16

Our application to solving large-scale linear programs uses a parametrized best approx-17

imation problem. This leads to a finitely converging stepping stone external path following18

algorithm. Other applications are finding triangles from branch and bound methods, and gen-19

eralized constrained linear least squares. We include scaling methods and sensitivity analysis to20

improve the efficiency.21
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1 Introduction85

The best approximation problem, BAP , arises in many areas of optimization and approximation86

theory. In particular, we study finding the best approximation x∗ to a given point v from a87

polyhedral set, P ⊂ Rn, in the n-dimensional Euclidean space; namely, find x∗(v) ∈ Rn such that88

x∗(v) = argmin
x∈P

∥x− v∥. (1.1)

There is an abundance of theory, algorithms, and applications for this problem, see e.g., [4, 13,89

22], [6, Chap. 6], and the references therein. The optimum point x∗(v) is the projection of v90

onto the polyhedral set P and is known to be unique. In this work we follow a Newton type91

approach of an elegant compact optimality condition, even though the corresponding Jacobian92

resulting from the optimality conditions is possibly a generalized Jacobian and/or singular. We93

include a regularization, as well as an inexact approach for large-scale problems. Empirical evidence94

illustrates the surprising success of this approach.95

We include several applications. In particular, we solve large-scale linear programming, (LP ),96

problems using a parametrized best approximation problem. This introduces an efficient finitely97

converging, stepping stone external path following algorithm. In addition, we consider large-scale98

systems of triangle inequalities. In our applications we do not assume differentiability of our opti-99

mality conditions and/or nonsingularity of the generalized Jacobian. We introduce a Newton type100
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approach for our applications that overcomes the nonsmooth difficulties by applying regularization101

and scaling. We then provide extensive testing and comparisons to illustrate the surprisingly high102

efficiency, accuracy, and speed of our proposed method.103

1.1 Main Contributions104

(i) First, we present the basics for the best approximation problem, see Theorem 2.1 below. This105

includes an application of the Moreau decomposition that yields a single elegant equation that106

captures all three KKT optimality conditions: primal and dual feasibility and complemen-107

tary slackness. This emphasizes the equivalence of this single equation (2.4) in the small108

dimensional dual variable y to solving the entire KKT optimality conditions. We include a109

comparison with interior point methods in Remark 2.2.110

(ii) Second, we present the nonsmooth, regularized Newton method. No line search is used. (See111

Section 2.1.1 below.)112

(iii) We show that the regularization from a modified, simplified, Levenberg-Marquardt, LM ,113

method yields a descent direction. (See Lemma 2.5 below.)114

(iv) We present our empirical test results that include an external path following approach to115

solving large-scale linear programs that fully exploits sparsity. This is based on efficiently116

solving the BAP subproblems accurately and applying sensitivity analysis. We compare our117

results with several codes in the literature. The details are in Section 5 below.118

(v) We compare computationally our algorithm with the Halpern-Lions-Wittmann-Bauschke,119

(HLWB), algorithm that belongs to a class of projection methods usually developed and120

investigated in the field of fixed point theory.121

1.2 Related Work122

Our approach uses a special decomposition from the optimality conditions that allows for a Newton123

method with a cone projection applied to a system whose size is of the order of the number of linear124

equality constraints forming the polyhedron P . This approach first appeared in infinite dimensional125

Hilbert space applications, e.g., [11,17,18,44], where the projection mapping is differentiable, and126

typically P is the intersection of a cone and a linear manifold. The approach was applied to127

a parametrized quadratic problem to solve finite-dimensional linear programs in [53]. (See our128

application Section 4.1, below. In this finite-dimensional case differentiability was lost.) The129

approach in infinite-dimensional Hilbert spaces was followed up and extended in the theory of130

partially finite programs in [9, 10] and the many references therein. Further references are given131

in [3, 37,52].132

As mentioned above, differentiability is lost in the finite-dimensional cases, see e.g., in [53].133

This led to the introduction of semismoothness [45]. In particular, semismoothness for a nondiffer-134

entiable Newton type method is introduced and applied in [47,48]. Further applications for nearest135

doubly stochastic and nearest Euclidean distance matrices are presented in [2, 33]. A regularized136

semismooth approach for general composite convex programs is given in [54].137

Differentiability properties are nontrivial as discussed in, e.g., [32]. A characterization of dif-138

ferentiability in terms of normal cones is given in [24]. Further results and connections to semis-139
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moothness are in, e.g., [28, 32]. A survey presentation on differentiability properties can be found140

at the link [50].141

2 Projection onto a Polyhedral Set142

We begin with the projection onto the polyhedral set given in standard form, since every polyhedron143

can be transformed into this form. Suppose we are given v ∈ Rn, b ∈ Rm, A ∈ Rm×n, rankA = m144

and no columns of A are 0. We define the following projection onto a polyhedral set , i.e., the best145

approximation problem, BAP to the generalized simplex ,146

(P)

x∗(v) := argminx
1
2 ∥x− v∥2

s.t. Ax = b
x ∈ Rn

+,

optimal value: p∗(v) = 1
2 ∥x

∗(v)− v∥2 ,

(2.1)

i.e., the optimum and optimal value are, respectively, x∗(v), p∗(v); and Rn
+ is the nonnegative147

orthant. We now proceed to derive the regularized nonsmooth Newton method, (RNNM) to148

solve (2.1).149

2.1 Basic Theory and Algorithm150

In this section we briefly describe the properties of problem (2.1) as well as some background and151

motivation behind using a generalized Newton method. We assume that152

P := {x ∈ Rn
+ : Ax = b} ≠ ∅. (2.2)

Problem (2.1) has a strongly convex smooth objective function and nonempty closed convex con-153

straint set. Therefore, the optimal value is finite, uniquely attained, and strong duality holds. In154

the following, we precisely formulate this conclusion.155

Throughout the rest of the paper we set1156

F (y) := A(v +AT y)+ − b, f(y) :=
1

2
∥F (y)∥2. (2.3)

Theorem 2.1. Consider the generalized simplex best approximation problem (2.1) with primal157

optimal value and optimum p∗(v) and x∗(v), respectively. Then the following hold:158

(i) The optimum x∗(v) exists and is unique. Moreover, strong duality holds and the dual problem159

of (2.1) is the maximization of the dual functional, ϕ(y, z):160

p∗(v) = d∗(v) := max
z∈Rn

+
y∈Rm

ϕ(y, z) := −1

2

∥∥z +AT y
∥∥2 + yT (Av − b)− zT v.

161

1Let x ∈ Rn. Here and elsewhere we use x+ (respectively x−) to denote the projection of the vector x onto
the nonnnegative orthant defined as x+ = (max{0, xi})ni=1 (respectively onto the nonpositive orthant defined by
x− = (min{0, xi})ni=1).
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(ii) Let y ∈ Rm. Then162

F (y) = 0 ⇐⇒ y ∈ argmin
u

f(u) and x∗(v) = (v +AT y)+. (2.4)

Proof. Recall that the Lagrangian L(x, y, z) for (2.1), and its gradient, are respectively163

L(x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zTx, ∇xL(x, y, z) = x− v −AT y − z. (2.5)

(i): The solution of the problem (2.1) is a projection onto a nonempty polyhedral set, which is164

a closed and convex set, see (2.2). Therefore, the optimum exists and is unique and strong duality165

holds, i.e., there is a zero duality gap and the dual is attained.166

Let x be a stationary point of the Lagrangian i.e., ∇xL(x, y, z) = 0. Then by (2.5) we have the167

following equivalent representation168

x = v +AT y + z.

It then follows that at a stationary point x we have169

L(x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

The Lagrangian dual is170

d∗ = maxy∈Rm,z∈Rn
+
minx∈Rn

+
L(x, y, z) (= 1

2 ∥x− v∥2 + yT (b−Ax)− zTx)

= maxx∈Rn
+,y∈Rm,z∈Rn

+
{L(x, y, z) : ∇xL(x, y, z) = 0}

= maxx∈Rn
+,y∈Rm,z∈Rn

+
{L(x, y, z) : x = v +AT y + z}

= maxy∈Rm,z∈Rn
+

−1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Moreover, p∗ := p∗(v) = d∗ := d∗(v), and the dual value is attained.171

(ii): Now the KKT optimality conditions for the primal-dual variables (x, y, z) are2:172

∇xL(x, y, z) = x− v −AT y − z = 0, z ∈ Rn
+, (dual feasibility)

∇yL(x, y, z) = Ax− b = 0, x ∈ Rn
+, (primal feasibility)

∇zL(x, y, z) ∼= x ∈ (Rn
+ − z)+. (complementary slackness zTx = 0)

The above KKT conditions can be rewritten as :173 x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x, z ∈ Rn
+, y ∈ Rm. (2.6)

It follows from the dual feasibility that v + AT y = x − z = x + (−z). Together with the comple-174

mentary slackness we have175

2Let S ⊂ Rn. We use S+ = {ϕ : ⟨ϕ, s⟩ ≥ 0,∀s ∈ S} to denote the (nonnegative) polar cone of the set S.
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xT z = 0, x, z ∈ Rn
+, −z ∈ Rn

− = (Rn
+)

+,

and we learn that x− z is the Moreau decomposition of v +AT y. That is176

x = (v +AT y)+ and −z = (v +AT y)−; equivalently, z = −(v +AT y)−. (2.7)

Substituting for x = (v +AT y)+ we obtain a simplification of the optimality conditions in (2.6) as177

follows178

A(v+AT y)+ = b, x = (v+AT y)+ =⇒ z = −(v+AT y)−, z
Tx = 0, x, z ∈ Rn

+, x−v−AT y−z = 0,

equivalently; F (y) = 0, for some y ∈ Rm.179

For the converse, let y ∈ Rm be given and suppose that F (y) = 0. Let x̄ = (v+AT y)+. There-
fore, x̄ is primal feasible. Let z̄ = −(v+AT y)−. We get nonnegative feasibility and complementary
slackness: z̄ ≥ 0, z̄T x̄ = 0. And,

(v +AT y) = x̄− z̄ =⇒ x̄− v −AT y − z = 0,

i.e., dual feasibility holds. The KKT conditions now imply that x̄(v) is optimal. Moreover, F (y) = 0180

implies that y ∈ argminu f(u), i.e., y solves the nonlinear least squares problem.181

Remark 2.2. Interior point methods use perturbed KKT conditions with zTx = 0 in (2.6) replaced182

by zjxj = µ, xj > 0, zj > 0,∀j, where µ > 0 is the log-barrier parameter. A Newton step is183

taken with backtracking to stay strictly feasible. Therefore, our method is equivalent to fixing µ = 0184

throughout the iterations and not staying strictly feasible for x, z. This is comparable to the predictor185

step in predictor-corrector methods, or to affine scaling method.186

2.1.1 Nonlinear Least Squares; Jacobians187

The BAPas described in (2.1) is equivalent to the minimization of f(y) in (2.3), i.e, to a nonlinear188

least squares problem where the nonlinearity arises from the projection.189

This system can be recharacterized by introducing the (possibly nonsmooth) projection of a190

vector p onto the nonnegative, respectively nonpositive, orthant denoted p+ = argminx{∥x − p∥ :191

x ≥ 0}, respectively p− = argminx{∥x − p∥ : x ≤ 0}. In general, we can define the Moreau192

decomposition of p with respect to Rn
+ as p = p+ + p−, p

T
+p− = 0.193

Note that in the differentiable case the gradient of the squared residual f(y) in (2.3) is194

∇f(y) = (F ′(y))∗F (y),

where (·)∗ denotes the adjoint (here adjoint is transpose) and F ′ denotes the Jacobian matrix. We195

note that we have differentiability of the function h(w) := w+ if, and only if, {i : wi = 0} = ∅ if,196

and only if, w−w+ is in the relative interior of the normal cone of Rn
+ at w+ (negative of the polar197

cone at w+), see [50, Page 7], [24].198

We now discuss the framework of nonsmooth terminology needed for generalized gradients of a199

general function H : Rn → Rn.200
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Definition 2.3 ((local) Lipschitz continuity). Let Ω ⊆ Rn. A function H : Ω → Rn is Lipschitz201

continuous on Ω if there exists K > 0 such that202

∥H(y)−H(z)∥ ≤ K∥y − z∥, ∀y, z ∈ Ω.

H is locally Lipschitz continuous on Ω if for each x ∈ Ω there exists a neighbourhood U of x such203

that H is Lipschitz continuous on U .204

Let Ω ⊆ Rn. It follows from Rademacher’s Theorem [25, 49] that if H : Ω → Rn is locally205

Lipschitz on Ω then H is Frechét differentiable almost everywhere on Ω. Following Clarke [19, Def.206

2.6.1], we recall the following definition of the generalized Jacobian3.207

Definition 2.4 (generalized Jacobian). Suppose that H : Rm → Rm is locally Lipschitz. Let DH208

be the set of points where H is differentiable. Let H ′(y) be the usual Jacobian matrix at y ∈ DH .209

The generalized Jacobian of H at y, ∂H(y), is the convex hull4 of the set of all matrices obtained210

as limits of usual Jacobians, defined as follows211

∂H(y) := conv

 lim
yi→y

yi∈DH

H ′(yi)

 .

In addition, ∂H(y) is called nonsingular if every V ∈ ∂H(y) is nonsingular.212

We now return to the nonlinear least squares problem (2.3) with functions f and F . In the213

differentiable case, the Gauss-Newton direction is the solution of the (consistent) Gauss-Newton214

equation5215

F ′(y))∗(F ′(y))∆y = −(F ′(y))∗F (y). (equivalently invertible case, F ′(y)∆y = −F (y)). (2.8)

In the sequel A† denotes the generalized (Moore-Penrose) inverse of a matrix A. Solving for the216

best least squares solution ∆y in (2.8) yields217

∆y = −F ′(y))†F (y). (2.9)

Therefore, the directional derivative of f in the direction ∆y satisfies218

∆yT∇f(y) = (F ′(y))†F (y))T (−(F ′(y))∗F (y))
= −∥Projrange((F ′(y))∗) F (y))∥2
< 0, if F (y) /∈ null((F ′(y))∗),

(2.10)

where ProjΩ(u) denotes the orthogonal projection of the point u onto the set Ω. We conclude in219

the differentiable case that: the Gauss-Newton direction ∆y is a descent direction when F (y) ̸= 0.220

The Levenberg-Marquardt, LM , method is a popular method for handling singularity in F ′(y)221

by using the substitution/regularization (F ′(y))∗F ′(y)← ((F ′(y))∗F ′(y)) + λI, λ > 0. We now see222

3For our application we restrict ourselves to square Jacobians.
4Let S ⊂ Rn. The convex hull of S, denoted conv(S) is the smallest convex set containing S.
5The Gauss-Newton direction is the minimum of the quadratic model f(y + ∆y) ≈ f(y) + ∇f(y)T∆y +

1
2
∆yT ((F ′(y))∗F ′(y))∆y, i.e., the higher order quadratic terms are ignored, e.g., [27]. This is particularly suitable

here as the higher order terms involve the F (y) that is converging to zero.
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that we maintain a descent direction with a similar simplified approach if the basic assumption in223

(2.11) holds. This simplified approach avoids the product (F ′(y))∗F ′(y) and thus avoids increased224

ill-conditioning and loss of sparsity.225

Lemma 2.5. Consider the nonlinear least squares problem in (2.3). Let y ∈ Rm, with F differen-226

tiable at y. Let λ > 0 and let ∆y be the (unique) solution of227

(F ′(y) + λI)∆y = −F (y).

Then F ′(y) is positive semidefinite, F ′(y) ⪰ 0, and moreover, ∆y is the simplified LM direction
and is a descent direction if, and only if,

F (y) ̸= 0. (2.11)

Proof. For simplicity, set J = J(y) = F ′(y). By the feasibility assumption for (1.1), we conclude
that 0 = miny f(y) and that the basic assumption satisfies

F (y) ̸= 0 ⇐⇒ JF (y) ̸= 0. (2.12)

We observe that J is symmetric positive semidefinite follows from the definitions; see (2.16) below.228

Let J = UDUT denote the orthogonal spectral decomposition. The simplified regularization of229

LM type uses (J + λI)∆y = −F . Therefore,230

∆y = − (J + λI)−1 F = −U (D + λI)−1 UTF.

Therefore, the directional derivative of f at y in the direction of ∆y is231

∆yT∇f(y) = −
(
U (D + λI)−1 UTF

)T
(UDUTF )

= −(UTF )T (D + λI)−1D(UTF )

= −(UTF )TD1/2 (D + λI)−1D1/2(UTF )

< 0 ⇐⇒ (D1/2UT )F ̸= 0.

By (2.12), the latter is not zero if, and only if, (2.11) holds. This completes the proof.232

233

2.1.2 Well Conditioned Generalized Jacobian234

Recall the optimality conditions derived following (2.6). If we denote the orthogonal projection235

operator onto the nonnegative orthant by P+w = w+, then236

Aw+ = A(P+w) = (AP+)w+ = (AP+)(P+w) =
∑
wi>0

wiAi.

Here Ai is the i-th column of A. Thus, we see that at points where the projection is differentiable,237

the columns of A that are chosen correspond to the positive variables of w. We note that238

v +AT y > 0 =⇒ F ′(∆y) = AIAT∆y = AAT∆y.

Define the three index sets, I+, I0, I−, respectively, by239
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I+,0,− := I+,0,−(y) = {i : (v +AT y)i > 0,= 0, < 0}.

Then, for sufficiently small ∆y we can ignore I− to get

F (y +∆y)− F (y) = A(v +AT (y +∆y))+ −A(v +AT y)+
=

∑
i∈I+(y+∆y)(v +AT (y +∆y))iAi −

∑
i∈I+(y)(v +AT y)iAi

=
∑

i∈I+(y)(A
T∆y)iAi +

∑
i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)(v +AT (y +∆y))iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)(A

T∆y)iAi

=
∑

i∈I+(y)AiA
T
i ∆y +

∑
i∈I+(y+∆y)∩I0(y)AiA

T
i ∆y.

We note that the first summation is over the fixed index set I+(y), while the second is dependent240

on (AT∆y)i > 0. Suppose that AT
I0∆y = ei is consistent for each i ∈ I0. Then we can add or not241

add the corresponding column to the generalized Jacobian. This means we only need a maximum242

linearly independent subset of the columns AI0 . Let Ī0 ⊆ I0 be a maximum linearly independent243

subset6.244

Following [33] with the change using licols and Ī0, we define the following set245

U(y) :=

u ∈ Rn : ui ∈


{1}, if i ∈ I+
[0, 1] , if i ∈ Ī0
{0}, if i ∈ I− ∪ (I0\Ī0)

 . (2.13)

Then the generalized Jacobian of the nonlinear system at y ∈ Rm is given by the set246

∂F (y) = {A Diag(u)AT : u ∈ U(y)}. (2.14)

Let y0 ∈ Rm. Here Diag is the diagonal matrix formed from u. The nonsmooth Newton method247

for solving F (y) = 0 consists of the following iterative process.248

yk+1 = yk − V −1
k F (yk), Vk ∈ ∂F (yk). (2.15)

Here Vk is a generalized Jacobian (matrix) taken from the generalized Jacobian ∂F (yk).249

We note that, defining M = Diag(u) with u ∈ U(y), we have250

AMAT =
∑

i∈I+∪Ī0

uiAiA
T
i , ui = 1, i ∈ I+, ui ∈ [0, 1], i ∈ Ī0.7 (2.16)

Note that for an index set T , AT denotes the submatrix of A formed using the columns indexed251

by T .252

Remark 2.6. Since we have freedom in choosing the values ui ∈ [0, 1], i ∈ Ī0, we follow the optimal
diagonal scaling in [21, Prop. 2.1(v)], [34, Thm. 5.2] to minimize a condition number, and choose
the generalized Jacobian by setting

ui = min{1, 1/∥Ai∥2}, ∀i ∈ Ī0.
6We use the variant of the QR decomposition licols to extract a nice subset of linearly independent columns.
7Note that for positive diagonal M , and rectangular B, the ranks of B,BM, (BM)(BM)T are all the same.
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This means that the generalized Jacobian matrix we choose is nonsingular if, and only if, AI+∪I0253

is full rank m. Moreover, for large problems we expect ∥Ai∥ > 1 and therefore ui < 1. This goes254

against the intuitive choice of making ui as large as possible, i.e., = 1. Note that all elements of255

∂F (y) are invertible if, and only if, AI+ is invertible; while there exists an invertible element if,256

and only if, AI+∪I0 is full rank m.257

258

2.1.3 Vertices and Polar Cones259

In our numerical tests we can decide on the characteristics of the optimal solution using the prop-260

erties of (degenerate) vertices.261

Lemma 2.7 (vertex and polar cone). Suppose that x(y) = (v +AT y)+ ∈ P , where y ∈ Rm. Then262

the following are equivalent:263

(i) x(y) is a vertex of P ;264

(ii) AI+(y) is full column rank;265

(iii)

[
AI+ AI0∪I−
0 II0∪I−

]
is full column rank n.266

Moreover:267

(a) the corresponding generalized Jacobian in (2.16), Remark 2.6, is nonsingular if x(y) is a268

nondegenerate vertex;269

(b) the (nonnegative) polar cone of the feasible set P at x = x(y) is270

(P − x)+ = {w : w = ATu+ z, u ∈ Rm, z ∈ Rn
+, x

T z = 0}. (2.17)

271

Proof. Without loss of generality we can permute the columns of A and corresponding components272

of x and have A =
[
AI+ AI0 AI−

]
. We know that x(y) is a vertex (equivalently an extreme273

point, a basic feasible solution) if, and only if AI+ can be completed to a basis matrix if, and only274

if, the active set is full rank n. The active set of constraints is275 [
AI+ AI0∪I−
0 II0∪I−

]
x =

(
b
0

)
. (2.18)

This has the unique solution x(y) if, and only if, AI+ is full column rank. This shows the three276

equivalences items (i) to (iii), as well as the nonsingularity of the generalized Jacobian that we277

choose as claimed in item (a).278

From the optimality conditions we have that the gradient of the objective satisfies279

x− v = AT y +
∑

j∈I0∪I−

zjej ,

where ej is the j-th unit vector. And we know that x− v is in the polar cone at x if, and only if, x280

is optimal. Therefore, this yields the description of the polar cone at x as claimed in item (b).281
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Remark 2.8 (degeneracy of optimal solutions). Let x be a boundary point of P . Then the polar282

cone of P at x is given in (2.17). Moreover, x is the optimal solution of (2.1) if, and only if,283

x− v ∈ (P − x)+, i.e., we can choose v with284

v = x−ATu−z, z ≥ 0, zTx = 0.

In fact, we can choose z so that x+ z > 0 and have no degeneracy or choose z = 0 and have high285

degeneracy. For these choices we still get x optimal. As mentioned above, it is shown in [24] that286

x∗(v) is differentiable at v̄ ⇐⇒ (x∗(v̄)− v̄) ∈ relint(P − x∗(v̄))+,

where relint refers to the relative interior. This justifies our use of the Levenberg-Marquardt regu-287

larization.288

The pseudocodes for solving (2.1) using the exact and inexact nonsmooth Newton methods are289

presented below in Appendix A in Algorithms A.1 and A.2, respectively.290

3 Cyclic HLWBProjection for Best Approximation291

A notable aspect of this work is the computational comparison of our semismooth algorithm with the292

method of Halpern-Lions-Wittmann-Bauschke, (HLWB). The convergence analysis of the method293

has its roots in the field of fixed point theory. For the readers’ convenience we provide a brief294

description and some relevant references.295

Problem 3.1 (The best approximation problem for linear inequalities). Given an m× n matrix A296

and a vector b ∈ Rm such that297

Q := {x ∈ Rn : Ax ≤ b} ≠ ∅, (3.1)

and a point v ∈ Rn, v /∈ Q, called the anchor point, find the orthogonal projection of v onto Q,298

denoted by PQ(v).299

The set Q is the intersection of m half-spaces. Denote the i-th half-space of (3.1) by300

Hi := {x ∈ Rn : xTai ≤ bi}, (3.2)

where ai is the i-th row of A and bi is the i-th component of b. The orthogonal projection of a301

point v ∈ Rn onto Hi, denoted by Pi(v), is302

Pi(v) = v +min

{
0,

bi − xTai

∥ai∥2

}
ai. (3.3)

The HLWBalgorithm for this problem is a projection method that employs projections onto the303

individual half-spaces of (3.2) and makes use of a sequence of, so called, steering parameters.304

Definition 3.2 (steering sequence). A real sequence (σk)
∞
k=0 is called a steering sequence if it has305

the following properties:306
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σk ∈ [0, 1] for all k ≥ 0, and lim
k→∞

σk = 0,∑∞
k=0 σk =∞, (or equivalently,

∏∞
k=0(1− σk) = 0) ,∑∞

k=0 |σk+1 − σk| <∞.

(3.4)

Observe that although σk ∈ [0, 1], the definition rules out the option of choosing all σk equal307

to zero or all equal to one because of contradictions with the other properties. The third property308

in (3.4) was introduced by Wittmann, see, e.g., the review paper of López, Martin-Márquez and309

Xu [40].310

Algorithm 3.1 cyclic HLWBalgorithm for linear inequalities

Initialization: Choose an arbitrary initialization point x0 ∈ Rn

Iterative Step: Given the current iterate xk, calculate the next iterate xk+1 by

xk+1 = σkv + (1− σk)Pik(xk), (3.5)

where v is the given anchor point, ik = k mod m+1 and (σk)
∞
k=0 is a steering sequence.

The HLWBalgorithm has a much broader formulation that applies to the BAPwith respect311

to the common fixed points set of a family of firmly nonexpansive (FNE) operators presented in312

Bauschke [4]; see also Bauschke and Combettes [6, Chap. 30]. For more on the BAP , see, e.g.,313

Deutsch’s book [22]. The family of iterative projection methods for the BAP includes, in addition to314

the HLWBmethod, also Dykstra’s algorithm [12], [6, Theorem 30.7], Haugazeau’s algorithm [29], [6,315

Corollary 30.15], and Hildreth’s algorithm [31,36]. There are also simultaneous versions of some of316

these algorithms available, see, e.g., [13]. A string-averaging HLWBalgorithm, which encompasses317

the sequential, the simultaneous and other variants of the HLWBalgorithm, recently appeared318

in [14].319

More on applications of BAPand the HLWBalgorithm are given in Appendix C.320

4 Applications321

We consider several applications of the best approximation problem, (2.1). Of special interest is322

the following approach to solving a linear program, (LP ).323

4.1 Solving Linear Programs324

We consider a maximization primal LP in standard equality form325

(PLP)
p∗LP := max cTx

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

(4.1)

The dual LP is326

(DLP)
d∗LP := min bT y

s.t. AT y − z = c ∈ Rn

z ∈ Rn
+.

(4.2)

13



We assume that A is full row rank and that the optimal value is finite. Note that the fundamental327

theorem of linear programming now guarantees that strong duality holds for both the primal and328

dual problems, i.e., equality p∗LP = d∗LP holds and both optimal values are attained.329

We now see in Lemma 4.1 that the solution to (PLP) is the limit of the sequence of projections330

of the vectors vR = Rc ∈ Rn onto the feasible set as8 R ↑ ∞.331

Lemma 4.1 ( [41–43,53]). Let the given LP data be A, b, c with finite optimal value p∗LP . For each332

R > 0 define333

x∗(R) := argminx
1
2 ∥x−Rc∥2

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

(4.3)

Then x∗ is the minimum norm solution of (PLP) if, and only if, there exists R̄ > 0 such that334

R ≥ R̄ =⇒ x∗ = x∗(R) = argmin

{
1

2
∥x−Rc∥2 : Ax = b, x ∈ Rn

+

}
. (4.4)

Remark 4.2. Note that the objective function in (4.3) when expanded is equivalent to R(−cTx+335

1
2R ∥x∥

2)+ (12∥Rc∥2), i.e., this is equivalent to minimizing −cTx+ 1
2R ∥x∥

2, an exact regularization336

of the original LP (4.1), e.g., [26,51]. In fact, using a Lagrange multiplier argument, we observe337

that this is equivalent to adding a trust region constraint ∥x∥2 ≤ δ to the LP . The trust region338

radius δ is inversely proportional to the regularization parameter 1
2R and so directly proportional339

to R, for R ≤ R̄, where R̄ is given in Lemma 4.1. We note that if δ is too small, we would have340

an infeasible problem. Equivalently, if R is too small, then the BAP solution x∗(R) is not near the341

optimal solution x∗ of the LP .342

In our application, we ignore the regularization property but exploit the fact that we can solve343

the BAP efficiently for each R.344

We would like an R that is not too large but large enough so that Rc > ∥x∗∥. We use the345

following estimate to start our algorithm:346

R = min

{
50,

√
mn ∥b∥
1 + ∥c∥

}
. (4.5)

To avoid numerical complications from large numbers, we consider the following equivalent problem347

that uses the scaling 1
Rb rather than Rc.348

Corollary 4.3. Let A, b, c, R, x∗(R) be defined as in Lemma 4.1. Then349

1
Rx

∗(R) = w∗(R) := argminw
1
2 ∥w − c∥2

s.t. Aw = 1
Rb ∈ Rm

w ∈ Rn
+.

(4.6)

Proof. From350

∥x−Rc∥2 = R2

∥∥∥∥ 1

R
x− c

∥∥∥∥2 = R2 ∥w − c∥2 , x = Rw,

8Note that our algorithm identifies infeasibility, but we do not consider that aspect in this paper.
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we substitute for x in (4.3) and obtain: A(Rw) = b ⇐⇒ Aw = 1
Rb. The result follows from the351

observation that argmin does not change after discarding the constant R2.352

4.1.1 Warm Start; Stepping Stone External Path Following353

We consider the scaling in Corollary 4.3 and recall the relation between the scaling for c with354

variable x:355

x(R) = Rw(R).

(To simplify notation, we ignore the optimality symbol (·)∗.) The optimality conditions from The-356

orem 4.6 for w = w(R) in Corollary 4.3 are:357 w − c−AT y − z
Aw − 1

Rb
zTw

 =

0
0
0

 , w, z ∈ Rn
+, y ∈ Rm. (4.7)

We conclude that358

lim
R→∞

Projrange(AT )w(R) = 0, lim
R→∞

Rw(R) = x∗, the optimum of the LP.

The optimality conditions are now359

w = c+AT y + z, b = ARw = AR(c+AT y)+, wT z = 0, w, z ≥ 0. (4.8)

This means that ∥w∥ is an estimate for the error in dual feasibility, i.e., an estimate for the accuracy360

of Rw as the optimum of the original LP.361

Given the current R and the approximate optimal triplet (w(R), y(R), z(R)), we would like to362

find a good new Rn ≥ R and a corresponding yn to send to the projection algorithm for a warm363

start process. We use sensitivity analysis for the best approximation problem.364

Theorem 4.4. Suppose R > 0 is given and the triplet (w, y, z)= (w(R), y(R), z(R)) is primal-dual365

optimal for (4.6); i.e., satisfies (4.7). Let366

N = N (z) = {i : zi > 0}, B = B(w) = {i : wi > 0}, Z = Z(w, z) = {i : wi = zi = 0};

e =

(
bB −RwB
−(bN +RzN )

)
, f =

(
RbB
−RbN

)
,

(4.9)

where bB, bN are defined in (4.13) and (4.16), respectively. Then the maximum value for increasing367

R and maintaining both optimality and the indices in the bases sets B,N ,Z is368

Rn = min{fi/ei : ei > 0, fi > 0, ∀i}. (4.10)

The corresponding changes ∆w,∆y,∆z that result in w +∆w, y +∆y, z +∆z still optimal for Rn369

are given in the proof in (4.13), (4.12), (4.16), respectively.370

Moreover, if Rn =∞, then the optimal solution of the LP has been found.371
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Proof. We first want to find the maximum increase in R that keeps the current basis B optimal
for (4.6), i.e., we maintain

zi ≥ 0, ∀i ∈ N , wi ≥ 0, ∀i ∈ B, wi = zi = 0, ∀i ∈ Z.

To maintain the feasibility from the three basis sets in (4.9), we have372

AB(wB +∆wB) =
1
Rn

b =⇒ AB∆wB =
(

1
Rn
− 1

R

)
b

wB +∆wB − cB −AT
B(y +∆y) = 0 =⇒ ∆wB = AT

B(∆y) =⇒ AB∆wB = ABA
T
B(∆y) =

(
R−Rn
RRn

)
b

−cZ −AT
Z(y +∆y) = 0 =⇒ AT

Z(∆y) = 0
−cN −AT

N (y +∆y)− (zN +∆zN ) = 0 =⇒ ∆zN = −AT
N (∆y).

(4.11)
We have two equations to solve for ∆y. When strict complementarity fails, we choose a full column
rank matrix VZ that satisfies range(VZ) = null(AT

Z); otherwise VZ = I. Then we solve to get

∆yp := VZ
(
ABA

T
BVZ

)†
b, ∆y :=

(
R−Rn

RRn

)
∆yp.

9 (4.12)

Note that a solution exists since b ∈ range(AB).
10 We now have373

−wB ≤ ∆wB = AT
B

(
R−Rn

RRn

)
∆yp = −

(
Rn −R

RRn

)
AT

B∆yp =: −
(
Rn −R

RRn

)
bB. (4.13)

We get that374

(Rn −R)bB ≤ (RRn)wB ⇐⇒ Rn(bB −RwB) ≤ RbB. (4.14)

To find the maximum Rn and check that it is not Rn =∞, we use an LP type ratio test. We set
the two vectors to be

eB = (bB −RwB), fB = RbB.

Note that the inequalities in (4.14) hold trivially for Rn = R. For simplicity of notation, we ignore375

the subscript B and use e, f . Therefore, we cannot have both ei > 0, fi ≤ 0. We choose Rn to be376

the maximum that satisfies the ratio test, i.e., we get:377

Rn = min
i
{fi/ei : fi > 0, ei > 0, i ∈ B}, (4.15)

where the minimum over the empty set is by definition +∞. Note that maxi{fi/ei : fi < 0, ei <
0, i ∈ B} ≤ Rn always holds since Rn = R > 0 satisfies the inequality. Moreover, the result
simplifies in the nondegenerate case as we have

AT
B

(
R−Rn

RRn

)
∆yp = −

(
Rn −R

RRn

)
A†

Bb = −
(
Rn −R

RRn

)
bB, bB = A†

Bb.

9Note that in applications we can include indices from Z in B. This allows for a greater choice for ∆y,∆wB .
10In the nondegenerate case we get a simplification since AT

B
(
ABA

T
B
)†

= A†
B.
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We can then set Rn =∞ if AB is full column rank or bB = wB, i.e., we have the (best) least squares378

solution.379

Similarly we now need a ratio test for zN to maintain dual feasibility and nonnegativity. Note380

that we set ∆zi = ∆wi = 0, ∀i ∈ Z. We have381

−zN ≤ ∆zN = −AT
N

(
R−Rn

RRn

)
∆yp =

(
Rn −R

RRn

)
AT

N∆yp =:

(
Rn −R

RRn

)
bN . (4.16)

We get that382

(Rn −R)bN ≥ −(RRn)zN ⇐⇒ Rn(−bN −RzN ) ≤ −RbN .

We again find the maximum Rn and check that we do not have Rn = ∞ using an LP type ratio383

test. We set the two vectors to be eN = −(bN + RzN ), fN = −RbN . Recall that the inequality384

holds trivially for Rn = R. Again, for simplicity of notation, we ignore the subscript N and use385

e, f . Therefore, we cannot have ei > 0, fi ≤ 0. We choose Rn to be the maximum that satisfies:386

max
i
{fi/ei, if fi < 0, ei < 0, i ∈ N} ≤ Rn = min

i
{fi/ei, if fi > 0, ei > 0, i ∈ N}.

We choose Rn as the minimum of the above two values found.387

Finally, if Rn = ∞, then the bases do not change as R increases to infinity, i.e., the optimal388

bases have been found.389

The above Theorem 4.4 illustrates the external path following algorithm that we are using.390

The theorem finds specific values of R, stepping stones on the path, where the current choice of391

columns of A changes. Once we find that the next stepping stone is at infinity, we know that we392

have found the optimal choice of columns of A. Thus, we have an external path following algorithm393

with parameter R but we only choose specific points on this path to step on. The algorithm is394

particularly efficient for nondegenerate problems, Z = ∅, where the sensitivity analysis is accurate.395

For highly degenerate problems, restricting ∆wi = ∆zi = 0,∀i ∈ Z, can severely restrict increasing396

R, see Section 5.3 below.397

4.1.2 Upper and Lower Bounds for the LP Problem398

The optimal solution from the projection problems (4.3) and (4.6) provides a feasible x, and we get399

the corresponding LP lower bound cTx∗(R). The upper bound is not as easy and more important400

in stopping the algorithm.401

Note that in Section 4.1.1 primal feasibility and complementary slackness hold for x(R) = Rw402

and z, and this is identical for the LP problem. Therefore, we need to find yLP to satisfy the LP403

dual feasibility404

zLP = AT yLP − c ≥ 0.

But, from the projection problem optimality conditions we have405

AT (−y) = z + c− w, 0 ≤ z = AT (−y)− c+ w, w ≥ 0.
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As seen above, this means that in the limit, w is small and we do get dual feasibility y(R)→ yLP.406

But at each iteration we actually have407

z − w = AT (−y)− c, z, w ≥ 0, zTw = 0, y ∼= yR. (4.17)

We can write the required dual feasibility equations using the indices for wi > 0.408

AT
i y − ci ∈

{
{0}, if wi > 0,
R+, if wi = 0.

Recall the definitions of N ,B in (4.9). Then for a given yR from the optimality conditions from409

the projection problem (4.17), we consider the nearest dual LP feasible system with unknowns410

z ≥ 0, yLP. Note that we are using the projection with free variables, Section 4.2.411

Lemma 4.5. Let w, y, z be approximate optimal solutions from (4.8) and B the support defined412

in (4.9). Consider the following BAP for the given dual variables.413 (
y∗LP
z∗LP

)
∈ argmin 1

2∥(−y)− yLP∥2 + 1
2∥0− (zLP)B∥2 + 1

2∥zN − (zLP)N ∥2

s.t.

[
AT

B −I 0
AT

N 0 −I

] yLP

(zLP)B
(zLP)N

 =

(
cB
cN

)
yLP free, zLP =

(
(zLP)B
(zLP)N

)
≥ 0.

(4.18)

Then the optimal value of the LP (4.1) satisfies the upper bound414

p∗LP ≤ bT y∗LP.

Moreover, suppose that zB = 0. Then equality holds and the LP is solved with primal-dual optimum415

pair (w, yLP).416

Proof. Recall that the optimal value p∗LP is finite. The proof of the bound follows from weak duality417

in linear programming. Equality follows from the optimality conditions since primal feasibility and418

complementary slackness hold with w.419

4.2 Projection and Free Variables420

For many applications, some of the variables are free and not all the variables are in the objective421

function. We consider these two cases. Note this can arise when the objective is a general least422

squares problem, e.g., min ∥Bx− c∥2 and we add the constraint Bx−w = 0 and substitute the free423

variable w into the objective function.424

4.2.1 Projection with Free Variables425

We first consider the problem with some of the variables free:426
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(P)

x(v) := argminx1,x2

1
2 ∥x− v∥2 , x =

(
x1
x2

)
, v =

(
v1
v2

)
,

s.t. Ax = b ∈ Rm

x1 ∈ Rn1
+ , x2 ∈ Rn2 ,

optimal value: p∗f (v) = 1
2 ∥x(v)− v∥2 ,

(4.19)

427

Theorem 4.6. Consider the generalized simplex best approximation problem with free variables428

(4.19). Assume that the feasible set is nonempty. Then the optimum x(v) exists and is unique.429

Moreover, let430

Ff (y) := A

((
(v +AT y)1

)
+

(v +AT y)2

)
− b, ff (y) =

1

2
∥Ff (y)∥2. (4.20)

Then Ff (y) = 0 ⇐⇒ y ∈ argmin ff (y), and431

x(v) =

((
(v +AT y)1

)
+

(v +AT y)2

)
, for any root Ff (y) = 0. (4.21)

Let p∗f (v) =
1
2∥x(v)− v∥2 denote the primal optimal value. Then strong duality holds and the dual432

problem of (4.19) is the maximization of the dual functional, ϕf (y, z1):433

p∗f (v) = d∗f (v) := max
z1∈Rn1

+ ,y∈Rm
ϕ(y, z1) := −

1

2

∥∥∥∥(z10
)
−AT y

∥∥∥∥2 + yT (Av − b)− zT1 v1.

434

Proof. We modify the proof of Theorem 2.1. The Lagrangian, Lf (x, y, z) for (4.19) is435

Lf (x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zT1 x1, ∇xLf (x, y, z) = x− v −AT y −

(
z1
0

)
. (4.22)

Solving for a stationary point means436

0 = ∇xLf (x, y, z) =⇒ x = v +AT y + z, z =

(
z1
0

)
.

Therefore, with this definition of z, we still have at a stationary point that437

Lf (x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

19



As in Theorem 2.1, the problem (4.19) is a projection onto a nonempty polyhedral set, a closed438

and convex set. The optimum exists and is unique and strong duality holds, i.e., there is a zero439

duality gap p∗f = d∗f , and the dual value is attained. The Lagrangian dual is440

d∗ = maxz1∈R
n1
+ ,y minx Lf (x, y, z) =

1
2 ∥x− v∥2 + yT (b−Ax)− zT1 x1

= maxz1∈R
n1
+ ,y,x {Lf (x, y, z1) : ∇xLf (x, y, z1) = 0}

= maxz1∈R
n1
+ ,y,x {Lf (x, y, z) : x = v +AT y + z}

= maxz1∈R
n1
+ ,y −1

2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Therefore, we derive the KKT optimality conditions for the primal dual variables (x, y, z) with441

z =

(
z1
0

)
, x1 ≥ 0, z1 ≥ 0, as follows442

∇xLf (x, y, z) = x− v −AT y − z = 0, (dual feasibility)
∇yLf (x, y, z) = Ax− b = 0, (primal feasibility)
∇zLf (x, y, z) ∼= x ∈ (Rn

+ − z)+. (complementary slackness zT1 x1 = 0)

The standard KKT optimality conditions for primal-dual variables (x, y, z) can be rewritten as:443 x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x1, z1 ∈ Rn1
+ , y ∈ Rm, z =

(
z1
0

)
.

Note v + AT y = x − z = x + (−z). Therefore this is a Moreau decomposition of v + AT y, with444

xT z = 0, x, z ∈ Rn
+, x = (v + AT y)+. Therefore, we get A(v + AT y)+ = b, where we modify the445

definition of + so that we project only the first part corresponding to x1 onto the nonnegative446

orthant Rn1
+ and then this means z1 = −

(
(v +AT y)1

)
−.447

We see that the optimality conditions448

A

((
(v +AT y)1

)
+

(v +AT y)2

)
= b, x1 =

(
(v +AT y)1

)
+
, x2 = (v +AT y)2

imply that
z = −(v +AT y)−, z

Tx = 0, x, z ∈ Rn
+ , x− v −AT y − z = 0,

i.e., Ff (y) = 0, for some y ∈ Rm.449

For a vertex, a basic feasible solution, we need n active constraints. The equality constraints450

Ax = b account for m, leaving n−m to choose among 1, 2, . . . , n1, the constrained variables in x1.451

This leaves452

m1 = n1 − (n−m) = m− (n− n1) = m− n2 =⇒ m1 = m− n2, basic variables.

4.3 Triangle Inequalities453

We can obtain an efficient projection onto a large set of triangle inequalities that arise as cuts in454

graph problems, e.g., [46]. We let G = (V,E) denote a graph with vertex set V and edge set E,455

and define the sets:456
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T := {(u, v, w) : u < v < w ∈ V },

and the corresponding triangle inequalities, where the weight vector x = (xuv)uv∈E here has two457

indices for the edge uv connecting vertices u, v,458

(I)


xvw − xuv − xuw ≤ 0
xuw − xuv − xvw ≤ 0
xuv − xvw − xuw ≤ 0
∀(u, v, w) ∈ T

0 ≤ xuv ≤ 1, ∀(u, v) ∈ E

 . (4.23)

We could rewrite this as a standard feasibility-seeking problem or as a best approximation459

problem, i.e., given an x̄ we want to find the nearest point to x̄ that is in a subset of triangle460

inequalities defined by the matrix T , namely with slacks s, t and e the vector of ones,461

min
1

2
∥x− x̄∥2 s.t. Tx+ s = 0, x+ t = e, x, t ≥ 0, s ≥ 0.

We generated and solved random problems. The algorithm was very efficient though we do not462

report the details here.463

5 Numerics464

In this section we compare the Regularized Nonsmooth Newton Method, (RNNM), (exact and465

inexact) with the HLWBmethod [4] described in Section 3, MATLAB’s lsqlin interior point solver,466

and the quadratic programming proximal augmented Lagrangian method, (QPPAL ) [39]. Recall467

our BAP, (2.1), and the pseudocode for HLWB in Algorithm A.3 in Appendix A. We show in our468

experiments that RNNM(exact) significantly outperforms the other methods. These experiments469

are performed with an i7-4930k @ 3.2GHz, 16 GBs of RAM, and MATLAB 2022b software.470

Before comparing the differences in performance of the algorithms we are experimenting with,471

we elaborate on our implementation of the HLWBmethod, see also Section 3. HLWBprojects onto472

individual convex sets and computes the next iterate, xk+1, by taking a specific convex combination.473

This combination is determined by a sequence of steering parameters, as defined in Definition 3.2,474

and the initial point v, commonly referred to as the anchor point in Problem 3.1. Traditionally,475

each projection is called an iteration, and the collection of these iterations is defined as a sweep [6].476

In the context of problem (2.1), HLWB is iterating onto one of the hyperplanes (sets) defined by the477

rows of A, denoted aik , as well as the nonnegative orthant. We complete a sweep once we project478

onto all the hyperplanes and onto the nonnegative orthant. (See steps 13-15 of Algorithm A.3.)479

Thus, we relate one sweep of HLWBwith one iteration of RNNM .480

5.1 Time Complexity481

Since RNNM is a second-order method and HLWB is a first-order method, we now discuss theoretical482

time complexity differences. From the RNNMalgorithm, Algorithm A.1, we can see that worst-483

case time complexity is O(m3 +m2n) 11 flops, of which every step but solving the linear system is484

11See Algorithm A.1 lines 4-12, the total time complexity respectively is: m2n+m2 +m3 + n+ 2n+mn+ 2n+
mn+ n+m+ 1 = m2n+m3 +m2 + 2mn+ 5n+m+ 1 = O(m3 +m2n).
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efficiently parallelizable. It is worth mentioning that in line 7 of Algorithm A.1, the linear system485

we are solving is positive definite and sparse. Therefore, it can be solved efficiently using the486

Cholesky decomposition. From the HLWBalgorithm, Algorithm A.3, we can see that worst-case487

time complexity per iteration is O(mn) and per sweep is O(m2n), of which every step is efficiently488

parallelizable. 12
489

From the perspective of theoretical time complexity it would be easy to assume that HLWB is490

the preferable algorithm as each of it’s iterations are composed of operations that are completely491

parallelizable and each first-order sweep has an overall lower time-complexity. However, without492

performing numerical tests with varying parameters m and n, we cannot yet conclude how a first-493

order method compares to a second-order method in terms of desired performance, especially as m494

and n get extremely large as observed in practice.495

5.2 Comparison of Algorithms496

When performing our numerical experiments, we refer to the discussion on techniques for compar-497

isons of algorithms given in [8]. In particular, we include performance profiles [23], and tables of498

the performances for RNNM(exact and inexact), HLWB , lsqlin, and for QPPAL.499

We compare the HLWBalgorithm to RNNMby generating a test problem with the form specified500

in (2.1). In this test problem, the anchor v lies in the relative interior of the normal cone (negative501

of the polar cone) of a vertex of the feasible polyhedron. Therefore, the vertex is the closest point to502

v. Additionally, to ensure meaningful comparisons, we set ∥A∥ = 1 and ∥v∥ = 1 as no convergence503

results for RNNMsolving (2.1) have been proven, as far as we know.504

The RNNMalgorithm starts with initializing x0 ← (v + AT y0)+, where either y0 = 0m or we505

are given a y0 for a warm start (as discussed in our LP application). Then, x0 ← (v + AT y0)+506

reduces to x0 ← max(v, 0) in the initialization stage of RNNM. Therefore, to ensure all algorithms507

start at the same point, we initialize x0 ← max(v, 0) for HLWB , and provide x0 ← max(v, 0) as508

a warm start for MATLAB’s lsqlin solver. Since QPPALperforms an ADMMwarm-start, there is509

no way to provide a warm start point for it.510

Since RNNMsolves a reduced KKT condition for a convex problem, the term ∥F (yk)∥
1+∥b∥ is a511

sufficient relative residual to serve as a stopping condition for RNNM. Since HLWB is a first512

order method, its stopping criterion is measured at the end of a sweep, rather than at the end of513

an iteration. Furthermore, HLWBdoes not have any proper stopping criterion, but converges in514

the limit. Therefore, we use the relative primal feasibility residual, i.e., ∥Ax̂k−b∥
1+∥b∥ , as the stopping515

criterion. Note that we use yk instead of xk in the stopping criterion as x̂k is nonnegative at516

the end of every sweep. The lsqlin solver uses first-order optimality conditions. As in lsqlin,517

QPPALuses first-order optimality conditions, and we report the relative optimality gap, |p∗ −518

d∗|/ (1 + (|p∗|+ |d∗|)/2) for the relative residual of QPPAL . Before discussing the generation of519

the problems, it is worth noting that we are choosing to use QPPAL ’s Cholesky decomposition520

direct solver instead of its inexact solver. In addition, we increase the maximum number of iterations521

for the two phases of QPPAL to match the maximum number of sweeps the other methods utilize.522

Furthermore, we inform QPPAL that the quadratic has Q = I, the identity.523

12See Algorithm A.3 lines 5-12; the total time complexity respectively per iteration that projects onto a half space is
(2n+2)+1+(n+2)+(mn+m+1) = mn+3n+m+6 = O(mn) flops. Similarly, the total time complexity respectively
per iteration that projects onto the nonnegative orthant is: n+1+(n+2)+(mn+m+1) = mn+2n+m+4 = O(mn)
flops of which all flops are efficiently parallelizable. Therefore, in terms of sweeps the HLWBmethod computes
m(mn+ 3n+m+ 6) +mn+ 2n+m+ 4 = m2n+ 4mn+m2 + 2n+ 7m+ 4 = O(m2n) flops.
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In Section 5.2.1, we generate problems such that v lies in the relative interior of the normal cone524

of a nondegenerate vertex. We also experiment with degenerate vertices, but observe very similar525

results. These tests, and the performance of the RNNMalgorithm help to motivate the theory and526

potential practice of using RNNMfor LP applications, as seen in Section 5.3.527

For the performance profiles in Section 5.2.1, we use the following notation from [8]. Let P528

denote our set of problems with varying m, n, and density. Similarily, let S represent our set529

of solvers, RNNM(exact and inexact), HLWB , lsqlin, and QPPAL . We define the performance530

measure tp,s > 0 for each pair (p, s) ∈ P ×S as the computational time of solver s to solve problem531

p. For each problem p ∈ P and solver s ∈ S, we define the performance ratio as532

rp,s =

{
tp,s

min{tp,s : s∈S} , if convergence test passed,

∞, if convergence test failed.

The solver s that performs the best on problem p will have a performance ratio of 1. Solvers that533

perform worse than s on problem p will satisfy tp,s > 1. In other words, the larger the performance534

ratio, the worse the solver performed on problem p.535

The performance profile of a solver s is defined as536

ρs(τ) =
1

|P |
size{p ∈ P : rp,s ≤ τ}.

Therefore, ρs(τ) represents the relative portion of time in which the performance ratio rp,s for solver537

s is within a factor τ ∈ R of the best possible performance ratio.538

5.2.1 Numerical Comparisons539

We tested the algorithms with optimal solutions at: nondegenerate vertices, degenerate vertices540

and non-vertices. They all exhibited similar results. Therefore, we present results restricted to541

nondegenerate vertices. We begin with choosing v for (2.1) such that the optimum is uniquely a542

nondegenerate vertex of P . In the tables below we vary m, n, and the problem density to illustrate543

the changes in each solver’s performance. A data point in each table is the arithmetic mean of 5544

randomly generated problems of the specified parameters that also satisfy ∥A∥ = 1, ∥v∥ = 0.1. For545

example, the first row of Table 5.1 represents a problem with parameters m = 500, n = 3000, and546

a density of 0.0081, and each solver will solve 5 randomly generated problems of the form discussed547

in (2.1), and the average time and relative residual from solving all 5 problems is displayed in548

the table. The desired stopping tolerance for the tables and performance profiles is ε = 10−14
549

and maximum iterations (sweeps) is 2000 for all solvers. Lastly, it should be noted that the550

regularization parameter of RNNMfor these experiments is chosen in an adaptive way. It takes551

into account the relative residual as defined in line 13 of Algorithm A.1, the norm of the Newton552

direction, and the norm of v. The purpose of this is to decrease the amount of regularization as we553

approach the optimal solution while accounting for the norms of the Newton direction and v. This554

regularization parameter is explicitly defined as555

λk+1 = mean
((
10−2Fk

)
max(1, log10(∥dk∥)),

(
10−3Fk

)
max(1, log10(∥v∥)), 10−3Fk

)
, (5.1)

where Fk is the relative residual at iteration k, and dk is the Newton direction.556
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From Tables 5.1 to 5.3, the empirical evidence demonstrates the superiority of the RNNM(exact)557

approach over the other solvers. Since the RNNM’s reduced KKT system is m×m and solved using558

the Cholesky Decomposition, it’s performance should be affected most noticeabley as m varies or559

density increases. This theoretical observation can be seen in Tables 5.1 to 5.3, as the RNNM(exact560

and inexact) algorithm is slower to converge for increasing m and density, but is not affected by561

an increase in n.562

From Figure 5.1 the empirical evidence shows similar results to the tables, but better demon-563

strates the differences in performance between RNNM(exact) and the other solvers. The problems564

in Figure 5.1a are similar to those of Table 5.1 except m varies by 100 from 100 to 2000. Simi-565

larly, the problems in Figure 5.1b have n varying by 100 from 3000 to 5000, and Figure 5.1c has566

density varying by 1% from 1% to 100%. In every performance profile, the RNNM(exact) algo-567

rithm clearly outperforms the other solvers in our experiments, with RNNM(inexact) performing568

well for an inexact method on mid-sized problems. Conversely, HLWB is relatively slow on these569

problems. This can be attributed to its linear convergence rate. Due to it’s linear convergence,570

it will perform a large number of sweeps, which can amount to millions of iterations on certain571

problems with large m. Performance profiles can be found in Appendix B.1 with the stopping tol-572

erances ε = 10−2, 10−4, to illustrate that RNNM(exact) outperforms HLWB and lsqlin at different573

tolerances, but QPPAL remains competitive.574

Table 5.1: Varying problem sizes m; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
500 3000 8.1e-01 4.23e-02 1.51e-01 1.54e+02 3.77e+00 1.14e+00 1.96e-16 8.26e-16 2.25e-04 7.26e-17 1.72e-17
1000 3000 8.1e-01 4.40e-01 9.97e-01 3.71e+02 5.37e+00 2.15e+00 2.70e-16 1.95e-15 2.14e-04 3.87e-17 2.70e-17
1500 3000 8.1e-01 1.17e+00 3.23e+00 6.09e+02 7.02e+00 4.69e+00 3.41e-17 6.73e-16 2.27e-04 3.95e-17 1.16e-17
2000 3000 8.1e-01 2.49e+00 7.51e+00 8.67e+02 1.02e+01 7.81e+00 6.11e-17 3.11e-17 2.24e-04 3.14e-17 -2.74e-17

Table 5.2: Varying problem sizes n; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
200 3000 8.1e-01 3.12e-03 3.69e-02 4.45e+01 3.50e+00 8.66e-01 8.64e-18 7.39e-17 2.56e-04 6.52e-16 5.89e-17
200 3500 8.1e-01 3.08e-03 4.05e-02 5.17e+01 4.93e+00 1.00e+00 9.07e-18 1.26e-17 2.78e-04 1.23e-15 2.15e-17
200 4000 8.1e-01 3.24e-03 3.70e-02 5.82e+01 7.31e+00 1.09e+00 1.46e-16 8.91e-16 2.80e-04 3.21e-16 -9.18e-18
200 4500 8.1e-01 3.99e-03 4.17e-02 6.58e+01 1.01e+01 1.18e+00 1.80e-15 2.05e-16 3.13e-04 4.61e-17 1.71e-16

Table 5.3: Varying problem density; comparing computation time and relative residuals.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
300 1000 25 5.69e-02 2.66e-01 4.55e+01 3.30e-01 1.20e+00 2.83e-17 1.14e-17 1.50e-04 8.61e-17 5.99e-17
300 1000 50 5.43e-02 2.28e-01 5.39e+01 3.08e-01 1.82e+00 1.23e-16 1.97e-17 1.44e-04 8.08e-16 1.42e-17
300 1000 75 7.75e-02 2.86e-01 5.36e+01 3.16e-01 1.49e+01 4.83e-16 1.72e-17 1.62e-04 3.49e-16 -3.43e-16
300 1000 100 7.27e-02 2.47e-01 4.65e+01 3.00e-01 2.54e+02 5.66e-16 2.15e-17 1.63e-04 1.91e-15 1.04e-14
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(a) Varying problem sizes m. (b) Varying problem sizes n.

(c) Varying problem density.

Figure 5.1: Performance profiles for problems with varying m, n, and densities for nondegenerate
vertex solutions.

5.3 Solving Large Sparse Linear Programs575

We now apply (4.3) and Theorem 4.4 to solve large-scale randomly generated LP s, and problems576

from the NETLIB dataset. We call this method the stepping stones external path following algo-577

rithm, (SSEPF), and note that we use the estimate for a starting R given in (4.5). The stepping578

stones are found using Rn in (4.10). We add a small decreasing scalar to Rn to ensure that we579

change the basis of A at each iteration. For simplicity, we restrict ourselves to nondegenerate LP s580

for the randomly generated problems.581

We compare SSEPF with the MATLAB linprog code, using both the dual simplex and the582

interior-point algorithms. We also compare with Mosek’s dual simplex and interior point method,583

and with the semismooth Newton inexact proximal augmented Lagrangian method, (SNIPAL) [38].584

We use randomly generated problems scaled so that ∥A∥ = 1, and the optimal solution x∗ satisfies585

∥x∗∥ = 1. A data point in Table 5.4 is the arithmetic mean of 5 randomly generated problems586

of the specified parameters. We exclude instances where a method fails to provide a solution587

from Table 5.4 for clarity, but these instances are plotted in Figure 5.2 as a failure to converge.588

Since the smallest stopping tolerance allowed by linprog is ε = 10−10, a linear program is considered589

successfully solved in the performance profile of Figure 5.2 if the optimality gap is less than or equal590
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to ε = 10−8. The maximum number of iterations for linprog and Mosek is the default number,591

and for SNIPAL it is 2000. The relative residual shown in Table 5.4 is the sum of the relative592

primal feasibility, dual feasibility, and complementary slackness. In other words, let (x∗, y∗, z∗) be593

the optimal solution an algorithm returns, then the relative residual as shown in the table is594

∥Ax∗ − b∥
1 + ∥b∥

+

∥∥z∗ −AT y∗ + c
∥∥

1 + ∥c∥
+

(x∗)T z∗

1 + max(∥x∗∥ , ∥z∗∥)
.

When discussing the performance of SSEPF, it should be noted that we are using the exact595

RNNMdirection to solve the BAP subproblem, and using (5.1) to compute the regularization596

parameter. We denote this in Table 5.4 and Figure 5.2 as SSEPF-RNNM. Furthermore, we use the597

abbreviations Linprog DS and Linprog IPM to refer to linprog’s dual simplex and interior point598

method, respectively. Likewise, we use similar abbreviations for Mosek.599

From Table 5.4, the empirical evidence demonstrates that the stepping stone approach performs600

better than MATLAB’s dual simplex and interior point method on most problems, and has proven601

to be quite competitive with Mosek’s dual simplex and interior point method. This becomes more602

evident as the sizes of the problems grow and the problems become sparser. In other words, we see603

that our code fully exploits sparsity in LP . This can be seen when observing the performance of604

SSEPF-RNNM with respect to time on the rows of Table 5.4 where the problem density decreases.605

Despite the increase in problem dimension, the decrease in density leads to an increase in perfor-606

mance in comparison to the previous row. Another thing to notice is that in rows 5-9 of Table 5.4,607

linprog’s interior point method and Mosek’s dual simplex method failed to converge to a solution608

after having reached the default maximum number of iterations.609

In Section 5.2.1, the performance profiles were constructed by looking at smaller intervals of610

varying m,n and density. For example Table 5.1 shows results where m varies by increments of611

500, but in Figure 5.1a m varies by increments of 100. Since linprog’s interior point method and612

Mosek’s dual simplex method struggled with obtaining the desired primal feasibility, as seen in613

Table 5.4, Figure 5.2 shows the performance of each solver with respect to all 50 problems instead614

of examining the average performance.615

It is important to note that the performance profile exhibits more failed solutions from the616

dual simplex and interior point methods of MATLAB. We have tried taking the maximum of the617

primal feasibility, dual feasibility, and complementary slackness returned by MATLAB’s linprog618

function instead of the sum, and both revealed equivalent results. In other words, we are not619

sure why there are more problems failing at this tolerance than reported by MATLAB, but it620

further distinguishes our stepping stone approach from MATLAB’s linprog algorithms. Mosek,621

and more specifically Mosek’s interior point method is very competitive, as Figure 5.2 shows.622

Unfortunately, SNIPAL failed to converge on every problem in this dataset. We have seen it623

converge successfully on some random linear programming problems, but none of the ones that we624

generated in our Numerical Experiments section. It is worth noting that the table which shows625

the average performance of 5 randomly generated problems with respect to a set of parameters626

indicates that SSEPF-RNNMperforms better than Mosek’s interior point method in 7 out of 10627

rows in the table.628
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Specifications Time (s) Rel. Resids.
m n % density SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL

2e+03 5e+03 1.0e-01 8.94e-02 3.09e-02 4.50e-02 1.46e-01 1.64e-01 6.90e+00 3.38e-17 2.63e-16 4.88e-09 1.31e-16 1.53e-16 2.14e-04
2e+03 1e+04 1.0e-01 9.64e-02 4.84e-02 7.53e-02 1.49e-01 1.93e-01 8.31e+00 2.82e-17 6.00e-16 1.60e-04 1.31e-16 2.89e-16 1.72e-04
2e+03 1e+05 1.0e-01 1.68e-01 3.91e-01 7.45e-01 5.41e-01 6.56e-01 1.94e+01 1.48e-17 7.45e-17 1.72e-05 8.84e-17 8.57e-17 1.55e-04
5e+03 1e+04 1.0e-01 9.97e+01 2.08e-01 1.39e+01 4.26e-01 2.65e+00 5.54e+01 5.55e-17 4.16e-16 5.02e-07 1.67e-14 3.20e-16 2.29e-04
5e+03 1e+05 1.0e-01 7.64e+01 7.24e-01 1.42e+02 1.12e+00 8.51e+00 7.85e+01 2.36e-17 9.31e-11 6.38e-05 3.13e-16 1.79e-16 1.58e-04
5e+03 5e+05 1.0e-01 2.30e+02 6.97e+00 6.54e+02 7.02e+00 1.52e+01 1.70e+02 1.52e-17 1.87e-10 3.73e-05 3.92e-16 1.68e-16 1.48e-04
2e+04 1e+05 1.0e-02 6.32e-01 9.46e-01 5.68e+00 1.05e+00 2.49e+00 4.28e+01 1.36e-17 3.55e-06 4.33e-07 1.99e-06 1.28e-16 1.42e-04
2e+04 5e+05 1.0e-02 6.66e-01 4.46e+00 3.78e+01 5.63e+00 9.28e+00 1.23e+02 8.48e-18 3.37e-06 8.83e-07 1.36e-06 2.89e-16 1.10e-04
2e+04 1e+06 1.0e-02 1.85e+00 9.30e+00 6.50e+01 1.17e+01 1.59e+01 2.06e+02 7.08e-18 4.34e-06 6.27e-06 1.76e-06 9.65e-17 1.12e-04
1e+05 1e+07 1.0e-03 7.38e+00 1.06e+01 6.14e+00 9.35e+01 9.60e+01 1.56e+03 1.39e-18 1.39e-18 1.39e-18 1.76e-17 1.76e-17 5.90e-05

Table 5.4: LP application results averaged on 5 randomly generated problems per row.

Figure 5.2: Performance Profiles for LP application with respect to all problems.

We also consider the first five problems in alphabetical order from the subset of the NETLIB629

dataset where primal strict feasibility (PSF) holds [35, Sect. 4.2.2]. We then check dual strict630

feasibility (DSF) and include the value of the constant we obtain from solving the theorem of the631

alternative, i.e., a large, respectively small, constant indicates an algebraically fat, respectively thin,632

feasible set. Failure, or near failure, of strict feasibility correlates with the difficulty of the numerics.633

We successfully solve two of the five problems. We think that the difficulties from the NETLIB634

dataset is due to the dual feasible set being very thin for some problems. For example, in Table 5.5,635

the problems 25fv47 and lotfi have a very thin feasible set in the dual problem.636

It is important to note that the performance of SSEPF-RNNM on the blend problem is signif-637

cantly worse than the other solvers. A common issue with SSEPF-RNNM when solving the blend638

problem as well as rows 4-6 of Table 5.4 is that at certain tolerances, RNNMuses the maximum639

number of iterations (2000) to solve the BAP subproblem. In other words, even though we are640

performing a warm-start with the solution from the previous BAP subproblem, RNNMcan fail641

to converge to the desired relative tolerance. However, even though RNNMfailed to converge,642

it still provides a solution that is very close to the optimal solution, i.e., instead of solving the643

BAP subproblem to within a relative tolerance of 10−14, it returns a solution that is within a rel-644

ative tolerance of 10−12 or 10−13. There are at least two solutions to this issue. First, we can645

decrease the length of the Newton step when the iteration count is large. Using this heuristic shows646

significant improvement in performance when solving the blend problem. Secondly, if RNNM fails647

to converge to within the specified relative tolerance of 10−14, we can try a larger relative tolerance,648

such as 10−13. This strategy has shown to be crucial when trying to solve problems like 25fv47,649

where we are not able to solve the BAP subproblem with high accuracy due to it’s thin dual feasible650
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set.651

Problem: Primal Strict Feas. Dual Strict Feas.
25fv47 2.00e-01 2.01e-17
afiro 9.00e+00 1.19e-01
blend 7.30e-02 3.49e-03
israel 3.71e+00 1.38e-03
lotfi 1.00e+00 1.89e-10

Table 5.5: Primal and Dual strict feasibility of NETLIB problems.

Time (s) Rel. Resids.
Problem: SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL SSEPF-RNNM Linprog DS Linprog IPM MOSEK DS MOSEK IPM SNIPAL
25fv47 Inf 2.01e-01 1.01e-01 3.76e-01 1.54e-01 1.20e+01 Inf 2.30e-15 2.25e-15 5.51e-16 1.09e-14 7.36e-05
afiro 2.62e-02 7.71e-03 2.91e-03 9.16e-02 9.01e-02 9.81e-02 1.97e-16 3.67e-16 8.62e-14 7.49e-17 1.43e-13 9.39e-11
blend 1.42e+02 8.48e-03 3.81e-03 9.12e-02 9.03e-02 1.58e+00 5.37e-15 4.78e-14 1.31e-13 1.33e-15 1.63e-15 1.30e-03
israel Inf 1.07e-02 2.79e-02 9.33e-02 9.82e-02 3.27e+00 Inf 7.15e-16 8.44e-14 6.57e-16 8.93e-12 5.21e-05
lotfi Inf 9.63e-03 7.86e-03 9.41e-02 9.43e-02 2.00e+00 Inf 4.61e-14 3.38e-14 1.17e-16 9.05e-13 4.35e-05

Table 5.6: LP application results on the NETLIB problems.

Figure 5.3: Performance Profiles for LP application with respect to the Netlib problems.

Our algorithm has difficulties with highly degenerate problems where the optimal solution is not652

unique. Moreover, the optimal solution of minimum norm that our algorithm finds can fail strict653

complementarity with many xi+ zi = 0. The loss of strict complementarity results in a generalized654

Jacobian with low rank as few columns of A are chosen in (2.16). Additionally, the sensitivity655

analysis of Theorem 4.4 has difficulty increasing R. Finally, the failure of strict complementarity656

indicates that the gradient at optimality is not in the relative interior of the normal cone, Lemma 2.7,657

Item (b), indicating failure of differentiability of the projection.658

6 Conclusion659

In this paper we considered the theory and applications of the “best approximation problem” of660

finding the projection of a point onto a polyhedral set. We studied an elegant optimality condi-661

tion, derived using the Moreau decomposition, that allowed for a, possibly both nonsmooth and662
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singular, Newton type method. However, this needed a perturbation of a max-rank choice of a gen-663

eralized Jacobian, i.e., application of nonsmooth analysis and regularization. The regularization664

guaranteed a descent direction but the method was not necessarily monotonically decreasing. We665

presented extensive comparisons with the HLWBalgorithm approach, e.g., [4], and found that, in666

our experiments, our method outperformed HLWB in both speed and accuracy.667

We discussed several applications including solving large, sparse, linear programs. The pre-668

liminary tests we performed were very efficient and outperformed the other codes we used for669

comparison both in speed and accuracy. Our algorithmic approach can be considered as a step-670

ping stone external path following method since we follow an external path with parameter R in671

the objective function; but we only consider a discrete number of points on the path found using672

sensitivity analysis. We discovered that very few stepping stones are needed, often just one suffices.673

Acknowledgements. We thank the referees for carefully reading the paper and for their674

helpful comments.675

A Pseudocodes for Generalized Simplex676

The pseudocodes described in Algorithms A.1 to A.3 solve (2.1) using the exact and inexact nons-677

mooth Newton methods RNNM, respectively.678

Algorithm A.1 BAPof v for constraints Ax = b, x ≥ 0; exact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. Primal-dual opt.: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ AiA

T
i +

∑
i∈Ī0

1
∥Ai∥2AiA

T
i

5: λ = min(1e−3, stopcrit)
6: V̄ = (Vk + λIm)
7: solve pos. def. system V̄ d = −Fk for Newton direction d
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while
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Algorithm A.2 BAPof v for constraints Ax = b, x ≥ 0, inexact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. Primal-dual: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

δ ∈ (0, 1], ν ∈ [1 + δ
2 , 2], and a sequence θ such that θk ≥ 0 and supk∈N θk < 1

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ AiA

T
i +

∑
i∈Ī0

1
∥Ai∥2AiA

T
i

5: λ = (stopcrit)δ

6: V̄ = (Vk + λIm)
7: solve V̄ d = −Fk for Newton direction d such that residual ∥rk∥ ≤ θk ∥Fk∥ν
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while

Algorithm A.3 Extended HLWBalgorithm

Require: v ∈ Rn, (A ∈ Rm×n, rank(A) = m), b ∈ Rm, ε > 0, maxiter ∈ N.
1: Output. xk+1

2: Initialization. k ← 0, msweeps← 0 x0 ← max(v, 0), x̂0 ← x0, i0 = 1
stopcrit ← ∥Ax̂0 − b∥ /(1 + ∥b∥) (= ∥F0∥ /(1 + ∥b∥))

3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: if 1 ≤ ik ≤ m then

5: x̂k = xk +
bik−aTik

xk

∥aik∥
2 aik

6: else
7: x̂k = max(0, xk)
8: end if
9: updates

10: σk = 1
k+1

11: xk+1 ← σkv + (1− σk)x̂k
12: stopcrit ← ∥Ax̂k − b∥ /(1 + ∥b∥)
13: if k(mod m+ 1) = 0 then
14: msweeps = msweeps+ 1
15: end if
16: ik = k(mod m) + 1
17: end while

30



B Additional Performance Profiles679

B.1 Nondegenerate680

(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.1: Performance Profiles for varying m for nondegenerate vertex solutions.
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(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.2: Performance Profiles for varying n for nondegenerate vertex solutions.
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(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.3: Performance Profiles for varying density for nondegenerate vertex solutions.
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B.2 Degenerate681

Table B.1: Varying problem sizes m and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
500 3000 8.1e-01 4.99e-02 1.83e-01 1.54e+02 3.80e+00 2.66e+01 2.88e-15 5.37e-17 2.25e-04 8.20e-17 3.07e-16
1000 3000 8.1e-01 4.64e-01 1.12e+00 3.71e+02 5.98e+00 3.63e+00 5.23e-18 4.35e-15 2.04e-04 6.42e-17 -2.20e-16
1500 3000 8.1e-01 3.45e+00 4.53e+00 6.14e+02 7.07e+00 8.61e+00 3.89e-18 2.28e-18 1.99e-04 2.02e-16 1.14e-16
2000 3000 8.1e-01 8.22e+00 8.02e+00 8.71e+02 1.94e+03 2.88e+01 1.27e-16 9.78e-17 2.16e-04 3.94e-18 -1.66e-16

Table B.2: Varying problem sizes n and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
200 3000 8.1e-01 2.52e-03 3.94e-02 4.40e+01 3.34e+00 9.36e+00 7.23e-18 2.71e-18 2.43e-04 3.53e-17 -8.12e-16
200 3500 8.1e-01 2.41e-03 3.81e-02 5.09e+01 5.16e+00 1.80e+01 2.69e-16 2.10e-18 2.70e-04 6.63e-16 -1.10e-15
200 4000 8.1e-01 3.17e-03 3.62e-02 5.87e+01 7.07e+00 1.13e+01 5.29e-18 2.77e-18 2.69e-04 4.69e-17 2.30e-15
200 4500 8.1e-01 3.49e-03 4.17e-02 6.57e+01 9.39e+00 2.43e+01 4.94e-18 1.90e-18 3.11e-04 5.94e-16 2.94e-15

Table B.3: Varying problem density and comparing computation time with relative residual for
degenerate vertex solutions.

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB lsqlin QPPAL Exact Inexact HLWB lsqlin QPPAL
300 1000 25 3.90e-02 4.37e-01 4.58e+01 3.25e-01 2.25e+00 5.12e-17 1.23e-17 1.34e-04 9.04e-16 -5.76e-16
300 1000 50 6.52e-02 3.55e-01 5.42e+01 3.24e-01 1.38e+01 2.54e-17 9.84e-16 1.49e-04 6.69e-18 -1.90e-15
300 1000 75 9.85e-02 2.94e-01 5.32e+01 3.33e-01 5.41e+01 3.76e-17 3.06e-16 1.54e-04 3.17e-17 4.48e-15
300 1000 100 1.50e-01 3.03e-01 4.79e+01 2.88e-01 2.96e+02 4.43e-17 2.01e-17 1.47e-04 1.42e-16 -9.59e-14
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(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.4: Performance Profiles for varying m for degenerate vertex solutions.
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(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.5: Performance Profiles for varying n for degenerate vertex solutions.
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(a) tol = 10−2

(b) tol = 10−4

(c) tol = 10−14

Figure B.6: Performance Profiles for varying density for degenerate vertex solutions.
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C Applications of the BAPand the HLWBalgorithm682

The BAPand the HLWBalgorithm play important roles in mathematical and technological prob-683

lems. We give two examples.684

1. Finding best approximation pairs for two intersections of closed convex sets685

The problem of finding a best approximation pair of two sets, which in turn generalizes the686

well-known convex feasibility problem [5], has a long history that dates back to work by687

Cheney and Goldstein in 1959 [16]. This problem was recently revisited in [1] where an688

alternating HLWB(A-HLWB) algorithm was proposed and studied that can be used when689

the two sets are finite intersections of half-spaces. Motivated by that [7] presented alternative690

algorithms that utilize projection and proximity operators. Their modeling framework is691

able to accommodate even convex sets and their numerical experiments indicate that these692

methods are competitive and in some cases superior to the A-HLWB algorithm. The practical693

importance of the problem of finding a best approximation pair of two sets stems from its694

relevance to real-world situations wherein the feasibility-seeking modeling is used and there695

are two disjoint constraints sets. One set represents “hard” constraints, i.e., constraints the696

must be met, while the other set represents “soft” constraints which should be observed as697

much as possible, see, e.g., [20]. Under such circumstances, the desire to find a point in the698

hard constraints set that will be closest to the set of soft constraints leads to the problem of699

finding a best approximation pair of the two sets.700

2. Least intensity modulated treatment plan in radiotherapy In the fully-discretized701

modelling of the intensity-modulated radiation therapy (IMRT) treatment planning problem702

the irradiated body is discretized into voxels and the external radiation field is discretized into703

beamlets. This is represented by a system of linear inequalities as in (3.2) with nonnegativity704

constraints. The unknown vector x represents radiation intensities and if it is a solution705

of the linear feasibility problem then it fulfills all the planning prescriptions dictated by706

the oncologist. In such a feasibility-seeking approach several solutions are acceptable but707

a solution that is closest to the origin will use the least possible intensities that still fulfill708

the constraints. Delivering an acceptable treatment plan with less radiation intensities is709

preferable and so one replaces the feasibility-seeking problem by a BAPof approximating the710

origin by a point from the feasible sets, i.e., by seeking the projection of the origin onto the711

feasible set. Such an approach was used, e.g., in [55] where a simultaneous version of Hildreth’s712

sequential algorithm for norm minimization over linear inequalities, [31, 36], [15, Algorithm713

6.5.2] was combined with a norm-minimizing image reconstruction algorithm of Herman and714

Lent [30], called ART4 (Algebraic Reconstruction Technique 4), which handles in a special715

effective manner interval inequalities.716
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Index

(P − x)+, polar cone of P at x, 11722

A†, generalized inverse, 8723

AT , columns of A, 10724

F (y) := A(v +AT y)+ − b, 5725

L(x, y, z), Lagrangian, 6726

Lf (x, y, z), Lagrangian, 19727

P , feasible set, 11728

P ⊂ Rn, polyhedral set, 3729

S+, polar cone, 6730

Diag(v), 10731

Ī0 ⊆ I0, 10732

ϕ(y, z), dual functional, 5, 19733

ai, i-th row of A, 12734

d∗(v), 5735

d∗f (v), 19736

e, vector of ones, 21737

eB = (bB −RwB), 16738

f(y), squared residual function, 5739

ff (y), squared residual function, 19740

fB = RbB, 16741

m1 = m− n2, 20742

p∗(v), optimal value, 5743

p∗f (v), 19744

p∗f (v), optimal value, 19745

x(y) = (v +AT y)+ ∈ P , 11746

B = B(w) = {i : wi > 0}, 15747

I+,0,− := I+,0,−(y) = {i : (v +AT y)i > 0,= 0, <748

0}, 10749

N = N (z) = {i : zi > 0}, 15750

U(y), 10751

Z = Z(w, z) = {i : wi = zi = 0}, 15752

P+w = w+, 9753

HLWB , Halpern-Lions-Wittmann-Bauschke, 12754

LM , Levenberg-Marquardt, 4755

LP , linear program, 13756

QPPAL, quadratic programming proximal aug-757

mented Lagrangian method, 21758

RNNM , regularized nonsmooth Newton method,759

5, 21760

LP lower bound, 17761

stepping stones external path following algorithm,SSEPF,762

25763

anchor point, 12764

BAP, best approximation problem, 13765

best approximation problem for linear inequali-766

ties, 12767

best approximation problem, BAP , 13768

best approximation problem, BAP , 3, 5769

dual functional, ϕ(y, z), 5770

dual functional, ϕf (y, z1), 19771

dual functional, ϕ(y, z), 5, 19772

dual problem, 5, 19773

feasible set, P , 11774

generalized inverse, A†, 8775

generalized Jacobian, 8776

generalized Jacobian of H at y, ∂H(y), 8777

generalized simplex, 5778

generalized simplex best approximation problem,779

5780

generalized simplex best approximation problem781

with free variables, 19782

Halpern-Lions-Wittmann-Bauschke, HLWB , 12783

iteration, 21784

KKT optimality conditions, 6, 20785

Lagrangian L(x, y, z), 6786

Lagrangian, Lf (x, y, z), 19787

Levenberg-Marquardt, LM , 4, 8788

linear program, LP , 13789

Lipschitz continuous, 8790

locally Lipschitz continuous, 8791

minimum norm solution, 14792

Moreau decomposition, 7793

optimal value, p∗(v), 5794

optimal value, p∗f (v), 19795

polar cone, 11796

polar cone of P at x, (P − x)+, 11797

polar cone, S+, 6798
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polyhedral set, P ⊂ Rn, 3799

primal optimal value, 5, 19800

projection onto a polyhedral set, 5801

quadratic programming proximal augmented La-802

grangian method, QPPAL, 21803

regularized nonsmooth Newton method, RNNM ,804

5, 21805

semismooth Newton inexact proximal augmented806

Lagrangian method, SNIPAL, 26807

squared residual function, f(y), 5808

squared residual function, ff (y), 19809

standard form, 5810

steering sequence, 12811

stepping stone, 17812

stepping stone external path following, 15, 29813

sweep, 21814

triangle inequalities, 21815

vector of ones, e, 21816

vertex, 11817
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