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An optimality condition for the ordinary convex programming problem which utilizes the
directional derivatives of the constraints is studied.

1. INTRODUCTION
Consider the ordinary convex programming problem:

® minimize  f(x)
subjectto g =0, k€EP={l,...,m}

where f,g*: R" — R are convex, not necessarily differentiable, functions. We study
an optimality condition for (P) that utilizes the directional derivatives of the binding
constraints. We show that this optimality condition holds under any constraint quali-
fication and so is implied by the Karush-Kuhn-Tucker conditions and is, in fact,
equivalent to those conditions in the case of differentiable constraints.

2. PRELIMINARIES

Following [1], we introduce the cone of directions of decrease of the convex function
h at x:

D5(x) = {d: there exists @ > 0 with h(x + ad) < h(x), forall 0 < a = a}.
The directional derivative of h at x in the direction d is defined as

Vhixd) = lifn h(x + ta:) - h(x).
{0

Finite-valued convex functions have the nice property that the directional derivatives
exist universally. A vector ¢ € R" is said to be a subgradient of h at x if

h(z) = k(x) + &(z — x), for all z € R,
The set of all subgradients of A at x is then called the subdifferential of 4 at x and is
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denoted dh(x). In general (when & is finite-valued), 3A(x) is a nonempty, compact,
convex set and

Vh(x;d) = max{dd: ¢ € 3h(x)}, 1

where for two vectors u and v in R* we let uv denote the dot product. Furthermore,
Di(x) = {d: Vh(xd) < O} ¢

-D5(x)*t = ;Eo Adh(x), when 0 & dk(x), 3)

where, if M is a set in R*, then the nonnegative polar of M is
Mt ={b: dm =0, forall m € M}.

(For the above and other related facts, see, e.g., [1] and [4].)
The linearizing cone at x is

Ckx) ={d: ¢éd =<0, for all ¢ € 3g*(x) and all k € P(x)},
where P(x) is the set of binding (active) constraints at x, i.e.,
P(x) = {k € P: g(x) = 0}.
By Equation (1), we see that
C(x) = {d: Vg(x;d) =0, forall k € P(x)}. @)
The cone of subgradients at x is
B(x) = {$: & = Z A",  for some A, = 0, ¢* € 3g*(x) and k € P(x)}. (5)

The linearizing cone and the cone of subgradients have the following dual property
(see, e.g., [S)):
closure —B(x) = C*(x). (6)

The Karush-Kuhn-Tucker conditions of optimality (see, ¢.g., [4]) can now be
expressed as '

of(x) —B(x) # P Q)
or equivalently as
0 € 3f(x) + T \3gXx), forsome A, =0andk € P(x). 8)

If x is feasible, then these conditions are always sufficient for optimality. Necessity
may fail unless some constraint qualification holds at x (see, e.g., [1]). ’

3. THE OPTIMALITY CONDITION
Consider the optimality condition
C(x) N Df(x) = 0. )
We will now show that the condition (9) is equivalent to the Karush~Kuhn-Tucker
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conditions (7) [or (8)] whenever B(x) is closed. [Note that B(x) is a finitely generated
polyhedral cone and thus closed, if the constraints g* are differentiable.]

THEOREM 3.1: Suppose that B(x) is closed. Then (9) is equivalent to (M [or
C))

PROOF: If 0 € 3f(x), then Df(x) = @ and the result follows. Now suppose that
0 & af(x). Then Df(x) is a nonempty, open, convex cone, C(x) is a convex cone,
and the Hahn-Banach theorem (see, ¢.g., [2]) implies that (9) holds if and only if
there exists

0% ¢ € -Df(x)* N C(x)*
= L’Jo A3f(x) N —B(x),
A

by (3) and (6). Q.E.D.

Thus the condition (9) is equivalent to the Karush-Kuhn-Tucker conditions (7) if
the constraints g* are differentiable. In fact, it is easy to see that (9) is always a
sufficient condition for optimality. Moreover, necessity will hold under any constrairt
qualification whatsoever, since the closure of B(x) is implied by every constraint
qualification (see, ¢.g., [S)).

We were motivated in studying (9) by a result of Mond and Schechter [3]. They
studied program (P) with the added assumptions that (i) the constraints g* are differ-
entiable, (ii) the objective function f is of a special type, and (iii) the generalized
Slater condition holds, i.c., there exists a feasible point x. such that g*(x.) < 0 when-
ever g* is nonaffine. Our results show that these assumptions are not required for (9)
to hold.

If x solves (P) and f is some particular fixed objective function, then both (7) and
(9) may hold even though B(x) fails to be closed. A trivial example of this occurs
when 0 € 3f(x), i.c., when x is a global minimum of f. However, it may happen
that (9) holds but (7) fails—(9) is the weaker necessary condition. [Note that if B(x)
is not closed, then one can always find a (linear) objective function f for which (7)
will fail at the optimum point x (see, e.g., [5]):]

EXAMPLE 3.1*
Let

K={x=@)ER:x + (x, - 12 =< 1}
g'(x) = max{¢x: ¢ € K}; and f(x) = x,.

Then x = 0 solves (P), (9) holds but (7) fails. [Note that B(x) is the origin union the
upper, open half-plane while C(x) is the negative x; axis.]
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