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13.1 INTRODUCTIONQuadratically constrained quadratic programs, denoted Q2P , are an importantmodelling tool, e.g.: for hard combinatorial optimization problems, Chapter 12;and SQP methods in nonlinear programming, Chapter 20. These problems aretoo hard to solve in general. Therefore, relaxations such as the Lagrangianrelaxation are used. The dual of the Lagrangian relaxation is the SDP relax-ation. Thus SDP has enabled us to e�ciently solve the Lagrangian relaxationand �nd good approximate solutions for these hard, possibly nonconvex, Q2P .This area has generated a lot of research recently. This has resulted in manystrong and elegant theorems that describe the strength/performance of thebounds obtained from solving relaxations of these Q2P .For the simple Q2P case of one quadratic constraint (the trust region sub-problem) strong duality holds, even though both the objective function andconstraint may be nonconvex, i.e. there is a zero duality gap and the dualis attained. In addition, necessary and su�cient (strengthened) second orderoptimality conditions and e�cient algorithms exist. However, these nice du-ality results already fail for the two trust region subproblem (CDT problem).361



362 HANDBOOK OF SEMIDEFINITE PROGRAMMINGSurprisingly, there are other classes of nonconvex Q2P where strong dualityholds. This includes the special cases of orthogonality type constraints.Throughout this chapter we emphasize the theme (or open problem) thatLagrangian duality is best, i.e. in every case that we have a good (tractable)bound we show that it is equivalent to that obtained from the Lagrangian re-laxation of an appropriate problem. Moreover, we include several results on thestrength of these bounds. These results follow the pioneering paper [285] andstudy the theme that a solution of an inde�nite quadratic maximization prob-lem with some linear constraints on the squared variables can be approximatedwith a constant relative accuracy.In parts 13.2 and 13.3, we present several complexity results on the qualityof the SDP relaxations. We present a convex conic relaxation for a problemof maximizing an inde�nite quadratic form over a set of convex constraints onthe squared variables. We show that for all these problems we get at least1237-relative accuracy of the approximation. In the second part of the paperwe derive the conic relaxation by another approach based on the second orderoptimality conditions. We show that for lp-balls, p � 2, intersected by a linearsubspace, it is possible to guarantee (1� 2p )-relative accuracy of the solution. Asa consequence, we prove (1� 1e lnn )-relative accuracy of the conic relaxation foran inde�nite quadratic maximization problem over an n-dimensional unit boxwith homogeneous linear equality constraints. We discuss the implications ofthe results for the discussion around the question P = NP . We also considerthe problem of approximating the global maximum of a quadratic program(QP) subject to bound and (simple) quadratic onstraints. Based on severalearly results, we show that a 4=7-approximate solution can be obtained inpolynomial time.The rest of the paper is organized as follows. We begin in Section 13.4.1with the most well known problem in this area, the Max-Cut problem. Wepresent several di�erent relaxations. Surprisingly, following our theme, all thesebounds, including the SDP bound, end up being equivalent to the Lagrangianrelaxation; see Section 13.4.1. We then present a strengthened SDP boundbased on a second lifting procedure.We discuss the SDP relaxation for general Q2P in Section 13.4.2. Thisincludes descriptions of the relationships between the SDP relaxation and theLagrangian relaxation via convex quadratic valid inequalities, following [260,442]. Several applications, including QAP and GP, are presented in Section13.4.2.Occurrences of strong duality for nonconvex quadratic programs is studiedin Section 13.4.3. In every instance where one has a tractable bound, we �nda Q2P such that the bound is attained by the Lagrangian relaxation. Thisfollows the work in [41, 37].



NONCONVEX QUADRATIC OPTIMIZATION 36313.1.1 Lagrange Multipliers for Q2PWe now de�ne the (inequality constrained) Q2P in x: (Though our notationdoes di�er slightly in the separate parts (sections) of this chapter.)(Q2P x) q� := min q0(x) := xT q0x+ 2gT0 x+ �0subject to qk(x) := xTQkx+ 2gTk x+ �k � 0k 2 I := f1; : : : ;mgx 2 <n;where the matrices Qk are symmetric. The Lagrangian of Q2P x isL(x; �) := q0(x) +Xk2I �kqk(x);where � = (�k) � 0 are nonnegative Lagrange multipliers.Lagrange multipliers can be used in two ways. First, if a constraint qual-i�cation holds for Q2P at the optimum �x (e.g. the Mangasarian-Fromovitzconstraint quali�cation), then the Karush-Kuhn-Tucker necessary conditionsfor optimality hold, i.e.rL(x; �) = 0; and �kqk(x) = 0; 8k 2 I:Therefore, the optimum �x can be searched among the points satisfying sta-tionarity of the Lagrangian and complementary slackness. Moreover, if theLagrangian is also convex, then this is a su�cient condition for optimality.Lagrange multipliers can also be used to derive the Lagrangian dual (orrelaxation) of Q2P x(DQ2Px) q� � d� := max���0 minx q0(x) +Xk2I �kqk(x):A zero duality gap holds if q� = d�: This can fail in the nonconvex case. Strongduality holds if q� = d� and also d� is attained. Moreover, d� can be e�cientlyevaluated using SDP.13.2 GLOBAL QUADRATIC OPTIMIZATION VIA CONICRELAXATION Yuri Nesterov



364 HANDBOOK OF SEMIDEFINITE PROGRAMMINGStarting from the pioneering paper [285], there were obtained several results[572, 859, 575], which show that a solution of an inde�nite quadratic maxi-mization problem with some linear constraints on the squared variables can beapproximated with a constant relative accuracy. In this Section 13.2 we presentsome improvements and extensions of the results [575].In Section 13.2.1 we consider a problem of maximizing an inde�nite qua-dratic form subject to arbitrary convex constraints on the squared variables.For convenience of the dual description we use a conic representation of theseconstraints. We introduce a convex conic relaxation for that problem and provethat it provides us at least with an approximation of ��26�� relative accuracy. InSection 13.2.2 we show how to improve this approximation using the diagonalelements of the quadratic objective function. The relative accuracy, whichwe can get in this case, is 1237 . In Section 13.2.3 we extend the results ofSection 13.2.1, 13.2.2 onto the case of general convex constraints on squaredvariables. We conclude the �rst part of the section with a discussion of thedi�culties which arise in the problems with linear equality constraints on theinitial variables (Section 13.2.4).In the second part of the section, which starts from Section 13.2.5, we studyanother way of deriving the conic relaxation. This approach can be appliedonly to a small number of sets (lp-balls, p � 2), but it allows to treat alsothe linear equations. We prove that for such problems the conic relaxationgives (1 � 2p ) relative accuracy. In Section 13.2.6 we apply these results to aproblem of maximizing a quadratic function over a unit box subject to a systemof homogeneous linear equalities. We show that it is possible to compute inpolynomial time a (1� 1e lnn )-solution of that problem. We conclude the sectionwith a discussion of the results.We �rst recall some of the notation we use. For two vectors x, y 2 Rn wedenote hx; yi the standard inner product:hx; yi = nXi=1 x(i)y(i):Then k x k= hx; xi1=2. Since we work in several �nite-dimensional spaces,the meaning of this notation is de�ned by the spaces of the arguments. Forexample, for two (m � n)-matrices X and Y we havehX;Y i = mXi=1 nXj=1XijYij :We use the standard notation for lp-norms:k x kp= " nXi=1 j x(i) jp#1=p ; x 2 Rn; p � 1:Again, the meaning of the notation depends on the dimension of space of theargument. Recall, that for p = 1 we have k x k1= max1�i�n j x(i) j. The norm



NONCONVEX QUADRATIC OPTIMIZATION 365dual to k � kp is k � kp� with p� = pp�1 :k y kp�= maxfhy; xi : k x kp� 1g:For a symmetric matrixA we write A � 0 if A is positive semide�nite. NotationB � A means that B � A � 0. For x 2 Rn we denote Diag (x) the diagonal(n � n)-matrix with diagonal entries x(i). Conversely, diag(X) 2 Rn denotesthe diagonal of an (n�n)-matrix X. Notation ei is used for the ith coordinatevector ofRn and 1n 2 Rn stands for the vector of all ones. Thus, In = Diag (1n)is a unit matrix. Notation 0n is used for the zero vector in Rn.We use square brackets in order to indicate the component-wise operationswith the vectors. For example, notation [x � y] stands for the vector withcomponents x(i)y(i), x, y 2 Rn. Notation [x]2 is used for the vector with thecomponents (x(i))2. If f(� ) is a univariate function, we denote f [x] the vectorwith the components f(x(i)). In order to indicate the partial ordering in Rnwe use the usual inequality signs. Thus, x � y for x and y from Rn means thatx(i) � y(i), i = 1; : : : ; n.Finally, [�; �]n denotes a continuous box in Rn, that is fx 2 Rn : �1n �x � �1ng. For a boolean box fx 2 Rn : x(i) = (� or �)g we use notationf�; �gn.13.2.1 Convex conic constraints on squared variablesLet Q be an arbitrary symmetric (n � n)-matrix. Consider the following pairof optimization problems:�nd �� = maxfhQx; xi : [x]2 2 Fg;�nd �� = minfhQx; xi : [x]2 2 Fg: (13.2.1)where F is a closed convex set. Our main assumption on the problem (13.2.1)is as follows.Assumption 13.2.1 1). The set F is bounded. 2). There exists a strictlypositive v 2 F .In order to simplify the dual analysis, in this section we assume that thefeasible set F is presented in a conic form:F = fv 2 K : Av = bg; (13.2.2)where K is a convex closed pointed cone in Rn with non-empty interior, A isan (m � n)-matrix and b 6= 0m. Our additional assumption on the set F is asfollows.Assumption 13.2.2 fv 2 intK : Av = bg 6= ;.Note that the form (13.2.2) is quite general, since any bounded convex setcan be written in this way (see [583] for details). At the same time, in Section



366 HANDBOOK OF SEMIDEFINITE PROGRAMMING13.2.3 we will show how to transform our result on the case of a general convexfeasible set F .Using the same technique as in [575], we can rewrite the pair of problems(13.2.1) in a trigonometric form.Lemma 13.2.1�� = max 2� hQ;Diag (d) arcsin[X]Diag (d)i;X � 0; diag(X) = 1n;d � 0; [d]2 2 F ;�� = min 2� hQ;Diag (d) arcsin[X]Diag (d)i;X � 0; diag(X) = 1n;d � 0; [d]2 2 F : (13.2.3)Proof.Indeed, let us represent a vector x 2 Rn as follows:x = [d � �]; d � 0 2 Rn; � 2 f�1; 1gn:Note that [x]2 = [d]2. Therefore �� = maxd f�(d) : d � 0; [d]2 2 Fg with�(d) = maxfhDiag (d)QDiag (d)�; �i : � 2 f�1; 1gng:Using Theorem 2.3 [575], we can represent �(d) in the following form:�(d) = maxf 2� hDiag (d)QDiag (d); arcsin[X]i : X � 0; diag(X) = 1ng:Inserting this representation in the above expression for �� we get the �rststatement of the lemma. The second one can be obtained in a similar way.Note that in general none of the problems (13.2.1) is convex in x. Therefore,in order to estimate their optimal values, we need to use a kind of convexrelaxation. Let us de�ne the conic relaxation of problems (13.2.1): � = maxfhQ;Xi : diag(X) 2 F ; X � 0g; � = minfhQ;Xi : diag(X) 2 F ; X � 0g: (13.2.4)Sometimes it is convenient to use a dual form of these relaxations. Recall thatfor a convex cone K � Rn the dual cone K� is de�ned as follows:K� = fu 2 Rn : hu; vi � 0; 8v 2 Kg:Lemma 13.2.2 � = miny2Rm;u2Rnfhb; yi : Q +Diag (u) � Diag (ATy); u 2 K�g; � = maxy2Rm;u2Rnfhb; yi : Q � Diag (u) + Diag (ATy); u 2 K�g: (13.2.5)



NONCONVEX QUADRATIC OPTIMIZATION 367Proof.In view of Assumptions 13.2.1, 13.2.2, we can get a dual representation of theupper relaxation  � as follows: � = maxX;v fhQ;Xi : Adiag(X) = b; diag(X) = v; X � 0; v 2 Kg= maxX�0;v2K miny2Rm;u2RnfhQ;Xi+ hy; b� Adiag(X)i + hu; diag(X) � vig= miny2Rm;u2RnmaxX;v fhQ+ Diag (u�AT y); Xi + hb; yi � hu; vi :kX � 0; v2Kg= miny2Rm;u2Rnfhb; yi : Q+ Diag (u) � Diag (ATy); u 2 K�g:Similarly, for the lower relaxation we get the following: � =minX;v fhQ;Xi : Adiag(X) = b; diag(X) = v; X � 0; v 2 Kg= minX�0;v2K maxy2Rm;u2RnfhQ;Xi+ hy; b �Adiag(X)i + hu; v � diag(X)ig= maxy2Rm;u2RnminX;v fhQ� Diag (u+ ATy); Xi + hb; yi + hu; vi : kX � 0; v 2 Kg= maxy2Rm;u2Rnfhb; yi : Q � Diag (u) + Diag (AT y); u 2 K�g:Let us establish some relations between the relaxations (13.2.4) and theoptimal values of the problems (13.2.1). Denote (�) = � � + (1� �) �: (13.2.6)The proof of the following theorem is similar to that of Theorem 3.3 [575].Theorem 13.2.1  � � �� �  (1� 2� ) �  ( 2� ) � �� �  �: (13.2.7)Proof.Note that  � �  � by de�nition. So, the middle inequality in (13.2.7) is correct.Further, if [x]2 2 F then the matrix X = xxT is feasible for both relaxationproblems (13.2.4) since diag(X) = [x]2. Moreover, hQ;Xi = hQx; xi. Thus,both bounding inequalities in the chain (13.2.7) are valid. Let us prove nowtwo remaining inequalities.



368 HANDBOOK OF SEMIDEFINITE PROGRAMMINGLet us choose arbitrary u 2 K and y 2 Rm, which satisfy the constraints ofthe dual form (13.2.5) of the lower relaxation  �:(u; y) 2 Fd = f(u; y) 2 K� �Rm : Q � Diag (u) + Diag (ATy)g: (13.2.8)Consider a pair (X; d), which satis�es the constraints of the trigonometric rep-resentation (13.2.3) for ��:X � 0; diag(X) = 1n; d � 0; A[d]2 = b; [d]2 2 K: (13.2.9)Since X � 0 and j Xij j� 1 we have arcsin[X] � X in view of Corollary 3.2[575]. Therefore, using Lemma 13.2.1 we get the following:�� � 2� hDiag (d)QDiag (d); arcsin[X]i= 2� hDiag (d)(Q� Diag (u)� Diag (AT y))Diag (d); arcsin[X]i+hu+ ATy; [d]2i� 2� hDiag (d)(Q� Diag (u)� Diag (AT y))Diag (d); Xi+ hu+ ATy; [d]2i= 2� hQ;Diag (d)XDiag (d)i + (1� 2� )hu +ATy; [d]2i:Note that u 2 K� and [d]2 2 K. Therefore hu; [d]2i � 0. In view of (13.2.9) wehave hAT y; [d]2i = hA[d]2; yi = hb; yi:Finally, for any pair (X; d), which satisfy (13.2.9)we have Y =Diag (d)XDiag (d)feasible for the primal relaxation problems:Y 2 Fp = fY : Y � 0; Adiag(Y ) = b; diag(Y ) 2 Kg:On the other hand, any Y 2 Fp can be represented as Y = Diag (d)XDiag (d)with X and d, which satisfy (13.2.9). Therefore, we conclude that�� � 2� hQ; Y i + (1� 2� )hb; yi; 8Y 2 Fp; (u; y) 2 Fd:This proves the forth inequality in the chain (13.2.7). The remaining inequalitycan be proved in a similar way.De�nition 13.2.1 We say that the value  approximates �� with a relativeaccuracy � 2 [0; 1] if j  � �� j� �(�� � ��). We call this approximationimplementable if  � ��.Corollary 13.2.1 1. Let � = 2� . Then the value  (�) is an implementableapproximation of �� with the relative accuracy � = �2 � 1 < 47 .2. Let � = (1+�)2�23��1 . Then the value  (�) approximates �� with the relativeaccuracy � = ��26�� < 25 .The proof of that statement is exactly the same as that of Corollary 3.4 in[575].



NONCONVEX QUADRATIC OPTIMIZATION 36913.2.2 Using additional informationIn this section it is shown how to improve the quality of our bounds by takinginto account some additional information. De�ne�� = maxfhdiag(Q); vi : v � 0; v 2 Fg;�� = minfhdiag(Q); vi : v � 0; v 2 Fg: (13.2.10)Note that these values are computable in polynomial time. In view of Lemma13.2.1 we have �� � �� � �� � ��: (13.2.11)Hence, �� �  ���� �� � 2 [0; 1]; �� � ��� � �� � 2 [0; 1]:Using these values we can express �� and �� as follows:�� =  � � ��( � �  �) =  (1� ��);�� =  � + ��( � �  �) =  (��):Denote !(�) = � arcsin(�) +p1� �2 � 1 + �R0 arcsin(� )d� , � 2 [0; 1]. Thisfunction is increasing and convex with !(0) = 1 and !(1) = �2 . In what followswe denote �� the unique root of the following equation:2�!(�) = 1� �; � 2 [0; 1]:It can be shown that 2370 < �� < 2473 .Theorem 13.2.2 1. Denote�� = maxf 2�!(��); 1� ��g;�� = minf1� 2�!(��); ��g:The optimal values of the problems (13.2.1) satisfy the following relations: � � �� �  (��); (13.2.12) � � �� �  (��): (13.2.13)2. The value  (��) is an implementable approximation of �� with relativeaccuracy � = 1���1��� � ��1��� < 2449 :3. Denote �� = ��(2���)���1+���2�� . The value  (��) is a �-approximation of �� with� = 1���1+���2�� � ��2�3�� < 1237 :



370 HANDBOOK OF SEMIDEFINITE PROGRAMMINGIn Items 2 and 3 the upper bounds are achieved for �� = �� = ��.Proof.Let X � 0 and d � 0 be feasible for the trigonometric form of the upperrelaxation (13.2.3): diag(X) = 1n; A[d]2 = b; [d]2 2 K:Consider the matrices X
 = 
X + (1 � 
)In, 
 2 [0; 1]. Thenarcsin[X
 ] = arcsin[
X] + (�2 � arcsin(
))In :Therefore�� � 2� hQ;Diag(d) arcsin[X
 ]Diag(d)i= 2� hQ;Diag(d) arcsin[
X]Diag (d)i+ �1� 2� arcsin(
)� hdiag(Q); [d]2i:(13.2.14)Let us choose now arbitrary u 2 K and y 2 Rm which satisfy the constraintsof the dual form (13.2.5) of the lower relaxation  �:(u; y) 2 Fd = f(u; y) 2 K� �Rm : Q � Diag (u) + Diag (AT y)g:Then, in view of Corollary 3.2 [575] we have:hQ;Diag (d) arcsin[
X]Diag (d)i= hQ� Diag (u)� Diag (ATy);Diag (d) arcsin[
X]Diag (d)i+ hDiag (u+ ATy);Diag (d) arcsin[
X]Diag (d)i� 
hQ �Diag (u)�Diag (ATy);Diag (d)XDiag (d)i+ arcsin(
)hu + ATy; [d]2i= 
hQ;Diag (d)XDiag (d)i+ (arcsin(
) � 
)hu + ATy; [d]2i:Note that arcsin(
) � 
 for 
 2 [0; 1]. At the same time u 2 K� and [d]2 2 K.Therefore hu; [d]2i � 0. Finally, hAT y; [d]2i = hA[d]2; yi = hb; yi. Thus,hQ;Diag(d) arcsin[
X]Diag (d)i � 
hQ;Diag (d)XDiag (d)i+(arcsin(
) � 
)hb; yi:Substituting this inequality in (13.2.14) we get the following:�� � 2� (
hQ;Diag (d)XDiag (d)i+ (arcsin(
) � 
)hb; yi)+ �1� 2� arcsin(
)� hdiag(Q); [d]2i� 2� (
hQ;Diag (d)XDiag (d)i+ (arcsin(
) � 
)hb; yi)+ �1� 2� arcsin(
)� ��:



NONCONVEX QUADRATIC OPTIMIZATION 371Using the same reasoning as in Theorem 13.2.1, we conclude that�� � 2�
 � + 2� (arcsin(
) � 
) � + �1� 2� arcsin(
)� ��= 2� arcsin(
) � 
arcsin(
)�+ �1� 2� arcsin(
)� (��)=  �2
� + �1� 2� arcsin(
)� ��� :The right-hand side of the above inequality is maximal for 
� =p1� �2� . Then2
�� + �1� 2� arcsin(
�)� �� = 2� �p1� �2� + �� arccos(
�)� = 2�!(��):Thus, �� �  ( 2�!(��)). Combining this inequality with (13.2.11), we get thelower bound in (13.2.12). The relations (13.2.13) for  � can be obtained in asimilar way.Let us prove now Item 2 of the theorem. In view of (13.2.12) and (13.2.13)we have0 � �� �  (��)�� � �� �  � �  (��) � � �� �  � �  (��) � �  (��) =  (1) �  (��) (1) �  (��) = 1� ��1� �� :(13.2.15)Note that1� �� = 1�maxf 2�!(��); 1� ��g = minf1� 2�!(��); ��g;1� �� = 1�minf1� 2�!(��); ��g = maxf 2�!(��); 1� ��g:Thus, we need to �nd an upper bound for the ratio�(�1; �2) = minf1� 2�!(�2); �1gmaxf 2�!(�1); 1� �2g ; 0 � �1; �2 � 1:Lemma 13.2.3 maxf�(�1; �2) : 0 � �1; �2 � 1g = ��1� �� :Proof.We need to prove that(1 � ��)minf1� 2�!(�2); �1g � ��maxf 2�!(�1); 1� �2g; 0 � �1; �2 � 1:This is equivalent to the statement that the convex functiong(�1; �2) = ��maxf 2�!(�1); 1� �2g+ (1� ��)maxf 2�!(�2) � 1;��1gis non-negative for 0 � �1; �2 � 1.



372 HANDBOOK OF SEMIDEFINITE PROGRAMMINGNote that g( ��; ��) = 0 in view of the de�nition of ��. The subdi�erential ofthe function g(�) at this point is as follows:@g( ��; ��)= ��Conv f( 2�!0( ��); 0); (0;�1)g+(1� ��)Conv f(0; 2�!0( ��)); (�1; 0)g:Thus, this set contains the following points:( 2� ��!0( ��) � 1 + ��; 0); (0; 2� (1 � ��)!0( ��) � ��); ( 2� ��!0( ��); 2� (1� ��)!0( ��)):Note that 2�!0( ��) < !0( ��) < ��1��� < 1����� :Therefore the �rst coordinate of the �rst point and the second coordinate ofthe second point are negative. Since both coordinates of the third point arepositive, we conclude that 0 2 int @g( ��; ��).Applying Lemma 13.2.3 to (13.2.15) we prove the statement of Item 2.In order to prove Item 3 note that in view of inequalities (13.2.12) and(13.2.13), for any � 2 [0; 1] we havej (�)���j����� � j (�)���j��� (��) = maxn  (�)������ (��) ; ��� (�)��� (��)o� maxn  (�)� (��) (��)� (��) ;  �� (�) �� (��)o = maxn ��������� ; 1��1���o � r(�):The minimum �� of the function r(�) is a solution of the following equation:(� � ��)(1� ��) = (1� �)(�� � ��):That is �� = ��(2���)���1+���2�� . Using Lemma 13.2.3 we can estimate the optimalvalue r(��) as follows:r(��) = 11��� �1� ��(2���)���1+���2�� � = 1���1+���2�� = �(��;��)2��(��;��) � ��2�3�� :13.2.3 General constraints on squared variablesLet us consider now the quadratic optimization problems in the following form:�nd �� = maxfhQx; xi : [x]2 2 Fg;�nd �� = minfhQx; xi : [x]2 2 Fg: (13.2.16)where F is a closed convex set, which satis�es Assumption 13.2.1. Let us showthat all results of Sections 13.2.1, 13.2.2 can be easily applied to the problem(13.2.16). Denote by �(u) the support function of the set F :�(u) = maxfhu; vi : v 2 Fg:



NONCONVEX QUADRATIC OPTIMIZATION 373Theorem 13.2.3 The statements of Theorems 13.2.1, 13.2.2 are valid for theproblem (13.2.16) with the relaxation values  �,  � and ��, �� de�ned as fol-lows:  � = minu f�(u) : Diag (u) � Qg; � = maxu f��(u) : Q+ Diag (u) � 0)g;�� = �(diag(Q)); �� = ��(�diag(Q)): (13.2.17)Proof.In order to prove the theorem we need to rewrite the problem (13.2.16) in aconic form. Note that in view of Assumption 13.2.1 the set F can be representedin the following form: F = fv 2 S : Bv = dg;where S is a bounded convex set with non-empty interior, B is a non-degenerate(m � n)-matrix and d 2 Rm. Without loss of generality we can assume thatfv 2 intS : Bv = dg 6= ;:We allow also B = 0; in this case d = 0.Let us consider a conic hull of the set S:K = f(v; � ) : � > 0; 1� v 2 SgSf0g:In view of our assumptions K is a closed convex cone with non-empty interior.The cone dual to K can be represented as follows (see, for example, [345]):K� = fû = (u; �) : � � �S(�u)g;where �S(�) is a support function of the set S.Now we can rewrite the problem (13.2.16) in the following form:�nd �� = maxfhQ̂x̂; x̂i : [x̂]2 2 F̂g;�nd �� = minfhQ̂x̂; x̂i : [x̂]2 2 F̂g; (13.2.18)where x̂ 2 Rn+1, Q̂ = � Q 0n0Tn 0 �, F̂ = fz = (v; � ) 2 K : Âz = bg andÂ = � B �d0Tn 1 � ; b = � 0m1 � :Note that the problems in (13.2.18) satisfy Assumptions 13.2.1, 13.2.2.Therefore for their relaxation values  � and  � all statements of Theorems



374 HANDBOOK OF SEMIDEFINITE PROGRAMMING13.2.1, 13.2.2 are valid. Let us �nd the expressions for  �,  �, �� and �� interms of the initial objects of the problem (13.2.16). It is clear that�� = maxfhdiag(Q̂); zi : z 2 F̂g= maxfhdiag(Q); vi : Bv = �d; � = 1; v=� 2 Sg = �(diag(Q));�� = minfhdiag(Q̂); zi : z 2 F̂g= minfhdiag(Q); vi : Bv = �d; � = 1; v=� 2 Sg = ��(�diag(Q)):Further, in view of Lemma 13.2.2 the upper relaxation value  � can be repre-sented as follows: � = minŷ2Rm+1 ;û2Rn+1fhb; ŷi : Q̂+Diag (û) � Diag (ÂT ŷ); û 2 K�g= min(y;
)2Rm+1 ;(u;�)2Rn+1f
 : Q+ Diag (u) � Diag (BT y); �� 
 � hd; yi; � � �S(�u)g= minu;y f�S(�u) + hd; yi : Diag (BT y � u) � Qg= minu;y f�S(u �BT y) + hd; yi : Diag (u) � Qg:Note that in the last expression y does not enter the constraints. Therefore wecan replace the objective function of this problem by its minimum in y. Thatis miny f�S(u� BTy) + hd; yig = miny maxv2S fhu�BT y; vi + hd; yig= maxv2S miny fhu; vi+ hd� Bv; yig= maxv2S fhu; vi : Bv = dg = �(u):



NONCONVEX QUADRATIC OPTIMIZATION 375Thus, we get the representation (13.2.17) for  �. The representation of  � canbe obtained in a similar way: � = maxŷ2Rm+1 ;û2Rn+1fhb; ŷi : Q̂ � Diag (û) + Diag (ÂT ŷ); û 2 K�g= max(y;
)2Rm+1 ;(u;�)2Rn+1f
 : Q � Diag (u) + Diag (BTy);0 � �+ 
 � hd; yi; � � �S(�u)g= maxu;y f��S (�u) + hd; yi : Q � Diag (u+BT y)g= maxu;y f��S (BT y + u) + hd; yi : Q+ Diag (u) � 0g= maxu f�miny f�S(BTy + u)� hd; yig : Q+Diag (u) � 0g= maxu f��(u) : Q+Diag (u) � 0g:Let us present an example of application of Theorems 13.2.3, 13.2.2. Con-sider the following problem:�nd �� = maxfhQx1; x2i : [(x1; x2)]2 2 Fg;�nd �� = minfhQx1; x2i : [(x1; x2)]2 2 Fg; (13.2.19)where Q is a (k � n)-matrix, x1 2 Rk, x2 2 Rn and F is a closed convex set,which satis�es Assumption 13.2.1. Since the quadratic objective function inthis problem is bilinear, we conclude that �� = ��� and �� = �� = 0.The conic relaxation for this problem is de�ned as follows: � = minu=(u1;u2)��(u) : � Diag (u1) �QT�Q Diag (u2) � � 0� ; � = maxu=(u1;u2)���(u) : � Diag (u1) QTQ Diag (u2) � � 0� :It is clear that  � = � �. At the same time, �� = �� = 12 . Therefore,�� = maxf 2�!(��); 1� ��g = 2�!( 12 ):Therefore, in view of Theorem 13.2.2 we have: � � �� �  (��) = (2�� � 1) �:Note that �� = 2� ( 12 arcsin 12 + p32 ) = p3� + 16 . Thus, we have proved thefollowing theorem.



376 HANDBOOK OF SEMIDEFINITE PROGRAMMINGTheorem 13.2.4 In the problem (13.2.19) the optimal and relaxation valuesare related as follows:  � � �� � 
 �with 
 = 2p3� � 23 > 0:43.13.2.4 Why the linear constraints are di�cult?In the previous sections we have got a constant relative accuracy estimates for aquadratic maximization problem with convex constraints on squared variables.Such type of constraints are rather speci�c. Therefore it is natural to try toextend the results onto the problems with convex constraints on the variables ofthe quadratic form. However, it appears that this is not trivial. In this sectionwe show that even a single linear constraint can make a quadratic problemcompletely intractable by the presented technique.Consider the following optimization problem:�� = max hQx; xi;s.t. x 2 f�1; 1gn;hc; xi = �; (13.2.20)where Q is an (n� n)-matrix, c 2 Rn and � > 0. De�ne �� as a minimal valueof the objective function in (13.2.20). A natural relaxation for this problem isas follows: � = maxfhQ;Xi : hXc; ci = �2; diag(X) = 1n; X � 0g: (13.2.21)Let us show that this relaxation can be arbitrary bad in terms of relativeaccuracy.Denote by vi, i = 1; : : : ; 2n the nodes of the boolean unit box f�1; 1gn.Let us assume that there exists only one node v�, which satis�es the linearconstraint of the problem (13.2.20). Moreover, let us assume that there are twoother nodes, v+ and v� such that0 < hc; v�i < � < hc; v+i: (13.2.22)Note that in view of our assumption we have �� = �� independently on ourchoice of the matrix Q.Let us de�ne a convex polytope Pn of positive semide�nite (n�n)-matrices:Pn = Conv fVi = vivTi ; i = 1; : : : ; 2ng:Lemma 13.2.4 Any Vi is an extreme point of Pn. Any pair of nodes Vi, Vjis connected by an exposed edge.Proof.



NONCONVEX QUADRATIC OPTIMIZATION 377Since Vi is a rank-one matrix, the �rst statement is evident. In order to provethe second statement note that the edge [Vi; Vj] is not exposed if and only ifthere exist some coe�cients �k > 0, k 2 I, i; j 62 I such that�Vi + (1� �)Vj =Xk2I �kVk; Xk2I �k = 1;for some � 2 (0; 1). Since all nodes of Pn are positive semide�nite rank-onematrices, we conclude thatvk 2 fv : v = �vi + �vj ; (�; �) 2 R2g; 8k 2 I:A simple calculation shows that it is possible only for vk = �vi or vk = �vj .Note that in view of our assumption (13.2.22) there exists a matrix eV 2 Pnsuch that eV = �v�vT� + (1� �)v+vT+; � 2 (0; 1); heV c; ci = �2:Let us choose now Q = eV � v�vT� . Note that the feasible set of the relaxationproblem (13.2.21) contains Pn. Therefore � � hQ; eV i > hQ; v�vT� i = ��:The lower relaxation value  � never exceed �� = ��. Therefore, for our examplethe value  � � � is strictly positive. This means that the relative accuracy ofthe value  � is in�nitely bad.Note that the main source of our troubles in the above example is that thelinear constraint hXc; ci = �2 intersects an edge of the matrix polytope Pn.That can happen with any value of � except � = 0. Thus, we still can hopethat for the problems with homogeneous linear constraints the conic relaxationcan work. In the next sections we will see some problems, for which it is true.13.2.5 Maximization with a smooth constraintIn the previous section we have established some constant bounds on relativeaccuracy of the conic relaxations (13.2.4) for a quadratic maximization prob-lem with convex constraints for the squared variables. At the same time, inSection 13.2.4 we have seen that some linear constraints on the initial variablescan make the problem intractable in terms of relative accuracy. In this sectionwe present another approach for deriving the conic relaxations. This approachis based on the standard second order optimality conditions and it allows totreat the quadratic maximization problems over lp-boxes, p � 2, with homoge-neous linear equality constraints (see Section 13.2.6). However, the quality ofrelaxation in this framework becomes dependent on p.Let f(y), y 2 Rm, be a homogeneous function of degree p:f(�y) = �pf(y); y 2 Rm; � � 0: (13.2.23)



378 HANDBOOK OF SEMIDEFINITE PROGRAMMINGWe assume that f(y) is non-negative and twice continuously di�erentiable atany non-zero point of Rm (notation f 2 Hp). Recall, that for homogeneousfunctions we have the following simple relations.Lemma 13.2.5 If f(y) is homogeneous of degree p then for any y 2 Rm and� � 0 we have f 0(�y) = �p�1f 0(y); (13.2.24)f 00(y)y = (p� 1)f 0(y); (13.2.25)hf 0(y); yi = pf(y); (13.2.26)hf 00(y)y; yi = p(p� 1)f(y): (13.2.27)Proof.Indeed, if we di�erentiate (13.2.23) in y we get (13.2.24). If we di�erentiate(13.2.24) in � and take � = 1 we get (13.2.25). In order to get (13.2.26) wedi�erentiate (13.2.23) in � and take � = 1. Finally, (13.2.25) and (13.2.26) give(13.2.27).Let Q be a symmetric (m�m)-matrix. Consider the following maximizationproblem: �nd ��(Q) = maxfhQy; yi : f(y) � 1g: (13.2.28)If Q � 0 then (13.2.28) is a concave maximization problem and ��(Q) = 0.In the other cases we need some necessary conditions to characterize the localsolutions of the problem (13.2.28).Lemma 13.2.6 Let f 2 Hp with p > 0. Then for any local maximum y� ofthe problem (13.2.28) with hQy�; y�i > 0 we have f(y�) = 1. Moreover, thereexists a value � = �(y�) > 0 such thathQy�; y�i = p�; (13.2.29)Qy� = �f 0(y�); (13.2.30)Q � � �f 00(y�)� p� 2p f 0(y�)f 0(y�)T � : (13.2.31)Proof.Since hQy�; y�i > 0 and f(y) is a homogeneous function of positive degree, wenecessarily have f(y�) = 1. Let us write down a Lagrangean for this problem:L(y; �) = 12 hQy; yi � �[f(y) � 1]:Then, the second order necessary conditions for the problem (13.2.28) can bewritten as follows: L0y(y�; �) = 0; (13.2.32)hL00yy(y�; �)h; hi � 0; 8h : hf 0(y�); hi = 0; (13.2.33)



NONCONVEX QUADRATIC OPTIMIZATION 379with some � 2 R. Equation (13.2.32) is exactly (13.2.30). Multiplying (13.2.30)by y� and using (13.2.26) we gethQy�; y�i = �hf 0(y�); y�i = �pf(y�)�p > 0;and that is (13.2.29). Finally, since hf 0(y�); y�i = p > 0, any h 2 Rm such thathf 0(y�); hi = 0 can be represented in the formh = �I � 1py�f 0(y�)T�u; u 2 Rn:Therefore the condition (13.2.33) can be rewritten as(I � 1pf 0(y�)yT� )L00yy(y�; �)(I � 1py�f 0(y�)T ) � 0: (13.2.34)Note that L00yy(y�; �) = Q� �f 00(y�) and(I � 1pf 0(y�)yT� )Q(I � 1py�f 0(y�)T )= Q� 1pf 0(y�)yT� Q� 1pQy�f 0(y�)T + 1p2 hQy�; y�if 0(y�)f 0(y�)T= Q� �pf 0(y�)f 0(y�)Tin view of (13.2.30) and (13.2.29). Similarly, since f(y�) = 1 we have(I� 1pf 0(y�)yT� )f 00(y�)(I � 1py�f 0(y�)T )= f 00(y�) � 1pf 0(y�)yT� f 00(y�)� 1pf 00(y�)y�f 0(y�)T+ 1p2 hf 00(y�)y�; y�if 0(y�)f 0(y�)T= f 00(y�) � 2p�1p f 0(y�)f 0(y�)T + p(p�1)p2 f 0(y�)f 0(y�)T= f 00(y�) � p�1p f 0(y�)f 0(y�)T ;in view of (13.2.25) and (13.2.27). Substituting these expressions in (13.2.34)we get Q � �f 00(y�) + �pf 0(y�)f 0(y�)T � �p�1p f 0(y�)f 0(y�)T= � hf 00(y�) � p�2p f 0(y�)f 0(y�)Ti :We will use Lemma 13.2.6 in order to estimate the quality of relaxations forsome non-convex maximization problems. Let A = (a1; : : : ; an) 2 Rm�n be anon-degenerate (m � n)-matrix. Consider the following function:fA(y) = nXi=1 j hai; yi jp;



380 HANDBOOK OF SEMIDEFINITE PROGRAMMINGwhere p � 2. The problem we are going to address now is as follows:�nd ��(Q;A) = maxfhQy; yi : fA(y) � 1g: (13.2.35)For this problem we can introduce the following relaxation: �p(Q;A) = minu fk u kq: ADiag (u)AT � Qg; (13.2.36)where q = (p2 )� = pp�2 (compare with (13.2.17)). Now we can prove the mainresult of this section.Theorem 13.2.5 Let the feasible set of the problem (13.2.35) be bounded.Then 1p� 1 �p(Q;A) � ��(Q;A) �  �p(Q;A): (13.2.37)Moreover, any local maximum y� of the problem (13.2.35) with positive valueof the objective function satis�es inequality hQy�; y�i � 1p�1 �p(Q;A).Proof.Indeed, let u be feasible for the problem (13.2.36). Then for any y 2 Rm withfA(y) � 1 we havehQy; yi � hADiag (u)ATy; yi = hu; [ATy]2i:At the same time,k [ATy]2 kp=2p=2= nXi=1 j hai; yi jp= fA(y) � 1:Therefore, for any feasible y we havehQy; yi � hu; [ATy]2i �k u kq � k [ATy]2 kp=2�k u kq :Hence, ��(Q;A) �  �p(Q;A).On the other hand, let y� be a local maximumof (13.2.35)with hQy�; y�i > 0.Then, in view of Lemma 13.2.6 (13.2.31) for � = �(y�) we have:Q � �f 00(y�) = p(p� 1)� nXi=1 j hai; y�i jp�2 aiaTi(we have used the condition p � 2). Thus, the vector u 2 Rn with the compo-nents u(i) = p(p� 1)� j hai; y�i jp�2; i = 1; : : : ; n;is feasible for the problem (13.2.36). Note thatk u kq = p(p� 1)� � nPi=1 j hai; y�i j(p�2)q�1=q= p(p� 1)� � nPi=1 j hai; y�i jp�1=q= p(p� 1)�[fA(y�)]1=q = p(p� 1)�:



NONCONVEX QUADRATIC OPTIMIZATION 381Hence, in view of (13.2.29) we havehQy�; y�i = p� = k u kqp� 1 � 1p� 1 �p(Q;A):Note that the above proof shows that under assumptions of the theorem thefunction  �p(Q;A) is well de�ned.Finally, if there is no local maximumof the problem (13.2.35) with hQy�; y�i> 0, then Q � 0 and in this case we have  �p(Q;A) = ��(Q;A) = 0.Let us estimate the relative accuracy of the relaxation (13.2.36). First, weneed the following trivial result.Lemma 13.2.7 Let for some non-negative values �,  and 
 we have thefollowing relations: 
 � � �  :Then, for � = 2
1+
 we have: j � � � j� (1� �)�.De�ne ��(Q;A) = minfhQy; yi : fA(y) � 1g.Theorem 13.2.6 Let  � = 2p �p(Q;A). Thenj ��(Q;A)�  � j� (1� 2p )(��(Q;A)� ��(Q;A)): (13.2.38)Proof.Note that ��(Q;A) � 0. Therefore it is su�cient to provej ��(Q;A)�  � j� (1� 2p )��(Q;A):Let us choose 
 = 1p�1 and � = 2
1+
 = 2p . Then the above inequality followsfrom Theorem 13.2.5 and Lemma 13.2.7.Let us compare now the relaxation (13.2.36) with the conic relaxation(13.2.17). Of course, we have to choose a problem which can be treated byboth approaches. Consider the problemmaxfhQx; xi : k x kp� 1g; p � 2:This problem can be presented in the form (13.2.35) with A = In. On the otherhand, it can be written in the form (13.2.16) withF = fv : k v kp=2� 1g:In this case �(u) =k u kq and we can see that (13.2.36) coincides with (13.2.17).



382 HANDBOOK OF SEMIDEFINITE PROGRAMMING13.2.6 Some applicationsLet us show that the results of the previous section can be extended onto theproblems with linear equality constraints. Consider the following quadraticmaximization problem:�nd ��p = maxx2Rn hCx; xi;s.t. k x kp� 1;Bx = 0; (13.2.39)where C is an arbitrary (n � n)-matrix, p � 2 and B is a non-degenerate((n�m)�n)-matrix with n > m. Let the rows of some (m�n)-matrix A spanthe null space of the matrix B:BAT y = 0; 8y 2 Rm:Then we can change variables x = ATy and obtain a problem, which is equiv-alent to (13.2.39):��p = maxy2RmfhACATy; yi : fA(y) � 1g = ��(ACAT ; A):Thus, in view of Theorem 13.2.5 and Lemma 13.2.7 we get the following result.Theorem 13.2.7 For any p � 2 we have1p� 1 �p(ACAT ; A) � ��p �  �p(ACAT ; A):The value  � = 2p �p(ACAT ; A) approximates the solution of the problem(13.2.39) with (1 � 2p ) relative accuracy.Now, let us consider the case when the objective function of the problem(13.2.39) has a non-zero linear term:�nd �̂�p = maxx2Rn hCx; xi+ 2hc; xi;s.t. k x kp� 1;Bx = 0: (13.2.40)This problem can be homogenized in a standard way:max(x;�)2Rn+1 hCx; xi+ 2� hc; xi;s.t. k x kp� 1; j � j� 1;Bx = 0: (13.2.41)



NONCONVEX QUADRATIC OPTIMIZATION 383Clearly, the optimal value of this problem is �̂�p. However, this problem hastwo separate constraints for x and � . Therefore, in order to apply the resultsof Section 13.2.5 we need to replace them by a single functional inequality.Consider the following problem:�nd ���p = max(x;�)2Rn+1 hCx; xi+ 2� hc; xi;s.t. k (x; � ) kp� 1;Bx = 0; (13.2.42)Denote by � �p the value of the conic relaxation for the last problem.Theorem 13.2.8 Let p � 2. For  �a = 22=p � �p we have:122=p(p � 1) �a � �̂�p �  �a:The value  �r = 2p+2�2=p�1 � �p has at least (1� 12p ) relative accuracy.Proof.Note that the problems (13.2.41) and (13.2.42) have the same objective functionand the same system of linear equations. Denote by F0 the feasible set of theproblem (13.2.42) and by F1 the feasible set of the problem (13.2.41). Clearly,F0 � F1 � 21=pF0. Therefore ���p � �̂�p � 22=p���p:On the other hand, in view of Theorem 13.2.7, we have:1p� 1 � �p � ���p � � �p :Hence, for  �a = 22=p � �p we obtain: �a = 22=p � �p � 22=p ���p � �̂�p � ���p � 1p�1 � �p = 122=p(p�1) �a:In order to get the statement on the relative accuracy, we take  =  �a,� = �̂�p, 
 = 122=p(p�1) and apply Lemma 13.2.7. Then the values � and  �r canbe obtained as follow: � = 2
1+
 = 21+22=p(p�1) � 12p ; �r = � �a = 2p+2�2=p�1 � �p:



384 HANDBOOK OF SEMIDEFINITE PROGRAMMINGWe see that the quality of conic relaxation decreases as p increase. Therefore,we cannot directly apply the results of Section 13.2.5 to a problem with boxconstraints. However, at the same time, when p increase the shape of lp ballsbecomes very close to the shape of the n-dimensional unit box. Therefore,we can use the values  �p(ACAT ; A) with p large enough in order to get somebounds for ��1.Theorem 13.2.9 Let p = 2 lnn,  �a = e �p(ACAT ; A) and 
 = 1e(2 lnn�1) .Then 
 �a �  �1 �  �a:The value  �r = 2
1+
 �a has at least (1� 1e lnn) relative accuracy.Proof.It is well known that for any two values p � 2 we have:1n1=p k x kp�k x k1�k x kp; x 2 Rn:Thereforefx 2 Rn :k x kp� 1g � fx 2 Rn :k x k1� 1g � fs 2 Rn :k x kp� n1=pg:Since the objective function of the problem (13.2.39) is homogeneous of degreetwo, this implies that ��p � ��1 � n2=p��p. Thus, using Theorem 13.2.7 weobtain the following: �1 = e �p(ACAT ; A) = n2=p �p(ACAT ; A) � n2=p��p� ��1 � ��p � 1p�1 �p(ACAT ; A) = 1e(2 lnn�1) �:In order to get the statement on relative accuracy we apply Lemma 13.2.7 with� = 2
1 + 
 = 21+ e(2 lnn� 1) > 1e lnn:13.2.7 DiscussionIn the previous sections we have presented some estimates for the quality ofthe conic relaxation for di�erent non-convex quadratic maximization problems.The constant bounds of Sections 13.2.1, 13.2.2 can be applied to a quite largeclass of non-convex problems and we can expect that they can be used in manypractical applications. The bounds we get in Section 13.2.5 are not so good.Indeed, they can be applied only to a rather special feasible set, that is anintersection of an lp-ball, p � 2, with a linear subspace. Moreover, the qualityof these bounds decrease as p increase.



NONCONVEX QUADRATIC OPTIMIZATION 385Nevertheless, the results of Section 13.2.5 suggest some interesting conclu-sions. Firstly, the relative accuracy we get from the relaxation (13.2.36) is(1 � 2p ). Thus, the accuracy goes to zero as p approaches two. For p smallenough the results of Theorem 13.2.5 become even better than the bounds ofSection 13.2.1. An important advantage of the estimates (13.2.37) is that weget the separate bounds for the minimal and the maximal value of the problem.The lower estimate for the maximal value remains positive even if the minimalvalue of the problems is a large negative value.Secondly, Theorem 13.2.5 tells us that the value of the objective function ofthe problem (13.2.35) at any local solution is not worse than the lower boundwe get from the conic relaxation. In fact, this statement is a kind of surprise.Indeed, if we measure a hardness of a problem as a largest ratio of the values ofthe objective function at the global and a local maximum, it appears that theproblem (13.2.35) is not so di�cult, at least for p small enough. Usually thegeneral methods of nonlinear optimization are quite e�cient in �nding a localsolution. Since the computational cost of such schemes is much less than thatof the schemes of semide�nite programming, we can conclude that for practicalapplications the traditional schemes look quite attractive.1Finally, in Section 13.2.6 we have shown that the results of Theorem 13.2.5provides us with some bounds for very di�cult problems. Indeed, during lastyears there were obtained many negative results related to the possibilities to�nd an approximate solution of an NP -hard problem under hypothesis thatP 6= NP . The results relevant to the topic of our section can be found in [79]:Consider a quadratic optimization problem in the following form:maxfhCx; xi : Bx � b; 0 � x � 1ng: (13.2.43)Denote by eP the class of languages recognizable in quasi-polynomial time.Theorem 1.2. Assume NP 6� eP . Then there is a constant � > 0such that the problem (13.2.43) has no polynomial time, (1 � 2� log� n)-approximation algorithm.Theorem 1.3. Assume P 6= NP . Then there is a constant � 2 (0; 13 )such that a �-approximation of the problem (13.2.43) cannot be found inpolynomial time.In these statements the �-approximation is understood in a weak sense. Weneed to compute an estimate for the value of the objective function only.Note that using Theorems 13.2.8 and 13.2.9, we can approximate in polyno-mial time the optimal value of the problemmaxfhCx; xi : Bx = 121n; 0 � x � 1ng: (13.2.44)with (1 � O( 1lnn )) relative accuracy. This result is better than the limitingbound of Theorem 1.2 [79]. At the same time, the optimization problem, which1Of course, in non-convex case we cannot prove any global e�ciency estimates. Moreover, ingeneral we cannot guarantee a convergence to a point, which satis�es the necessary secondorder optimality conditions. This negative result is valid even for the second order methods.



386 HANDBOOK OF SEMIDEFINITE PROGRAMMINGis used in the proof of Theorems 1.2, 1.3 [79], has, in fact, only linear equalitiesconstraint: maxfhCx; xi : Bx = b; 0 � x � 1ng: (13.2.45)Thus, the di�erence in the formulations (13.2.44) and (13.2.45) looks very mi-nor. Indeed, any system of linear equations Bx = b can be rewritten in thefollowing form: �Bx = 121n; ha; xi = 1;with some matrix �B and a vector a 2 Rn. Hence, the feasible set of the problem(13.2.45) di�ers from the feasible set of the problem (13.2.44) just by a singlelinear equation, which does not pass through the center of the box. However,it appears that this linear equation makes the problem (13.2.45) completelydi�erent.Let us look at the concrete form of the problem (13.2.45) ( [79], p.438).Denote by X and Y two (n� n)-matrices. And let �(X;Y ) be a bilinear formin X and Y with all non-negative coe�cients. Then the problem (13.2.45) isas follows: max �(X;Y );s.t. X1n = 1n; Y 1n = 1n;0 � X;Y � 1n�n: (13.2.46)Now we can see the source of our troubles. Indeed, the technique of Section13.2.5 can be applied only to lp boxes with p � 2. However, if we will tryto approximate the feasible set of the problem (13.2.46) with the boxes Bp =fx : k x � 121n kp� 12g, we need to choose p very large. It is necessary to takep = O(n lnn) just to have a non-empty intersection of the box Bp with thesystem of linear constraints in (13.2.46).Thus, we conclude that the feasible set of the problem (13.2.46) is too farfrom the center of the box. On the other hand, it is clear that the box structurein (13.2.46) is quite arti�cial: the constraint X, Y � 1n�n can be eliminatedwithout changing the feasible set of the problem. Note that we can easilyrewrite the problem (13.2.46) in a more symmetric form:max �(X;Y );s.t. k Xei k1� 1; i = 1; : : :n;k Y ei k1� 1; i = 1; : : :n: (13.2.47)Since the coe�cients of the form �(X;Y ) are non-negative, the optimal value ofthe problem (13.2.47) is the same as that of (13.2.43). The polyhedral structureof the feasible set in (13.2.47) can be seen as a combination of l1-structure withl1-structure. However, it appears the latter structure is exactly that one, forwhich no reasonable bounds for quadratic problems are known.Thus, the above discussion highlights the following unsolved problem:



NONCONVEX QUADRATIC OPTIMIZATION 387Find some bounds for the optimal value of the following quadratic problem:�� = maxfhQx; xi : k x kp� 1; x 2 Rng; 1 � p < 2: (13.2.48)For an inde�nite Q a trivial bound for �� is given by its maximal eigenvalue�max(Q): �max(Q) � �� � �max(Q) � n1� 2p ; 1 � p � 2:For p = 1 we can suggest for the problem (13.2.48) a kind of semide�niterelaxation: � = maxX;u fhQ;Xi : Diag (u) � X; h1n; ui � 1; X � 0g= minS;� f� : �1n = diag(S); S � Q; S � 0g: (13.2.49)Note that for any x, k x k1� 1, the pair (X = xxT ; u = abs[x]) is feasible forthe primal form of the relaxation (13.2.49). Therefore we can guarantee that � � ��. However, the relative accuracy of such a bound is not known.13.3 QUADRATIC CONSTRAINTS Yinyu Ye
Consider the quadratic programming (QP) problem with diagonally quadraticequality and inequality constraints(QP ) �q(Q) := Maximize q(x) := xTQxSubject to Pnj=1 aijx2j = bi; i = 1; : : : ;m;Pnj=1 cijx2j � di; i = 1; : : : ; pwhere the symmetric matrix Q 2 Sn, A = faijg 2 Mm;n, C = fcijg 2 Mp;n,b 2 <m, and d 2 <p are given. We assume that the QP problem is feasible andits feasible set is bounded (this can be checked by a linear program consideringx2j as nonnegative variables). Let �x(Q) be a maximizer of the problem.The (QP) problem has applications in combinatorial and global optimizationproblems, see, e.g., Gibbons et al. [273]. Note that this quadratic problem



388 HANDBOOK OF SEMIDEFINITE PROGRAMMINGincludes the max-cut problem by letting x2j = 1, j = 1; :::; n, be the quadra-tic constraints. Also note that perturbing the diagonal of Q may change theobjective function on the feasible set of the problem.Normally, there is a linear term in the objective function:Maximize xTQx+ cTxSubject to Pnj=1 aijx2j = bi; i = 1; : : : ;m;Pnj=1 cijx2j � di; i = 1; : : : ; pHowever, the problem can be homogenized asMaximize xTQx+ tcTxSubject to Pnj=1 aijx2j = bi; i = 1; : : : ;m; t2 = 1;Pnj=1 cijx2j � di; i = 1; : : : ; pby adding a scalar variable t. There always is an optimal solution (�x; �t) for thisproblem in which �t = 1 or �t = �1. If �t = 1, then �x is also optimal for the non-homogeneous problem; if �t = �1, then ��x is optimal for the non-homogeneousproblem. Thus, without loss of generality, we can let q(x) = xTQx throughoutthis Section 13.3.The function q(x) has a minimizer and a maximizer over the bounded feasiblesetF := fx 2 <n : nXj=1 aijx2j = bi; i = 1; : : : ;m; nXj=1 cijx2j � di; i = 1; : : : ; pg:Let q := ��q(�Q) and �q := �q(Q) denote their minimal and maximal objectivevalues, respectively. An �-maximal solution or �-maximizer, � 2 [0; 1], for (QP)is de�ned as an x 2 F such that �q � q(x)�q � q � �:Recently, there were several signi�cant results on approximating speci�c qua-dratic problems. Goemans and Williamson [285] (also see Frieze and Jerrum[255]) proved an approximation result for the Maxcut problem where � � 1�0:878 when all arc weights are nonnegative. Nesterov [572] generalized theirresult to approximating a boolean QP problemMaximize q(x) = xTQxSubject to x2j = 1; j = 1; : : : ; n;



NONCONVEX QUADRATIC OPTIMIZATION 389where � � 4=7. Ye [859] extended the 4=7 result to solving continuous noncon-vex QP problems, such as,Maximize q(x) = xTQxSubject to x2j � 1; j = 1; : : : ; n:Note that some negative results on this problem were given by Bellare andRogaway [79]. Other results can be found in Fu, Luo and Ye [258], Pardalosand Rosen [619], Vavasis [818], and Ye [855].In this Section 13.3, we, based on the analyses of Ye [859] and Nesterov [575],further generalize the 4=7 result to approximating (QP) containing (diagonally)quadratic constraints. These constraints have added a few di�culties in ana-lyzing the problem, and they frequently appear in some practical applications.13.3.1 Positive Semi-De�nite RelaxationThe approximation algorithm for (QP) is to solve a positive semi-de�nite pro-gramming (SDP) relaxation problem(SDP ) �p(Q) := Maximize hQ;XiSubject to hD(ai); Xi = bi; i = 1; : : : ;m;hD(ci); Xi � di; i = 1; : : : ; p: (13.3.50)Here, ai = (ai1; : : : ; ain) 2 <n, ci = (ci1; : : : ; cin) 2 <n, and unknown X 2<n�n is a symmetric matrix. Furthermore, h�; �i is the matrix inner producthQ;Xi = trace(QTX), D(a) is the diagonal matrix of vector a, and X � Zmeans that X � Z is positive semi-de�nite. Since the original QP problem isfeasible and bounded, so is the SDP relaxation.The dual of the problem is�p(Q) = Minimize dT z + bTySubject to Ppi=1 ziD(ci) +Pmi=1 yiD(ai) � Q; z � 0: (13.3.51)Note that the primal is feasible and bounded and the dual has an interior sothat there is no duality gap between the primal and dual. Denote by �X(Q)and (�y(Q); �z(Q)) an optimal solution pair for the primal (13.3.50) and dual(13.3.51).The positive semi-de�nite relaxation was �rst proposed by Lov�asz and Shri-jver [497], also see recent papers by Alizadeh [17], Fujie and Kojima [260] andPolijak, Rendl and Wolkowicz [635]. This relaxation problem pair can be solvedin polynomial time, e.g., see Nesterov and Nemirovskii [583] and Alizadeh [17].We have the following relations between (QP) and (SDP) from Ye [859].



390 HANDBOOK OF SEMIDEFINITE PROGRAMMINGProposition 13.3.1 Let �q = �q(Q), q = ��q(�Q), �p = �p(Q), p = ��p(�Q),and(y; z) = (��y(�Q);��z(�Q)). Then, q is the minimal objective value of xTQxin the feasible set of (QP) and p = dT z + bTy is the minimal objective value ofhQ;Xi in the feasible set of (SDP). Furthermore,p = ��p(�Q) � q = ��q(�Q) � �q(Q) = �q � �p(Q) = �p:In what follows, we let �x = �x(Q), �X = �X(Q). Since �X is positive semi-de�nite, there is a factorization matrix �V = (�v1; : : : ; �vn) 2 <n�n, i.e., �vj isthe jth column of �V , such that �X = �V T �V . The algorithm (Goemans andWilliamson [285], Nesterov [572], and Ye [859]) generates a random vector uuniformly distributed on the n-dimensional unit ball and then assignsx̂ = �D�( �V Tu); (13.3.52)where �D = diag(k�v1k; : : : ; k�vnk) = diag(p�x11; : : : ;p�xnn);and for any x 2 <n, �(x) is the vector whose components are sign(xj), j =1; : : : ; n, that is, sign(xj) = � 1 if xj � 0�1 otherwise.It is easily seen that x̂ is a feasible point for (QP) and we will show laterthat the expected objective value, Euq(x̂), satis�es�q � Euq(x̂)�q � q � �2 � 1 � 47 :13.3.2 Approximation AnalysisThe following lemma is an analogue to the lemma of Nesterov [572] and Ye[859].Lemma 13.3.1 Let u be uniformly distributed on the n-dimensional unit ball.Then, �q(Q) = Maximize Eu(�(V Tu)TDQD�(V Tu))Subject to hD(ai); V TV i = bi; i = 1; : : : ;m;hD(ci); V TV i � di; i = 1; : : : ; p;where D = diag(kv1k; : : : ; kvnk):Proof. Since, for any feasible V , D�(V Tu) is a feasible point for (QP), wehave �q(Q) � Eu(�(V Tu)TDQD�(V Tu)):



NONCONVEX QUADRATIC OPTIMIZATION 391On the other hand, for any �xed u with kuk = 1, we haveEu(�(V Tu)TDQD�(V Tu)) = nXi=1 nXj=1 qijkvikkvjkEu(�(vTi u)�(vTj u)):(13.3.53)Let us choose vi = �xik�xk �x, i = 1; : : : ; n. (Note that V is feasible for the problemabove.) Then Eu(�(vTi u)�(vTj u)) = � 1 if �(�xi) = �(�xj)�1 otherwise.Thus, kvikkvjkEu(�(vTi u)�(vTj u)) = �xi�xjwhich implies that for this particular feasible V�q(Q) = q(�x) � Eu(�(V Tu)TDQD�(V Tu)):These two relations give the desired result.For any function of one variable f(t) and X 2 <n�n, let f [X] 2 <n�n bethe matrix with the components f(xij). Nesterov [572] has proved the nexttechnical lemma.Lemma 13.3.2 Let X � 0 and d(X) � 1. Then arcsin[X] � X.Now we are ready to prove the following theorem.Theorem 13.3.1�q(Q) = sup 2� hQ;D arcsin[D�1XD�1]DiSubject to hD(ai); Xi = bi; i = 1; : : : ;m;hD(ci); Xi � di; i = 1; : : : ; p;X � 0;where D = Diag (px11; : : : ;pxnn):Proof. For any X = V TV � 0, we haveEu(�(vTi u)�(vTj u)) = 1� 2Prf�(vTi u) 6= �(vTj u)g= 1� 2Prf�( vTi ukvik ) 6= �( vTj ukvjk )g:From Lemma 1.2 of Goemans and Williamson [285], we havePrf�( vTi ukvik ) 6= �( vTj ukvjk )g = 1� arccos( vTi vjkvikkvjk ):



392 HANDBOOK OF SEMIDEFINITE PROGRAMMINGUsing the above lemmaand equality (13.3.53) and noting arcsin(t)+arccos(t) =�2 give the desired result.We have used Supremum and X � 0 in the problem above merely for thetechnical presentation of D�1. The feasible set of this problem can be closedif we rewrite it in terms of variable Y = D�1XD�1Theorem 13.3.1 leads to our main result.Theorem 13.3.2 We have1. �q � p � 2� (�p� p):2. �p � q � 2� (�p� p):3. �p� p � �q � q � 4� �� (�p� p):Proof. Recall z = ��z(�Q) � 0, p = ��p(�Q) = dTz + bTy, andQ� pXi=1 ziD(ci)� mXi=1 yiD(ai) � 0:Thus, for any X � 0 feasible for (SDP), and D = diag(px11; : : : ;pxnn), wehave from Theorem 13.3.1�2 �q = �2 �q(Q)� hQ;D arcsin[D�1XD�1]Di= *Q� pXi=1ziD(ci) � mXi=1yiD(ai) + pXi=1ziD(ci)+ mXi=1yiD(ai); D arcsin[D�1XD�1]D+



NONCONVEX QUADRATIC OPTIMIZATION 393= *Q� pXi=1ziD(ci) � mXi=1yiD(ai); D arcsin[D�1XD�1]D++* pXi=1ziD(ci) + mXi=1yiD(ai); D arcsin[D�1XD�1]D+� *Q� pXi=1ziD(ci) � mXi=1yiD(ai); DD�1XD�1D++* pXi=1ziD(ci) + mXi=1yiD(ai); D arcsin[D�1XD�1]D+ since Q� pXi=1ziD(ci)� mXi=1yiD(ai) � 0and arcsin[D�1XD�1] � D�1XD�1�= *Q� pXi=1ziD(ci) � mXi=1yiD(ai); X++* pXi=1ziD(ci) + mXi=1yiD(ai); D arcsin[D�1XD�1]D+= hQ;Xi �* pXi=1ziD(ci) + mXi=1yiD(ai); X++* pXi=1ziD(ci) + mXi=1yiD(ai); D arcsin[D�1XD�1]D+= hQ;Xi � pXi=1zihD(ci); Xi � mXi=1yihD(ai); Xi+ pXi=1zihD(ci); D arcsin[D�1XD�1]Di+ mXi=1yihD(ai); D arcsin[D�1XD�1]Di= hQ;Xi � pXi=1zihD(ci); Xi � yT b+ pXi=1zi(�2 hD(ci); Xi) + yT (�2 b)= hQ;Xi + (�2 � 1) pXi=1zihD(ci); Xi+ (�2 � 1)yT b� hQ;Xi + (�2 � 1)(zTd+ yT b)(since hD(ci); Xi � di i = 1; :::; p; and z � 0)= hQ;Xi + (�2 � 1)p:Let X converge to �X, then hQ;Xi ! �p and we have the desired �rst inequality.Replacing Q with �Q proves the second inequality in the theorem.



394 HANDBOOK OF SEMIDEFINITE PROGRAMMINGAdding the �rst two inequalities gives the third statement in the theorem.The result indicates that the positive semi-de�nite relaxation value �p� p isa constant approximation of �q � q.Similarly, the following corollary can be devised.Corollary 13.3.1 Let X = V TV � 0, hD(ai); Xi � di (i = 1; : : : ; p), hD(ai);Xi = bi (i = 1; : : : ;m), D = diag(px11; : : : ;pxnn), and x̂ = D�(V Tu) whereu with kuk = 1 is a random vector uniformly distributed on the unit ball.Moreover, let X ! �X. Then,limX! �X Eu(q(x̂)) = limX! �X 2� hQ;D arcsin[D�1XD�1]Di � 2� �p+ (1� 2� )p:Finally, we haveTheorem 13.3.3 Let x̂ be generated above from X = �X. Then�q � Euq(x̂)�q � q � �2 � 1:Proof. The proof is similar to that in Nesterov [572] and Ye [859]. We includeit here for completeness. Since�p � �q � 2� �p+ (1� 2� )p � (1 � 2� )�p+ 2�p � q � pwe have �q � Euq(x̂)�q � q � �q � 2� �p� (1� 2� )p�q � q� �q � 2� �p� (1� 2� )p�q � (1� 2� )�p � 2�p� �p � 2� �p � (1� 2� )p�p � (1� 2� )�p� 2�p= (1 � 2� )(�p � p)2� (�p� p)= (1 � 2� )2� = �2 � 1:



NONCONVEX QUADRATIC OPTIMIZATION 39513.3.3 Results for Other Quadratic ProblemsConsider now another nonconvex QP problem:Maximize xTQx+ cTxSubject to xTAix+ cTi x � bi; i = 1; : : : ;m;where given symmetric matrices Ai 2 <n�n. We summarize approximationresults for solving this problem.If m = 1, A1 = I, the identity matrix, and c1 = 0, then the problemis polynomially solvable. That is, there is an algorithm to generate an�-solution for any � > 0, and its running time is polynomial in n andlog(1=�), see an early proof by Vavasis [818] and Ye [855] and a later byRendl and Wolkowicz [661]. (Ye [856] further reduced the complexitytime dependency on � to log log(1=�).)If all Ai are mutually commutative (they can be simultaneously diagonal-ized) and all ci = 0, then the problem can be transformed into a problemwith only diagonally quadratic constraints, and thus can be approximatedfor � = 4=7 according to our early analysis, also see Ye [859] and Nesterov[575].If all Ai are positive semide�nite, then the problem can be approximatedfor � = 1� constantm2 by Fu et al. [258]; and in addition, if all ci = 0, thenit can be approximated for � = 1� constantlog(mn) by Nemirovskii et al. [568].13.4 RELAXATIONS OF Q2P Henry Wolkowicz
In this part of the chapter we look at several di�erent instances of Q2P . Inparticular, we start with several di�erent tractable relaxations for the max-cutproblem and show that, surprisingly, they are all equal to the Lagrangian (andSDP) relaxation.



396 HANDBOOK OF SEMIDEFINITE PROGRAMMINGWe then illustrate a recipe for constructing relaxations for QQPs by �ndinga strengthened SDP bound for the max-cut problem.Other instances discussed are the quadratic assignment and graph partition-ing problems.We then consider trust region type problems and discuss when strong dualityholds. This includes problems where orthogonal constraints arise, e.g. orthog-onal relaxations of the quadratic assignment and graph partitioning problems.In particular, this part of the chapter emphasizes the theme about the strengthof the Lagrangian relaxation.13.4.1 Relaxations for the Max-cut ProblemThe success of the SDP relaxation (equivalently Lagrangian relaxation) overthe last few years is exempli�ed by the success on the Max-Cut Problem. LetG = (V;E) be an undirected graph with edge set V = fvigni=1 and weights wijon the edges (vi; vj) 2 E. We want to �nd the index set I � f1; 2; : : :ng; tomaximize the weight of the edges with one end point with index in I and theother in the complement. This is equivalent to(MC) max 12Pi<j wij(1� xixj); x 2 F ;where F := f�1gn; and xi = 1 if i 2 I and -1 otherwise. The objective functionis a (homogeneous) quadratic form, xTQx:Several Di�erent Relaxations. We now look at several di�erent tractablerelaxations of MCQ, (13.4.54). These have di�erent motivations. For example,one bound relaxes the constraints to the unit ball of radius pn, while anotherrelaxes the constraints to the convex hull, i.e. to the unit cube. Following[638, 635], we observe that several quadratic type bounds considered in theliterature are actually equal. The key to the simple proofs is the strong dualityresult for the trust region subproblem, see [747]. A similar phenomenon occursfor linearizations of (P), such as in roof duality, see e.g. [324], where manybounds obtained from various linearizations have been shown to be equal and,in fact, they have been shown to be equal to the Lagrangian dual of a linearizedproblem, see [4]. (The quality of the SDP bounds is the main topic in the �rsttwo parts of this chapter; see above.)We allow a more general objective function, i.e. we consider the �1 con-strained quadratic program(MCQ) �� := maxx2F q0(x) (:= xTQx� 2cTx): (13.4.54)The bounds are derived using the fact that we can perturb the objective func-tion q0 and exploit the fact that x2i = 1 on the feasible set F : Note thatqu(x) := xT (Q+ Diag (u))x� 2cTx� uT e= q0(x); 8x 2 F : (13.4.55)



NONCONVEX QUADRATIC OPTIMIZATION 397For each u we get a trivial upper bound obtained from ignoring the constraintsand allowing the diagonal perturbations, i.e. we have�� � f0(u) := maxx qu(x): (13.4.56)But, the function f0 can take on the value +1: LetS := �u : uT e = 0; Q+ Diag (u) � 0	 :We then get the following trivial bound.�� � B0 := minu f0(u) �= minuT e=0 f0(u); if S 6= ;� : (13.4.57)Note that if the set S is not empty, then we can minimize over the unconstrainedparameter u or add the restriction to uT e = 0: This can be seen from theoptimality conditions for min-max problems. This comment is true for thefollowing bounds as well. (Details can be found in [638].)In addition we can restrict the parameters and avoid in�nite values for theinner maximization problem by adding the hidden semide�nite constraint, i.e.we use the fact that a quadratic function is unbounded above if the Hessian isnot negative semide�nite. (Note that a quadratic function is bounded above ifand only if the Hessian is negative semide�nite and the stationarity equationis consistent.) The following is a tractable bound since we minimize a convexfunction over a convex set.�� � B0 = minQ+Diag (u)�0f0(u): (13.4.58)Next we relax the feasible set to the sphere of radius pn. We get�� � f1(u) := maxjjxjj2=n qu(x): (13.4.59)And our next bound is �� � B1 := minu f1(u): (13.4.60)The inner maximizationproblem is the trust region subproblem and is tractable,see e.g. Section 13.4.3 below. Thus we have our second tractable bound.We can replace the spherical constraint with the box constraint.�� � f2(u) := maxjxij�1 qu(x): (13.4.61)After adding the semide�nite constraint to make the bound tractable, i.e. tomake the calculation of f2 tractable, we get our next bounds.�� � minu f2(u) (13.4.62)and �� � B2 := minQ+Diag (u)�0f2(u): (13.4.63)



398 HANDBOOK OF SEMIDEFINITE PROGRAMMINGGiven Q and c, de�ne the (n + 1) � (n + 1)-matrix Qc by adding a 0 � throw and column, so that qc00 = 0qc0i = qci0 = �ci for i > 0qcij = qij for i; j > 0;i.e. Qc := � 0 �cT�c Q � : (13.4.64)In order to have analogous functions qcu(y) and fi(u) as in the previous cases,let us introduce qcu(y) := yT (Qc + diag(u))y � uT e: (13.4.65)Note that qcu reduces to qu if the �rst component y0 is �1: The equivalentrelaxed problem is�� � fc1 (u) := maxjjyjj2=n+1 qcu(y) = (n+ 1)�max(Qc + diag(u)) � uT e; (13.4.66)where �max denotes the maximum eigenvalue. Now another bound is�� � Bc1 := minu fc1(u): (13.4.67)Similarly, we get equivalent bounds Bc0 and homogenized bounds for the othermodels.The above argument shows that we can homogenize the problem by movinginto a higher dimension. Therefore, we can consider the special case that c = 0:We now look at the SDP bound, see also Section 13.2 above for the performanceguarantees. The relaxation comes from the fact that the trace is commutative,i.e. xTQx = Trace xTQx = TraceQxxTand, for x 2 F ; yij = xixj de�nes a symmetric, rank one, positive semide�nitematrix Y with diagonal elements 1. Therefore, we can lift the problem intothe higher dimensional space of symmetric matrices and relax the rank oneconstraint. This yields the following relaxation and our bound 3.B3 := max TraceQYsubject to diag(Y ) = eY � 0: (13.4.68)This SDP is a convex programming problem and is tractable.Now we replace the �1 constraints with x2i = 1; 8i: This does not change thefeasible set of the original problem. In [638, 635] it is shown that all the aboverelaxations and bounds for MC come from the Lagrangian dual of (PE), thefollowing equivalent problem to MCQ. Thus we enforce our theme about the



NONCONVEX QUADRATIC OPTIMIZATION 399strength of the Lagrangian relaxation. The strong duality result for the trustregion subproblem is the key to the proofs.(PE) max q0(x) = xTQx� 2cTxsubject to x2i = 1; i = 1; � � � ; n: (13.4.69)Note that the Lagrangian dual of PE yields precisely our trivial �rst bound B0in (13.4.57).Theorem 13.4.1 All the bounds for MCQ discussed above are equal to theoptimal value of the Lagrangian dual of the equivalent program PE :A Strengthened Bound for MC. From the results above, it would appearthat we might have the strongest possible tractable bound. However, adding re-dundant constraints can strengthen bounds. The following bound is motivatedby the strong duality results presented in Section 13.4.3 below and is presentedin [41]. The SDP bound (13.4.68) for MCQ arises from a lifting procedure, i.e.identifying 0 � X = xxT and xTQx = TraceX:Discarding the rank one condition on X results in the tractable SDP bound.It is not clear what constraints one can add to PE in order to strengthen theLagrangian relaxation, i.e. linear combinations of the constraints will not helpsince they are already included in the Lagrangian. But, in the space of matrices,it is also true that X2 = xxTxxT = nX:Therefore we can use the following equivalent quadratic matrixmodel for MCQ.�� := max TraceQXs.t. diag(X) = eX2 � nX = 0;where X is a symmetric matrix. This problem is equivalent to PE since X2 =nX and TraceX = n implies X is rank one. Therefore we are including therank one information from the original problem. However, this problem is anonconvex problem and cannot be solved in general. Note that if X2 = nX,then TraceQX = (1=n)TraceQX2, and diag(X2) = ne. As a result, the abovequadratic model is equivalent to the model:�� = max 1nTraceQX2s.t. xTi xi = n; i = 1; : : : ; n (13.4.70)X2 � nx0X = 0x20 = 1;where xTi , i = 1; : : : ; n denotes the ith row of X, and x0 is a scalar. Having aquadratic objective is an advantage only if it results in a larger class of available



400 HANDBOOK OF SEMIDEFINITE PROGRAMMINGLagrange multipliers. Therefore, the sign of the eigenvalues of Q will determinewhether this objective or 1nTraceQXx0 is better. (Note that if x0 = �1 thenchanging x0 to 1 and replacing X with �X leaves the objective and constraintsin (13.4.70) unchanged.) We will obtain an upper bound �2 � �� by applyinga Lagrangian procedure to all of the constraints in (13.4.70). Using multipliersui for the constraints xTi xi = n, i = 1; : : : ; n, u0 for the constraint x20 = 1,and a symmetric matrix S for the matrix equality X2 � nX = 0, we obtain aLagrangian problem�2 := minu0;u;S u0 + nuT e+maxx0;X 1nTraceQX2 � TraceUX2+TraceSX2 � nx0TraceSX � u0x20;where U = Diag (u). Letting �xT = (x0; vec (X)T ), this problem can be writtenin Kronecker product form as�2 = minu0;u;S u0 + neTu+max�x �xT �Q�x;where �Q = � �u0 �n2vec (S)T�n2vec (S) I 
 � 1nQ� U + S� � :Applying the hidden semide�nite constraint �Q � 0, we obtain an equivalentproblem �2 = min u0 + neTus.t. � u0 n2 vec (S)Tn2 vec (S) I 
 �� 1nQ+ U � S� � � 0 (13.4.71)S = ST :Note that if we take S = 0 in (13.4.71), then u0 = 0 is clearly optimal, and theproblem reduces to min eTu�Q+ U � 0;which is exactly the dual of the usual SDP relaxation for MC. It follows thatwe have obtained an upper bound �2 which is a strengthening of the usual SDPbound, i.e. �2 � B0:AlternativeStrengthenedRelaxation. This presents an alternative strength-ened SDP relaxation for the max-cut problem, i.e. this continues from theabove Section 13.4.1 but tries to fully exploit the rank-one condition in theLagrangian.We use the notation: For S 2 Sn; the vector s = svec (S) 2 <t(n); is formed(columnwise) from S while ignoring the strictly lower triangular part of S:Its inverse is the operator S = sMat (s): The adjoint of svec is the operator



NONCONVEX QUADRATIC OPTIMIZATION 401hMat (v) which forms a symmetric matrix where the o�-diagonal terms aremultiplied by a half, i.e. this satis�essvec (S)T v = TraceS hMat (v); 8S 2 Sn; v 2 <t(n);where t(n) = n(n + 1)=2: The adjoint of sMat is the operator dsvec (S) whichworks like svec except that the o� diagonal elements are multiplied by 2, i.e.this satis�esdsvec (S)T v = TraceS sMat (v); 8S 2 Sn; v 2 <t(n):For notational convenience, we de�ne the vectors sdiag (s) := diag(sMat (s))and vsMat (s) = vec (sMat (s)); the adjoint of vsMat is then given byvsMat �(s) = dsvec ��Mat (v) +Mat (v)T � =2� :As above we can start with the following equivalent programMCO �� = max 12TraceQXs.t.< diag(X) = eX �X = eX2 � nX = 0: (13.4.72)There are many redundant constraints. However, it is uncertain which of thesebecome redundant in the SDP relaxation. The recipe is to throw in redun-dant constraints; then take the Lagrangian dual twice and delete redundantconstraints at the end. At the end one has an SDP with linear constraintsand one can often remove the redundancy using the structure of the problem.This illustrates the strength of the Lagrangian relaxation approach. This isdone in [34]. (See also [635] and more recently [473].) The result after deletingredundant constraints is the simpli�ed SDP relaxation (see [34]):MCPSDP2 ��2 = max TraceHcYs.t. diag(Y ) = eY0;t(i) = 1; 8i = 1; : : : ; niPk=1Yt(i�1)+k;t(j�1)+k+ jPk=i+1Yt(k�1)+i;t(j�1)+i+Pnk=j+1 Yt(i�1)+i;t(k�1)+j � nY0;t(j�1)+i = 081 � i < j � nY � 0; Y 2 St(n)+1: (13.4.73)This problem has 2t(n)�1 constraints. In fact, there is still some redundancy asit can be shown that Slater's constraint quali�cation fails for this problem. Thiscan be further exploited by projecting the problem onto the space determinedby the minimal face of the problem, see [34].



402 HANDBOOK OF SEMIDEFINITE PROGRAMMING13.4.2 General Q2PWe now move on to applying the Lagrangian relaxation to general quadra-tic constrained quadratic problems, denoted Q2P ; and, we apply it to severalspeci�c instances: the quadratic assignment, graph partitioning, max-cliqueproblems. The general Q2P problem is also studied in e.g. [260, 442] and[652, 451, 449, 510].Quadratic bounds using a Lagrangian relaxation have been extensively stud-ied and applied in the literature, for example in [444] and, more recently, in[445]. The latter calls the Lagrangian relaxation the \best convex bound".Discussions on Lagrangian relaxation for nonconvex programs also appear in[245]. More references are given throughout this chapter.Remark 13.4.1 Any equality constraints are written as two inequality con-straints; any linear equality constraints, Ax = b; is transformed to a quadraticconstraint via jjAx� bjj2 = 0: The reason for these transformations for linearequality constraints is discussed in [635], i.e. the Lagrangian dual essentiallyignores linear constraints as can be seen from: �1 = max�minx�x2 + �x;which is the dual of the problem minf�x2 : x = 0g:We now recall the Q2P in x:(Q2P x) q� := min q0(x) := xTQ0x+ 2gT0 x+ �0subject to qk(x) := xTQkx+ 2gTk x+ �k � 0k 2 I := f1; : : : ;mgx 2 <n; (13.4.74)where the matrices Qk are symmetric. The feasible set isFx := fx 2 <n : qk(x) � 0; 8k 2 Ig:(Note that though the feasible set Fx may be empty, the feasible set of therelaxation may not be.) The objective function and the constraints are notconvex, necessarily. Therefore the feasible set can be a very \nasty" set. Thisproblem is a very hard problem to solve in general, see e.g. [614].Let Pk := � �k gTkgk Qk � (13.4.75)and, by abuse of notation, de�neqk(y) := yTPky; k = 0; 1; : : : ;m:Then an equivalent homogenized formulation to (Q2Px) is(Q2Py) q� = min q0(y)subject to qk(y) � 0; k 2 Iy20 = 1y = � y0x � 2 <n+1:



NONCONVEX QUADRATIC OPTIMIZATION 403It is clear that the optimal values of the two equivalent formulations are equal.In fact, if y0 = �1 is optimal, then we can replace y by �y. This is becausethe objective function and all but the last constraint are homogeneous.We will refer to both equivalent formulations of Q2P in the sequel. Thecorrect reference will be clear from the context.Remark 13.4.2 Note that we could replace the constraint y20 = 1 by y0 = 1.(The constraint y0 = 1 is used in [260].) In the latter case, the feasible sets ofthe two formulations coincide exactly, while in the former case they can di�erby a sign, i.e. x 2 Fx implies that both � �1�x � and � 1x � are in Fy, i.e. arefeasible for the homogenized problem Q2P y.The Lagrangian Relaxation of a General Q2P . The Lagrangian re-laxation of the homogenized problem Q2P y provides a simple technique forobtaining the SDP relaxation. In addition, an application of the strong dualityresult for the trust region subproblem shows that both the SDP and Lagrangianrelaxation are equal. The Lagrangian of Q2P y isL(y; �; �) := yTP0y � �(y20 � 1) +Xk2I �kyTPky:The Lagrangian relaxation of Q2P y is(DQ2Py) d� := max���0 miny yTP0y � �(y20 � 1) +Xk2I �kyTPky:Note that d� = max��0 max� miny yTP0y � �(y20 � 1) +Xk2I �kyTPky= max��0 miny20=1 yTP0y +Xk2I �kyTPky;from strong duality of the trust region subproblem, see [747]. Therefore, we getequivalence of the dual values for the problems in x and in y: (This is similarto the approaches in [849, 733].)(DQ2Px) d� = max��0 minx q0(x) +Xk2I �kqk(x):We immediately conclude that weak duality holdsd� � q� = miny max���0 yTP0y � �(y20 � 1) +Xk2I �kyTPky:Therefore, if the optimal ��; �� can be found, we have found a single quadraticfunction whose minimal value approximates the original minimal value q�, i.e.q� � d� = miny yTP0y � ��(y20 � 1) +Xk2I ��kyTPky: (13.4.76)



404 HANDBOOK OF SEMIDEFINITE PROGRAMMINGMoreover, in the dual program, the Lagrangian is a quadratic function ofy. Therefore, the outer maximization problem has the nonnegativity and anadditional hidden semide�nite constraintP0 � �E00 +Xk2I �kPk � 0; � � 0; (13.4.77)where E00 is the zero matrix with 1 in the top left corner andM � 0 denotes theL�owner partial order, i.e. that the symmetric matrixM is positive semide�nite.The minimum of the minimization subproblem, in this case, is attained byy = 0: Therefore the Lagrangian dual is equivalent to the SDP problem(DSDP ) d� := max �subject to �E00 �Pk2I �kPk � P0� � 0:Valid Inequalities. Using the above approach we see that more constraintsqk(y) means that we have a stronger dual. This can be phrased as addingredundant constraints to get new valid inequalities to strengthen the relaxation.We will see how this occurs when we look at orthogonally constrained problemsbelow. Another approach is also speci�ed in detail in Kojima and Tuncel[442, 440].For problems that also have linear equality constraints, one can use thenotion of copositivity to strengthen the SDP relaxation. However, this doesnot result in a tractable relaxation in general, see [649].Speci�c Instances of SDP Relaxation. We now study four speci�c in-stances and show how to apply the recipe for relaxations. In each case wederive a min-max eigenvalue problem from the Lagrangian dual of an appro-priately chosen quadratic constrained program. The dual of this dual problemprovides a semide�nite relaxation for the original problem. Adding redundantconstraints at the start helps in reducing the duality gap. These redundantconstraints are automatically deleted at the end, i.e. in the SDP relaxation,by ensuring full row rank and Slater's condition. We do this for: the quadraticassignment problem; graph partitioning; max-clique problem; and the stableset problem.Quadratic Assignment ProblemTypical relaxations for QAP, see the de�nition in Section 13.1, try to exploitthe trace formulation and use perturbations on A;B separately. Current ap-proaches have two serious drawbacks. They completely discard the nonnega-tivity constraints and then they derive a bound from the sum of two boundsobtained by treating the quadratic and linear parts of the objective functionseparately, see e.g. [610]. However, the Lagrangian relaxations and homoge-nization for the special case S = <n shows that we should consider more generalperturbations and, in particular, we should consider perturbations that arisefrom Lagrangian quadratic relaxations. This approach does not have the twodrawbacks mentioned above.



NONCONVEX QUADRATIC OPTIMIZATION 405We now use the fact that the set of permutation matrices is equal to theintersection of the orthogonal matrices with the 0,1 matrices. We get thefollowing equivalent program to QAP.(QAPE) �� := max q(X) = Trace (AXB � 2C)XTsubject to XXT = IX2ij �Xij = 0; 8i; j: (13.4.78)We could also consider the square of the norm of the residual of the (redundant)linear constraints Xe = e; XT e = e:Other relaxations and bounds can be obtained by adding redundant constraintssuch as TraceXXT = n; XTX = I;or 0 � Xij � 1; 8i; j:We now devote our attention to homogenization since that results in a min-max eigenvalue problem and an equivalent semide�nite programming problem.We have seen that we can homogenize by increasing the dimension of the prob-lem by 1. We �rst add the 0,1 constraints to the objective function usingLagrange multipliers Wij .minW maxXXT=ITrace (AXB � 2C)XT +Xij Wij(X2ij �Xij): (13.4.79)We now homogenize the objective function by multiplying by a constrainedscalar x.minW maxXXT=I;x2=1Trace �AXBXT +W (X �X)T � x(2C +W )XT � : (13.4.80)We can now use Lagrange multipliers to get a parametrized min-max eigenvalueproblem in dimension n2 + 1. We get the following bound. The parametersare: the symmetric n� n matrix � = �T , the general n� n matrixW and thescalar �:BQAP := min�;W;�maxX Trace [AXBXT + �XXT +WT (X �X) + �x2�x(2C +W )XT ]� �� Trace�: (13.4.81)We have grouped the quadratic, original linear, and constant terms together.The hidden semide�nite constraint now yields a semide�nite programmingproblem. min �Trace�� �subject to LQ +Arrow (�; vec (W )) + B0Diag (�) � 0; (13.4.82)



406 HANDBOOK OF SEMIDEFINITE PROGRAMMINGwhere we de�ne the matrixLQ := � 0 �vec (C)T�vec (C) B 
A � ; (13.4.83)and the linear operatorsArrow (�; vec (W )) := � � �12vec (W )T�12vec (W ) Diag (vec (W )) � ; (13.4.84)B0Diag (�) := � 0 00 I 
 � � : (13.4.85)We can now introduce the (n2 + 1)� (n2 + 1) dual variable matrix Y � 0 andderive the dual program to this min-max eigenvalue problem, i.e.maxY�0 min�;W;��Trace �� �+ TraceY (LQ + Arrow (�; vec (W )) + B0Diag (�)):The inner minimization problem is unconstrained and linear in the variables.Therefore, after reorganizing the variables, we can di�erentiate to get the dualproblem to this dual problem, or the semide�nite relaxation to the originalQAP. (Recall that Yi;j:k refers to the i-th row and columns j to k of the ma-trix Y ; and b0diag (Y ) is the block diagonal sum of Y which ignores the �rstrow.) The derivatives with respect to � and W yields the �rst constraint andthe derivative with respect to � yields the second constraint in the followingprogram. Equivalently, the constraints are the adjoints of the linear operatorsArrow and B0Diag : max TraceLQYsubject to diag(Y ) = (1; Y0;1:n2)Tb0diag (Y ) = IY � 0: (13.4.86)Another primal-dual pair can be obtained using a trust region subproblemas the inner maximization problem, rather than homogenizing to an eigen-value problem. This is done by adding the redundant trust region constraintTraceXXT = n: Also, as mentioned above, we can add the redundant con-straint jjXe� ejj2 + jjXT e � ejj2 = 0:This type of constraint is discussed below for the graph partitioning problem.A primal-dual interior point method based on the these types of dual pairs ofprograms, such as (13.4.86),(13.4.82), are being tested and studied in [870].Graph PartitioningLet G = (V;E) be an undirected graph as in the description for (MC). Thegraph partitioning problem is the problem of partitioning the node set V intok disjoint subsets of speci�ed sizes so as to minimize the total weight of the



NONCONVEX QUADRATIC OPTIMIZATION 407edges connecting nodes in distinct subsets of the partition. Let A = (aij) bethe weighted adjacency matrix of G, i.e.aij = � wij ij 2 E0 otherwise.The graph partitioning problem can be described by the following (0,1)-quad-ratic program see e.g. [660].(GP) w(Euncut) = max 12TraceXtAXsubject to Xek = enXT en = mXij 2 f0; 1g; 8ij;where ek is the vector of ones of appropriate size and m is the vector of orderedset sizes m1 � : : : � mk � 1 and k < n:The columns of the 0,1 n� k matrices X are the indicator vectors for the sets.We can replace the 0,1 constraints by quadratic and also change the linearconstraints to quadratic by squaring. We get the following equivalent program.w(Euncut) = max 12TraceXtAXsubject to jjXek � enjj2 + jjXT en �mjj2 = 0X2ij �Xij = 0; 8ij:The Lagrangian relaxation yields the following bound.BGP := min�;W maxX Trace [12XTAX + �(ekeTkXTX +XT eneTnX) +WT (X �X)�2�(ekeTnX +meTnX) �WTX ]+�(n+Pim2i ): (13.4.87)We can now homogenize the problem by adding a variable x.BGP := min�;W maxXx2=1Trace [12XTAX + �(ekeTkXTX +XT eneTnX) +WT (X �X)+x(�2�(ekeTnX +meTnX) �WTX) ]+�(n+Pim2i ):We now lift the variable x into the Lagrangian to get a min-max eigenvalueproblem.BGP := min�;W;�maxX;x Trace [12XTAX + �(ekeTkXTX +XT eneTnX) +W T (X �X) + �x2+x(�2�(ekeTnX +meTnX) �WTX) ]+�(n +Pim2i )� �:



408 HANDBOOK OF SEMIDEFINITE PROGRAMMINGThe above has a hidden semide�nite constraint.min �(n+Pim2i )� �subject to LA +Arrow (�; vec (W )) + �L� � 0; (13.4.88)where we de�ne the matricesLA := � 0 00 12I 
 A � ; (13.4.89)v = vec enmT ;L� := � 0 �(e + v)T�(e + v) (ekeTk I 
 I + I 
 eneTn ) � ; (13.4.90)and the linear operatorArrow (�; vec (W )) := � � �12(vec (W ))T�12(vec (W )) Diag (vec (W )) � : (13.4.91)The dual program yields the semide�nite relaxation of (GP).max TraceLAYsubject to diag(Y ) = (1; Y0;1:n)TTraceY L� = 0Y � 0: (13.4.92)Max-Clique and Stable SetConsider again the undirected graph G = (E; V ) de�ned above. The max-clique problem consists in �nding the largest connected subgraph. We let !(G)denote the size of the largest clique in G. A stable set is a subset of verticesof V such that no two vertices are adjacent. We denote the size of the largeststable set in �G, the complement of G, by �( �G): Clearly�( �G) = !(G):Bounds for these problems and relationships to the theta function, or Lov�asznumber of the graph, are described in the expository paper e.g. [425]; see also[701].In this section we show that the Lovasz bound on !(G) can be alternativelyobtained from two distinct 01-programs (13.4.93) and (13.4.96) by Lagrangianrelaxations. Let A be the incidence matrix of the graph, i.e. A = (aij) withaij = 1 if ij 2 E and 0 otherwise. If x is the indicator vector for the largestclique in G of size k, A then xT (I +A)x=xTx = k2=k = k: A quadratic formu-lation of the max-clique problem is the following (0,1)-quadratic program.!(G) = max xT (I+A)xxT xsubject to xixj = 0; if ij =2 E; i 6= jxi 2 f0; 1g; 8i: (13.4.93)



NONCONVEX QUADRATIC OPTIMIZATION 409Therefore, a quadratic relaxation of the max-clique problem is the followingquadratic constrained program.!(G) � !�1 := max xT (I + A)xsubject to xixj = 0; if ij =2 E; i 6= jxTx = 1: (13.4.94)The Lagrangian relaxation for this problem is the perturbed min-max eigen-value problem and the equivalent semide�nite program!�1 � minWij=0; if ij2E; or i=j�max(I +A +W )� �xTx+ �= minw;� maxx xT (I +A)x + Pij =2E; i6=jwijxixj � �xTx+ �= minI+A+W��IWij=0; if ij2E; or i=j�i.e. minimize the max eigenvalue over perturbations in the o�-diagonal ele-ments corresponding to disjoint nodes. This bound is equal to the Lovasz thetafunction on the complementary graph.#( �G) = minA2A�max(A); (13.4.95)where A = fA : A symmetric n�n matrix with Aij = 1; if ij 2 E; or i = jg.By considering the (optimal) indicator vector for the largest clique, we seethat a (0,1)-quadratic program that describes the max-clique problem exactlyis the following one. Note that if node i is not in the largest clique, thennecessarily, xixj = 0 for some j with node j in the clique, i.e. necessarilyxi = 0 in the indicator vector.!(G) = max xTxsubject to xixj = 0; if ij =2 E; i 6= jx2i � xi = 0; 8i: (13.4.96)The Lagrangian relaxation yields the boundBclique := minW;� maxx xTx+ Xij =2E; i6=jwijxixj +Xi �i(x2i � xi):We let W be an n � n matrix with zeros in positions where ij 2 E: We canhomogenize by adding the constraint y2 = 1 and then lifting it into the La-grangian.min�;W;�maxx;y xTx+ Xij=2Ewijxixj +Xi �ix2i + �y2 � yXi �ixi � �:We now exploit the hidden semide�nite constraint to get the semide�nite pro-gram.Bclique = minW;�;� ��subject to LA + LW (W ) + Arrow (�; �) � 0Wij = 0; 8ij 2 E; or i = j; (13.4.97)



410 HANDBOOK OF SEMIDEFINITE PROGRAMMINGwhere the matrix LA := � 0 00 I � ; (13.4.98)and the linear operators LW (W ) := � 0 00 W � ; (13.4.99)Arrow (�; �) := � � �12�T�12� Diag (�) � : (13.4.100)The dual of the above min-max eigenvalue problem yields the semide�niterelaxation for the max-clique problem with Y 2 Sn+1:max TraceLAYsubject to diag(Y ) = (1; Y0;1:n)TYij = 0; 8ij =2 EY � 0: (13.4.101)The equivalence of the bounds (13.4.95) and (13.4.101) was shown in lemma2.17 of [497].Consider the program (13.4.93) with an additional redundant constraintxixj � 0 for ij 2 E (13.4.102)That is!(G) = max xT (I+A)xxT xsubject to xixj = 0; if ij =2 E; i 6= jxixj � 0; if ij 2 E;xi 2 f0; 1g; 8i: (13.4.103)A quadratic relaxation of the max-clique problem is the following quadraticconstrained program.!(G) � !�1 := max xT (I + A)xsubject to xixj = 0; if ij =2 E; i 6= jxixj � 0; if ij 2 E;xTx = 1: (13.4.104)The Lagrangian relaxation for this problem is equal to the Schrijver's im-provement [701] of the theta function on the complementary graph.#0( �G) = minA2A0 �max(A);where A0 = fA : A symmetric n�n matrix with Aij � 1; if ij 2 E; or i = jg.Haemmers [321] constructed graphs where #0( �G) is strictly smaller than #( �G).Analogously, it is possible to modify the program (13.4.96) by adding theconstraint (13.4.102).



NONCONVEX QUADRATIC OPTIMIZATION 41113.4.3 Strong DualityIn the case of strong duality (zero duality gap and dual attainment), our boundsare exact. As expected, this holds (generically) in the convex case. Surprisingly,there are several cases on nonconvex quadratic programs where this holds aswell. In this Section 13.4.3 we amplify on our theme that illustrates the strengthof the Lagrangian relaxation, i.e. that a tractable bound implies a Lagrangianrelaxation is at work.Recall the general quadratically constrained quadratic program (13.4.74).For simplicity we have replaced each equality constraint by two inequality con-straints. We will use equality constraints when absolutely required. We let Fdenote the feasible set.We de�ne the LagrangianL(x; �) := q0(x) + mXk=1�kqk(x);and the dual functional �(�) := minx L(x; �):The Lagrangian is linear in � and so the dual function is a minimum of linearfunctions, i.e. it is a concave function of �. Thus the maximum of this concavefunction is a tractable problem if the dual functional can be evaluated e�ciently.For each � � 0; we have the lower bound�� = minx2F q0(x)� minx2F L(x; �)� minx L(x; �)� �� := max��0 �(�):Thus we have de�ned our dual problem�� � �� = max��0 �(�);which provides a lower bound for our primal problem. If, in addition, we havefound the feasible �x 2 F with attainment in the Lagrangian �x 2 argminx L(x; ��)and with complementary slackness Pk ��kqk(�x) = 0; then�� � �� = L(�x; ��)= q0(�x)� ��;i.e. we have found an optimum �x and have a zero duality gap when thesesu�ciency conditions (feasibility, attainment, complementary slackness) hold.Note that since we are dealing with an unconstrained minimum of a quadratic



412 HANDBOOK OF SEMIDEFINITE PROGRAMMINGLagrangian, we obtain the interesting statement: necessary conditions for thesu�ciency conditions to hold, i.e. we need stationarity of the Lagrangian andpositive semide�niteness of the Hessian of the Lagrangian. Thus, when thesetwo conditions are incompatible we lose strong duality; we can even expect aduality gap.We now present several Q2P problems where the Lagrangian relaxation isimportant and well known. In all these cases, the Lagrangian dual provides animportant theoretical tool for algorithmic development, even where the dualitygap may be nonzero. We continue to emphasize our theme that illustrates thatthe Lagrangian relaxation is best.Convex Quadratic Programs. We start with the easy case; consider theconvex quadratic programCQP �� := min q0(x)s.t. qk(x) � 0; k = 1; : : :m;where all qi(x) are convex quadratic functions. We now see that Lagrangianduality can always solve this problem.The dual is DCQP �� := max��0 minx q0(x) + mXk=1�kqk(x):If �� is attained at ��; x�; then a su�cient condition for x� to be optimal forCQP is primal feasibility and complementary slackness, i.e.mXk=1��kqk(x�) = 0:In addition, it is well known that the Karush-Kuhn-Tucker (KKT) conditionsare su�cient for global optimality, and under an appropriate constraint quali-�cation the KKT conditions are also necessary. Therefore strong duality holdsif a constraint quali�cation is satis�ed, i.e. in this case there is no duality gapand the dual is attained.However, surprisingly, if the primal value of CQP is bounded then it is at-tained and there is no duality gap, see e.g. [776, 630, 631, 629]. (This can beconsidered to be an extension of the Frank-Wolfe Theorem, [510].) However,the dual may not be attained, e.g. consider the convex program0 = minfx : x2 � 0gand its (unattained) dual0 = max��0 minx x+ �x2 = max�>0 minx x+ �x2:Algorithmic approaches based on Lagrangian duality appear in e.g. [363,509, 583].



NONCONVEX QUADRATIC OPTIMIZATION 413Nonconvex Quadratic Programs.Rayleigh Quotient. Suppose that A = AT 2 Sn: It is well known that thesmallest eigenvalue �1 of A is obtained from the Rayleigh quotient, i.e.�1 = minfxTAx : xTx = 1g: (13.4.105)Since A is not necessarily positive semide�nite, this is the minimization of anonconvex function on a nonconvex set. However, the Rayleigh quotient formsthe basis for many algorithms for �nding the smallest eigenvalue, and thesealgorithms are very e�cient. In fact, it is easy to see that there is no dualitygap for this nonconvex problem, i.e.�1 = max� minx xTAx� �(xTx� 1) = maxA��I�0 �: (13.4.106)To see this note that the inner minimization problem in (13.4.106) is uncon-strained. This implies that the outer maximization problem has the hiddensemide�nite constraint (an ongoing theme in the chapter)A� �I � 0;i.e. � is at most the smallest eigenvalue of A. With � set to the smallesteigenvalue, the inner minimization yields the eigenvector corresponding to �1:Thus, we have an example of a nonconvex problem for which strong dualityholds. Note that the problem (13.4.105) has the special norm constraint, anda homogeneous quadratic objective.Trust Region Subproblem. We will next see that strong duality holds fora larger class of seemingly nonconvex problems. The trust region subproblem,TRS, is the minimization of a quadratic function subject to a norm constraint.No convexity or homogeneity of the objective function is assumed. We allowfor a further extension, i.e. we do not assume convexity of the constraint andallow inde�nite quadratic functions for both objective and constraint. (See e.g.[155] for applications of inde�nite quadratic forms.) This problem is importantin nonlinear programming, e.g. [552, 551].TRS �� := min q0(x) = xTQ0x� 2ct0xs.t. xTx� �2 � 0 (or = 0):or the generalized trust region subproblem [747, 549].GTRS �� := min q0(x) = xTQ0x� 2ct0xs.t. q1(x) � 0 (or = 0);where q1 is another quadratic function. In addition, one can have two sidedconstraints � � q1(x) � �; which are used in trust region algorithms as well.



414 HANDBOOK OF SEMIDEFINITE PROGRAMMINGFor TRS, assuming that the constraint is written \�," the Lagrangian dualis: DTRS �� := max��0 minx q0(x) + �(xTx� �2):This is equivalent to (see [747]) the (concave) nonlinear semide�nite programDTRS �� := max cT0 (Q0 + �I)yc0 � ��2s.t. Q0 + �I � 0� � 0:where �y denotes Moore-Penrose inverse. It is shown in [747] that strong dualityholds for TRS, i.e. there is a zero duality gap �� = ��; and the dual is attained.(The primal is also attained.) Thus, as in the eigenvalue case, we see that thisis an example of a nonconvex program where strong duality holds. In addition,this implies that this problem can be solved e�ciently; polynomial time resultsare presented in [854].Proof.We include a short proof of strong duality, for the inequality constrained case,based on the outline in [478], i.e. we fall back on the convex case after aperturbation. Note that the key to the proof is being able to pass between theinequality and equality constraints.Without loss of generality, we can assume that TRS is nonconvex. (Other-wise, we apply the convex results discussed above.) Therefore �� is attainedon the boundary of the feasible set and the smallest eigenvalue of Q0; denoted
; is negative. Then TRS is equivalent to�� = minxT x��2 xT (Q0 � 
I)x � 2ct0x+ 
xTx= minxT x=�2 xT (Q0 � 
I)x � 2ct0x+ 
xtx; (Q0 is inde�nite)= minxT x=�2 xT (Q0 � 
I)x � 2ct0x+ 
�2= minxT x��2 xT (Q0 � 
I)x � 2ct0x+ 
�2; (Q0 � 
I is singular)= max��0 minx xT (Q0 � 
I)x � 2ct0x+ �(xTx� �2) + 
�2 (convex case)= max��0 minx xTQ0x� 2ct0x+ (� � 
)(xTx� �2)� max��
 minx xTQ0x� 2ct0x+ (� � 
)(xTx� �2) (
 < 0)= �� � ��: (13.4.107)As mentioned above, extensions of this result to a two-sided general, possi-bly nonconvex, constraint are discussed in [747, 549]. An algorithm based onLagrangian duality appears in [661] and (implicitly) in [551, 691]. These algo-rithms are extremely e�cient for the TRS problem, i.e. they solve this problemalmost as quickly as an eigenvalue problem.



NONCONVEX QUADRATIC OPTIMIZATION 415The fact that we can solve the TRS e�ciently even though the objectiveand constraint may be nonconvex is surprising. In fact, in [524] Martinezshows that the TRS can have at most one local and nonglobal optimum, andthe Lagrangian at this point has one negative eigenvalue. Therefore, it is evenmore surprising that the Lagrangian dual (relaxation) allows one to �nd theglobal minimum without ever getting trapped near the local minimum.In fact, for GTRS we still have a 0 duality gap, though strong duality mayfail, e.g. consider the simple program minx s.t. x2 � 0: The results in [747]provide strong duality for GTRS with a two sided constraint using the con-straint quali�cation that � < �: In [549], necessary and su�cient optimal-ity conditions are presented for GTRS using the constraint quali�cation thatminq0(x) < max q0(x): Using these results in combination with the extensionof the Frank-Wolfe result (e.g. [510]) gives us the following.Theorem 13.4.2 Consider GTRS: a zero duality gap always holds and, more-over, if the optimal value is �nite, then it is attained.Two Trust Region Subproblem. The two trust region subproblem, TTRS,consists in minimizing a (possibly nonconvex) quadratic function subject to anorm and a least squares constraint, i.e. two convex quadratic constraints.This problem arises in solving general nonlinear programs using a sequentialquadratic programming approach, and is often called the CDT problem, see[154].In contrast to the above single TRS, the TTRS can have a nonzero dualitygap, see e.g. [626, 862, 863, 864]. This is closely related to quadratic theoremsof the alternative, e.g. [177]. In addition, if the constraints are not convex,then the primal may not be attained, see e.g. [510].As mentioned above, Martinez [524] shows that the TRS can have at mostone local and nonglobal optimum, and the Lagrangian at this point has onenegative eigenvalue. Therefore, if we have such a case and add another ballconstraint that contains the local, nonglobal, optimum in its interior and alsomakes this point the global optimum, we obtain a TTRS where we cannothave a zero duality gap due to the negative eigenvalue. It is uncertain whatconstraints could be added to close this duality gap. In fact, it is still an openproblem whether TTRS is an NP-hard or a polynomial time problem.General Q2P . The general, possibly nonconvex, Q2P has many applica-tions in modeling and approximation theory, see e.g. the applications to SQPmethods in [451]. Examples of approximations to Q2P also appear in [258].The Lagrangian relaxation of a Q2P is equivalent to the SDP relaxation,and is sometimes referred to as the Shor relaxation, see [733]. The Lagrangianrelaxation can be written as an SDP if one takes into the account the hiddensemide�nite constraint, i.e. a quadratic function is bounded below only if theHessian is positive semide�nite. The SDP relaxation is then the Lagrangiandual of this semide�nite program. It can also be obtained directly by lifting



416 HANDBOOK OF SEMIDEFINITE PROGRAMMINGthe problem into matrix space using the fact that xTQx = TracexTQx =TraceQxxT , and relaxing xxT to a semide�nite matrix X.One can relate the geometry of the original feasible set of Q2P with thefeasible set of the SDP relaxation. The connection is through valid quadraticinequalities, i.e. nonnegative (convex) combinations of the quadratic functions;see [260, 442] and our Section 13.4.2.Orthogonally Constrained Programs with Zero Duality Gaps. Wenow follow the approach in [41, 37, 36] and consider the orthonormal typeconstraints XTX = I; X 2Mm;n(sometimes known as the Stiefel manifold, e.g. [203]) and the trust region typeconstraint XTX � I; X 2Mm;n:Applications and algorithms for optimization on orthonormal sets of matricesare discussed in [203].) In this section we will show that for m = n, strongduality holds for a certain (nonconvex) quadratic program de�ned over or-thonormal matrices. Because of the similarity of the orthonormality constraintto the norm constraint xTx = 1, the results of this section can be viewed asa matrix generalization of the strong duality result for the Rayleigh Quotientproblem (13.4.105).Let A and B be n� n symmetric matrices, and consider the orthonormallyconstrained homogeneous Q2PQQPO �O := min TraceAXBXTs:t: XXT = I: (13.4.108)This problem can be solved exactly using Lagrange multipliers, see e.g. [318],or using the classical Ho�man-Wielandt inequality, e.g. [112].Proposition 13.4.1 Suppose that the orthogonal diagonalizations of A;B areA = V �V T and B = U�UT ; respectively, where the eigenvalues in � areordered nonincreasing, and the eigenvalues in � are ordered nondecreasing.Then the optimal value of QQPO is �O = Trace��, and the optimal solutionis obtained using the orthogonal matrices that yield the diagonalizations, i.e.X� = V UT :The Lagrangian dual of QQPO ismaxS=ST minX TraceAXBXT �Trace S(XXT � I): (13.4.109)However, there can be a nonzero duality gap for the Lagrangian dual, see [870]for an example. The inner minimization in the dual problem (13.4.109) is an



NONCONVEX QUADRATIC OPTIMIZATION 417unconstrained quadratic minimization in the variables vec (X), with hiddenconstraint on the Hessian B 
A� I 
 S � 0:The �rst order stationarity conditions are equivalent toAXB =SX orAXBXT= S: Once can easily construct examples where the semide�nite condition andthe stationarity are in con
ict and result in a duality gap. In order to close theduality gap, we need a larger class of quadratic functions.Note that in QQPO the constraints XXT = I and XTX = I are equivalent.Adding the redundant constraints XTX = I, we arrive atQQPOO �O := min TraceAXBXTs:t: XXT = I; XTX = I:Using symmetric matrices S and T to relax the constraints XXT = I andXTX = I, respectively, we obtain a dual problemDQQPOO �O � �D := max Trace S +Trace Ts.t. (I 
 S) + (T 
 I) � (B 
 A)S = ST ; T = TT :Theorem 13.4.3 Strong duality holds for QQPOO and DQQPOO ;i.e., �D = �O and both primal and dual are attained.A further relaxation of the above orthogonal relaxation is the trust regionrelaxation studied in [398]��QAPT := min TraceAXBXTs.t. XXT � I:The constraints are convex with respect to the L�owner partial order and soit is hoped that solving this problem would be useful. Also, this problem isvisually similar to the TRS discussed above. And so we would like to �nd acharacterization of optimality.The set fX : W = XXT � Igis studied separately in [604, 233] and is useful in eigenvalue variational princi-ples.We now study the matrix trust-region relaxation of QAP:��SDPT = min TraceAXBXTs.t. XXT � I:The following generalization of the Ho�man-Wielandt inequality holds.



418 HANDBOOK OF SEMIDEFINITE PROGRAMMINGTheorem 13.4.4 For any XXT � I, we havePni=1minf�i�n�i+1; 0g � trAXBXT �Pni=1maxf�i�i; 0gAnd, the upper bound is attained ifX = PDiag(�1; �2; � � � ; �n)QT ; (13.4.110)where "i = 8<: 1; �i�i > 0;� 2 [0; 1]; �i�i = 0;0; �i�i < 0; (13.4.111)The lower bound is attained ifX = PDiag(�1; �2; � � � ; �n)JQT ; (13.4.112)where "i = 8<: 1; �i�n�i+1 < 0;� 2 [0; 1]; �i�n�i+1 = 0;0; �i�n�i+1 > 0: (13.4.113)For a scalar �, let �� := minf0; �g. The lower bound in the above theoremstates that ��SDPT = Pni=1[�i�i]�. Since the Theorem provides the feasiblepoint of attainment, i.e. an upper bound for the relaxation problem, we willprove the theorem by proving another theorem that shows that the value ��SDPTis also attained by a Lagrangian dual program. Note that since XXT andXTXhave the same eigenvalues, XXT � I if and only if XTX � I. Explicitly usingboth sets of constraints, as in [41], we obtainQAPTR ��QAPT := min TraceAXBXTs.t. XXT � I; XTX � I:Next we apply Lagrangian relaxation to QAPTR, using matrices S � 0 andT � to relax the constraints XXT � I and XTX � I, respectively. Thisresults in the dual problemDQAPTR ��QAPT � �DQAPT := max �TraceS � TraceTs.t. (B 
 A) + (I 
 S) + (T 
 I) � 0S � 0; T � 0:To prove that ��QAPT = �DQAPT we will use the following simple result.Lemma 13.4.1 Let � 2 <n, �1 � �2 � : : : � �n. For 
 2 <n consider theproblem min z� := nXi=1[�i
�(i)]�;



NONCONVEX QUADRATIC OPTIMIZATION 419where �(�) is a permutation of f1; : : : ; ng, Then the permutation that minimizesz� satis�es 
�(1) � 
�(2) � : : : 
�(n).Theorem 13.4.5 Strong duality holds for QAPTR and DQAPTR, i.e.,�DQAPT = ��QAPT and both primal and dual are attained.The above results illustrate the theme about the strength of the Lagrangianrelaxation, i.e. that tractable problems can be solved using Lagrangian dualityin some form.




