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13.1 INTRODUCTION

Quadratically constrained quadratic programs, denoted Q?P, are an important
modelling tool, e.g.: for hard combinatorial optimization problems, Chapter 12;
and SQP methods in nonlinear programming, Chapter 20. These problems are
too hard to solve in general. Therefore, relaxations such as the Lagrangian
relaxation are used. The dual of the Lagrangian relaxation is the SDP relax-
ation. Thus SDP has enabled us to efficiently solve the Lagrangian relaxation
and find good approximate solutions for these hard, possibly nonconvex, Q*P .
This area has generated a lot of research recently. This has resulted in many
strong and elegant theorems that describe the strength/performance of the
bounds obtained from solving relaxations of these Q*P.

For the simple Q?P case of one quadratic constraint (the trust region sub-
problem) strong duality holds, even though both the objective function and
constraint may be nonconvex, i.e. there is a zero duality gap and the dual
is attained. In addition, necessary and sufficient (strengthened) second order
optimality conditions and efficient algorithms exist. However, these nice du-
ality results already fail for the two trust region subproblem (CDT problem).
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Surprisingly, there are other classes of nonconvex Q?P where strong duality
holds. This includes the special cases of orthogonality type constraints.

Throughout this chapter we emphasize the theme (or open problem) that
Lagrangian duality is best, 1.e. in every case that we have a good (tractable)
bound we show that it is equivalent to that obtained from the Lagrangian re-
laxation of an appropriate problem. Moreover, we include several results on the
strength of these bounds. These results follow the pioneering paper [285] and
study the theme that a solution of an indefinite quadratic maximization prob-
lem with some linear constraints on the squared variables can be approximated
with a constant relative accuracy.

In parts 13.2 and 13.3, we present several complexity results on the quality
of the SDP relaxations. We present a convex conic relaxation for a problem
of maximizing an indefinite quadratic form over a set of convex constraints on
the squared variables. We show that for all these problems we get at least
%—relative accuracy of the approximation. In the second part of the paper
we derive the conic relaxation by another approach based on the second order
optimality conditions. We show that for /,-balls, p > 2, intersected by a linear

subspace, it is possible to guarantee (1— f—))—relative accuracy of the solution. As

a consequence, we prove (1— ﬁ)—relative accuracy of the conic relaxation for
an indefinite quadratic maximization problem over an n-dimensional unit box
with homogeneous linear equality constraints. We discuss the implications of
the results for the discussion around the question P = NP. We also consider
the problem of approximating the global maximum of a quadratic program
(QP) subject to bound and (simple) quadratic onstraints. Based on several
early results, we show that a 4/7-approximate solution can be obtained in
polynomial time.

The rest of the paper is organized as follows. We begin in Section 13.4.1
with the most well known problem in this area, the Max-Cut problem. We
present several different relaxations. Surprisingly, following our theme, all these
bounds, including the SDP bound, end up being equivalent to the Lagrangian
relaxation; see Section 13.4.1. We then present a strengthened SDP bound
based on a second lifting procedure.

We discuss the SDP relaxation for general Q?P in Section 13.4.2. This
includes descriptions of the relationships between the SDP relaxation and the
Lagrangian relaxation via convex quadratic valid inequalities, following [260,
442]. Several applications, including QAP and GP, are presented in Section
13.4.2.

Occurrences of strong duality for nonconvex quadratic programs is studied
in Section 13.4.3. In every instance where one has a tractable bound, we find
a Q%P such that the bound is attained by the Lagrangian relaxation. This
follows the work in [41, 37].
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13.1.1 Lagrange Multipliers for Q*P

We now define the (inequality constrained) Q?P in z. (Though our notation
does differ slightly in the separate parts (sections) of this chapter.)

q¢* := min go(z) := 2T qor + 2g% = + o
QP ) subject to gx(z) = 2T Qrz + 2¢¥ z + a1, <0
@ keZ:={1,...,m}
z € R,

where the matrices @ are symmetric. The Lagrangian of Q*P . is

L(z,A) :=qo(z) + Z Aeqr (),

ke

where A = (A;) > 0 are nonnegative Lagrange multipliers.

Lagrange multipliers can be used in two ways. First, if a constraint qual-
ification holds for Q?P at the optimum z (e.g. the Mangasarian-Fromovitz
constraint qualification), then the Karush-Kuhn-Tucker necessary conditions
for optimality hold, i.e.

VL(z,A)=0, and Apgx(z) =0,Vk € I.

Therefore, the optimum z can be searched among the points satisfying sta-
tionarity of the Lagranglan and complementary slackness. Moreover, if the
Lagrangian is also convex, then this is a sufficient condition for optimality.

Lagrange multipliers can also be used to derive the Lagrangian dual (or
relaxation) of Q2P ,

(DQZPx) ¢" > d* := maxmingo(z) + Z Akgr(z).
AS0 7 keT

A zero duality gap holds if ¢* = d*. This can fail in the nonconvex case. Strong
duality holds if ¢* = d* and also d* is attained. Moreover, d* can be efficiently
evaluated using SDP.

13.2 GLOBAL QUADRATIC OPTIMIZATION VIA CONIC
RELAXATION

Yuri Nesterov
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Starting from the pioneering paper [285], there were obtained several results
[672, 859, 575], which show that a solution of an indefinite quadratic maxi-
mization problem with some linear constraints on the squared variables can be
approximated with a constant relative accuracy. In this Section 13.2 we present
some improvements and extensions of the results [575].

In Section 13.2.1 we consider a problem of maximizing an indefinite qua-
dratic form subject to arbitrary convex constraints on the squared variables.
For convenience of the dual description we use a conic representation of these
constraints. We introduce a convex conic relaxation for that problem and prove
that it provides us at least with an approximation of g relative accuracy. In
Section 13.2.2 we show how to improve this approximation using the diagonal
elements of the quadratic objective function. The relative accuracy, which
we can get in this case, is % In Section 13.2.3 we extend the results of
Section 13.2.1, 13.2.2 onto the case of general convex constraints on squared
variables. We conclude the first part of the section with a discussion of the
difficulties which arise in the problems with linear equality constraints on the
initial variables (Section 13.2.4).

In the second part of the section, which starts from Section 13.2.5, we study
another way of deriving the conic relaxation. This approach can be applied
only to a small number of sets ([,-balls, p > 2), but it allows to treat also
the linear equations. We prove that for such problems the conic relaxation
gives (1 — 12—)) relative accuracy. In Section 13.2.6 we apply these results to a
problem of maximizing a quadratic function over a unit box subject to a system
of homogeneous linear equalities. We show that it is possible to compute in
polynomial time a (1— ﬁ)—solution of that problem. We conclude the section
with a discussion of the results.

We first recall some of the notation we use. For two vectors z, y € R" we

denote (z,y) the standard inner product:

n

(o) = 3oy

i=1

Then || = ||= (x,z)*/2 Since we work in several finite-dimensional spaces,
the meaning of this notation is defined by the spaces of the arguments. For
example, for two (m x n)-matrices X and Y we have

(X, 7) =) X,V
i=1j5=1

We use the standard notation for /,-norms:

n 1/p
|z |l,= lleW |”] , z€R", p>1.
i=1

Again, the meaning of the notation depends on the dimension of space of the

argument. Recall, that for p = oo we have || z ||c= max | () |. The norm
sStsn
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pr With p* = I%:

dual to || - ||p is || - |

19 llpe = max{(y,z) : || z [[,< 1}.

For a symmetric matrix A we write A > 0 if A is positive semidefinite. Notation
B > A means that B — A > 0. For z € R" we denote Diag(z) the diagonal
(n x m)-matrix with diagonal entries z("). Conversely, diag(X) € R denotes
the diagonal of an (n x n)-matrix X. Notation e; is used for the ¢th coordinate
vector of R™ and 1,, € R™ stands for the vector of all ones. Thus, I, = Diag (1,)
is a unit matrix. Notation 0, is used for the zero vector in R".

We use square brackets in order to indicate the component-wise operations
with the vectors. For example, notation [z - y] stands for the vector with
components Dy, z y € R*. Notation []? is used for the vector with the
components (z(1))2. If f(7) is a univariate function, we denote f[z] the vector
with the components f(:v(i)). In order to indicate the partial ordering in R™
we use the usual inequality signs. Thus, z > y for  and y from R™ means that
() > y(i), 1=1,...,n.

Finally, [a, 8] denotes a continuous box in R™, that is {# € R : «al, <
x < fl,}. For a boolean box {z € R" : z() = (a or B)} we use notation

{a, B}
13.2.1 Convex conic constraints on squared variables

Let @ be an arbitrary symmetric (n x n)-matrix. Consider the following pair
of optimization problems:

find ¢* = max{{(Qz,z): [z]? € F},
(13.2.1)
find ¢. = min{{Qz,z): [z]? € F}.

where F is a closed convex set. Our main assumption on the problem (13.2.1)

is as follows.

Assumption 13.2.1 1). The set F is bounded. 2). There exists a strictly
positive v € F.

In order to simplify the dual analysis, in this section we assume that the
feasible set F is presented in a conic form:

F={veK: Av="0}, (13.2.2)

where K is a convex closed pointed cone in R” with non-empty interior, A is
an (m x n)-matrix and b # 0p,. Our additional assumption on the set F is as
follows.

Assumption 13.2.2 {v €int K : Av = b} £ 0.

Note that the form (13.2.2) is quite general, since any bounded convex set
can be written in this way (see [583] for details). At the same time, in Section
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13.2.3 we will show how to transform our result on the case of a general convex
feasible set F.

Using the same technique as in [575], we can rewrite the pair of problems
(13.2.1) in a trigonometric form.

Lemma 13.2.1

P* = max %(Q, Diag (d) arcsin[X|Diag (d)),
X > 0,diag(X) = 1,
d>0,[d €F,
(13.2.3)
b = min %(Q, Diag (d) arcsin[X|Diag (d)),
X > 0,diag(X) = 1,
d>0,[d*eF
Proof.

Indeed, let us represent a vector z € R™ as follows:
z=[d-o], d>0€R", oec{-11}".
Note that [z]? = [d]%. Therefore ¢* = mc?x{q)(d) :d >0, [d]? € F} with

®(d) = max{(Diag (d)QDiag (d)o,0) : 0 € {—1,1}"}.
Using Theorem 2.3 [575], we can represent ®(d) in the following form:
®(d) = max{ 2(Diag (d)QDiag (d), arcsin[X]) : X > 0, diag(X) = 1,}.

Inserting this representation in the above expression for ¢* we get the first
statement of the lemma. The second one can be obtained in a similar way. W

Note that in general none of the problems (13.2.1) is convex in z. Therefore,
in order to estimate their optimal values, we need to use a kind of convex
relaxation. Let us define the conic relazation of problems (13.2.1):

¥ = max{(Q,X): diag(X) € F, X » 0},
(13.2.4)
o= min{(Q,X): diag(X) € F, X  0).

Sometimes it is convenient to use a dual form of these relaxations. Recall that
for a convex cone K C R™ the dual cone K* is defined as follows:

K ={ueR": (u,v) >0, Yv € K}.

Lemma 13.2.2

$*= min _{(b,y): Q+ Diag(u) < Diag(ATy), u € K*},
yeER™ uER™ -
(18.2.5)
b= _max {(by): Q2 Disg(u) + Diag (ATy), u e K*}.

YyeER™ ueER™
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Proof.
In view of Assumptions 13.2.1, 13.2.2, we can get a dual representation of the
upper relaxation 9~ as follows:

P* = r&ax{(Q,X> : Adiag(X) = b, diag(X)=v, X =0, v€ K}

=fax o gmin o {{QX) + (v, b~ Adiag(X)) + (u, diag(X) — v)}

_ : : _ AT _ .
= epbin  max{(Q + Diag (u— ATy), X) + (b,y) — (u, v): | X = 0, vE K}

= mi b,y) : Di < Diag (AT K*}.
JeAmin o {(b,y) - Q + Diag(u) < Diag(ATy), u € K"}

Similarly, for the lower relaxation we get the following:

1/)1;)1(1:111{<Q,X> : Adiag(X) = b, diag(X) =v, X = 0, v € K}

=i e (@ X) + (v b — Adiag(X)) + (u, v — diag(X))}

_ : _m T .
= hax o min{(Q — Diag (u+ A7y), X) + (b y) + (u,v) : [|X = 0, v € K}

= max _{(b,y): Q > Diag(u)+ Diag(ATy), u € K*}.
yeER™ uER™ -

Let us establish some relations between the relaxations (13.2.4) and the
optimal values of the problems (13.2.1). Denote

P(a) = ap™ + (1 — a)tps. (13.2.6)
The proof of the following theorem is similar to that of Theorem 3.3 [575].

Theorem 13.2.1

po < <P(L-2) <) < g7 < (13.2.7)

Proof.

Note that 9. < ¢* by definition. So, the middle inequality in (13.2.7) is correct.
Further, if [z]? € F then the matrix X = zz7T is feasible for both relaxation
problems (13.2.4) since diag(X) = [z]2. Moreover, (Q, X) = (Qz,z). Thus,
both bounding inequalities in the chain (13.2.7) are valid. Let us prove now
two remaining inequalities.
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Let us choose arbitrary v € K and y € R™, which satisfy the constraints of
the dual form (13.2.5) of the lower relaxation ,:

(u,y) € Fa={(u,y) € K* x R™: Q > Diag (u) + Diag (4Ty)}.  (13.2.8)

Counsider a pair (X, d), which satisfies the constraints of the trigonometric rep-
resentation (13.2.3) for ¢*:

X >0, diag(X)=1,, d>0, AdP’=0b, [d?<EK. (13.2.9)

Since X > 0 and | X;; |[< 1 we have arcsin[X] > X in view of Corollary 3.2
[675]. Therefore, using Lemma 13.2.1 we get the following:

¢* > 2(Diag (d)@Diag (d), arcsin[X])

Y

= 2(Diag (d)(Q — Diag (u) — Diag (47 y))Diag (d), arcsin[X])
—|—<u + ATyv [d]2>

> 2(Diag (d)(Q — Diag (u) — Diag (AT y))Diag (d), X) + (u + ATy, [d]?)

= 2(Q, Diag (d) X Diag (d)) + (1 — 2){u + ATy, [d]*).

Note that w € K* and [d]? € K. Therefore (u, [d]?) > 0. In view of (13.2.9) we
have

(ATy, [d]?) = (Ald), y) = (b, ).
Finally, for any pair (X, d), which satisfy (13.2.9) we have Y =Diag (d) X Diag (d)
feasible for the primal relaxation problems:

YEF,={Y:Y »0, Adiag(Y) = b, diag(Y) € K}.

On the other hand, any ¥ € F, can be represented as ¥ = Diag (d) X Diag (d)
with X and d, which satisfy (13.2.9). Therefore, we conclude that

¢" > %<Q,Y>—|—(1—%)<b,y>, VYE]:P? (u,y) € Fa.

This proves the forth inequality in the chain (13.2.7). The remaining inequality
can be proved in a similar way. [ |

Definition 13.2.1 We say that the value ¥ approzimates ¢* with a relative
accuracy p € [0,1] if | ¥ — ¢* |< u(¢™ — ¢x). We call this approzimation
implementable if 1 < ¢*.

Corollary 13.2.1 1. Let a = % Then the value () is an implementable
approzimation of ¢* with the relative accuracy p = 5 — 1< %.

2. Let 5 = 0+’ =2 * Jpen the value P(B) approzimates ¢* with the relative

3a—-1
accuracy p = E < %

The proof of that statement is exactly the same as that of Corollary 3.4 in
[575].
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13.2.2 Using additional information

In this section it is shown how to improve the quality of our bounds by taking
into account some additional information. Define

™ = max{(diag(Q),v): v >0, v € F},
(13.2.10)
T = min{(diag(@),v): v >0, v € F}.

Note that these values are computable in polynomial time. In view of Lemma
13.2.1 we have
b < T < TF < . (13.2.11)

Hence,

p =g el0 1], po= B el ).
Using these values we can express 7% and 7. as follows:
T = Y= =) = P(1-57),

Denote w(ff) = farcsin(fB) + /1 -2 =1+ fﬁarcsin(r)dr, B €10,1]. This
0

function is increasing and convex with w(0) =1 and w(1) = 5. In what follows
we denote § the unique root of the following equation:

w(B)=1-p, pelo1]

23 _ 3 _ 24
It can be shown that =5 < 8 < =3.

Theorem 13.2.2 1. Denote
a* = max{%w(ﬁ*), 1-p7},
o =min{l- 2w(g),B.}.

The optimal values of the problems (13.2.1) satisfy the following relations:

P> > (e, (13.2.12)
e < pe < lan). (13.2.18)

2. The value W(a*) is an implementable approximation of ¢* with relative

accuracy
—a* B8 24
o S 1.5 < 1o

[y

/,L:

[y

a’(2—a.)—a.

Trar—3a, - The value P(@) is a p-approrimation of ¢* with

3. Denote & =

_ _1-a* B 12
H= TFar—3a, < 5235 < 57
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In Items 2 and 3 the upper bounds are achieved for B* = B, = 5.

Proof.
Let X > 0 and d > 0 be feasible for the trigonometric form of the upper
relaxation (13.2.3):

diag(X) = 1,, A[d)?>=b, [d?€K.
Consider the matrices Xy = vX 4 (1 —v)I,, v € [0,1]. Then
arcsin[X,] = arcsin[yX] + (5 — arcsin(y))I, .

Therefore
¢* > 2(Q,Diag(d) arcsin[X,]Diag (d))

3w

(Q, Diag (d) arcsin[yX]Diag (d)) + (1 — 2 arcsin(y)) (diag(Q), [d]*).

(13.2.14)
Let us choose now arbitrary v € K and y € R™ which satisfy the constraints
of the dual form (13.2.5) of the lower relaxation 4.:

(u,y) € Fa={(u,y) € K* x R™: Q > Diag(u) + Diag (AT y)}.
Then, in view of Corollary 3.2 [575] we have:
(Q, Diag (d) arcsin[yX]Diag (d))
= (Q — Diag (u) — Diag (ATy), Diag (d) arcsin[yX]Diag (d))
+ (Diag (u + ATy), Diag (d) arcsin[yX]Diag (d))
v(Q — Diag (u) — Diag (ATy), Diag (d) X Diag (d))
+ aresin(y)(u + ATy, [d]?)

= v(Q, Diag (d) X Diag (d)) + (arcsin(y) — v)(u + ATy, [d]?).

Note that arcsin(y) >« for y € [0, 1]. At the same time v € K* and [d]? € K.
Therefore (u, [d]?) > 0. Finally, (ATy, [d]*) = (A[d]?,y) = (b,y). Thus,

(Q, Diag (d) arcsin[yX|Diag (d)) > y(Q, Diag (d) X Diag (d))
+(arcsin(y) — v)(b, y).

Substituting this inequality in (13.2.14) we get the following:

¢ > 2 (7(Q, Diag (d )XDlag (d)) + (arcsm(v) — )b, v))
+ (1 — 2 arcsin(y)) (diag(Q), [d]?)

Y

2 (¥(Q, Diag (d) X Diag (d)) + (arcsin(y) — 7)(b, )
+ (1 — %arcsin(’y)) Te.
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Using the same reasoning as in Theorem 13.2.1, we conclude that

¢* > Zyyp* 4 Z(arcsin(y) — ). + (1 — Zarcsin(y)) 7

%arcsin(’y)d) (m) + (1 - %arcsin(’y)) P(B)

=1 (277 + (1 — %arcsin(’y)) ﬁ*) .
The right-hand side of the above inequality is maximal for v* = /1 — 2. Then

2"

L+ (1— 2Zarcsin(y)) B, = 2 (\/1 - 32+ B arccos(fy*)) = 2w(B.).

Thus, ¢* > 1/)(%w(ﬁ*)) Combining this inequality with (13.2.11), we get the
lower bound in (13.2.12). The relations (13.2.13) for 1. can be obtained in a
similar way.
Let us prove now Item 2 of the theorem. In view of (13.2.12) and (13.2.13)
we have
o F ) ) ¥ -0 #) = leT) _1-a”
T = T =g T Y —P(a) P(1) — p(ax) 1— o,
(13.2.15)

Note that
1-o* =1-max{Zw(f),1- 4} =min{l- 2w(s),5"},
l1-a. =1-min{l - 20(8"),6.} =max{2w(F"),1-L.}.
Thus, we need to find an upper bound for the ratio

min{1 — 2w(f32), B1}
max{%w(ﬁl), 1-6}

p(B1,Ba) = 0< B1,0 <1.

Lemma 13.2.3

‘Q
|

max{p(f1,0:2): 0< 1,0 <1} = 5

Proof.
We need to prove that

(1= B)min{l — 2w(B2), 41} < Bmax{Zw(B1),1—F2}, 0< 1,0 <L

This is equivalent to the statement that the convex function
9(B1,B2) = Bmax{2w(B1),1 — Bo} + (1 — B) max{Zw(B:) — 1, —F1}

is non-negative for 0 < 1,82 < 1.
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Note that g(3,3) = 0 in view of the definition of 3. The subdifferential of
the function g(-) at

dg(B, B)=PConv {(2w'(f), 0); (0,—1)}+(1 — B)Conv {(0, 2w’ (B)); (~1,0)}.

Thus, this set contains the following points:

this point is as follows:

(28w (B) =14 5,0), (0,21 =p)'(B) = B), (26w (B), 2(1 = )’ ().
Note that

/(B) <w'(B) < 5 <
Therefore the first coordinate of the first point and the second coordinate of
the second point are negative. Since both coordinates of the third point are
positive, we conclude that 0 € int dg (8, B). [ |

=]

Applying Lemma 13.2.3 to (13.2.15) we prove the statement of Item 2.
In order to prove Item 3 note that in view of inequalities (13.2.12) and
(13.2.13), for any « € [0, 1] we have

|9 (@)= "] [ (a)—o*] _ v(a)—¢" ¢ —v(a)
58 S G ylan) — max{w—wa*)’ ¢*—¢(a*)}

max { T T } - hax { i } =rla)

IA

The minimum & of the function r(«) is a solution of the following equation:
(a—a")(1—ax) = (1 —a)(a™ — a).

That is @ = & 2-a:)=a: Using Lemma 13.2.3 we can estimate the optimal

14+a*—-2a,
value (&) as follows:
N1 a’(2—as)—a. ) _ 1—a® _ _p(B".84) B
r(a) = 1—a. (1 ~ Tita*—2a, ) - 1+a*f2a* — 2-p(8%,8.) < 2-38"

13.2.3 General constraints on squared variables

Let us consider now the quadratic optimization problems in the following form:

find ¢* = max{{(Qz,z): [z]? € F},
(13.2.16)
find ¢. = min{{Qz,z): [z]? € F}.

where F is a closed convex set, which satisfies Assumption 13.2.1. Let us show
that all results of Sections 13.2.1, 13.2.2 can be easily applied to the problem
(13.2.16). Denote by £(u) the support function of the set F:

E(u) = max{{u,v) : v € F}.
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Theorem 13.2.3 The statements of Theorems 153.2.1, 13.2.2 are valid for the
problem (138.2.16) with the relaxation values ¢¥*, 1. and 7°, 7. defined as fol-
lows:

P = H}Lin{f(u) : Diag(u) = Q},
e = muax{—f(u) : @+ Diag(u) = 0)}, (18.2.17)

™ =¢(diag(Q)), m = —¢(—diag(Q)).

Proof.

In order to prove the theorem we need to rewrite the problem (13.2.16) in a
conic form. Note that in view of Assumption 13.2.1 the set F can be represented
in the following form:

F={veS: Bv=d},

where S is a bounded convex set with non-empty interior, B is a non-degenerate
(m x n)-matrix and d € R™. Without loss of generality we can assume that

{vemtS: Bv=4d} £0.

We allow also B = 0; in this case d = 0.
Let us consider a conic hull of the set S:

K={(v,7): 7>0, %v e SHU{0}.

In view of our assumptions K is a closed convex cone with non-empty interior.
The cone dual to K can be represented as follows (see, for example, [345]):

K" ={t=(u,p): p>&s(—u)},

where £5(-) is a support function of the set S.
Now we can rewrite the problem (13.2.16) in the following form:

find ¢* = max{(Qi, 2y: [2)% € j'-}a
(13.2.18)

~

ﬁnd ¢* = mln{< i,i%> : [iﬁ]z € ﬁ},

whereiER"+1,Q:<0QT gn >,j:Z{ZZ(U,T)EK: Az:b}and

. (B -d 0
=i 1) =()

Note that the problems in (13.2.18) satisfy Assumptions 13.2.1, 13.2.2.
Therefore for their relaxation values ¥* and %, all statements of Theorems
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13.2.1, 13.2.2 are valid. Let us find the expressions for ¥*, ¥,, 7" and 7. in
terms of the initial objects of the problem (13.2.16). It is clear that

~ ~

7 = max{(diag(Q),z) : z € F}

= max{(diag(Q),v) : Bv=7d, =1, v/7 € S} = £(diag(Q)),

~ ~

7. = min{(diag(Q),z): z € F}

= min{(diag(@),v) : Bv=71d, 7 =1, v/7 € S} = —£(—diag(Q)).

Further, in view of Lemma 13.2.2 the upper relaxation value ¥* can be repre-
sented as follows:

To= i b,§): Q+ Diag () < Diag (AT9), & € K*
?JERmJ{Ill,léleRn+1{<’y> Q + Diag (@) < Diag (A7), & € }

= min : + Diag (u) < Diag (BTy),
(?;7*/)61?7’”‘“7(u7u)61?,n+1{’y @ g (u) =< Diag (B7y), 4
<y —Ad,y), p>E&s(~u)}

= min{¢s(—u) + (dy) : Diag (BTy —u) = Q}

=min{és(u - BTy) + (dy) : Diag(u) = Q}-

Note that in the last expression y does not enter the constraints. Therefore we
can replace the objective function of this problem by its minimum in y. That
is

min(és (u— BTy) +(d,y)} = minmax((u— BTy,v) + (d,))

= maxmin{{u, v) + (d — Bv,y)}
vES ¥y

= rﬁgmg{{(u, v): Bv =d} = &(u).
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Thus, we get the representation (13.2.17) for 4*. The representation of ¢, can
be obtained in a similar way:

Y = max  {(b§): Q> Diag(d)+ Diag(AT}), & € K*}
?JERm+17ﬁERn+1 -

= max : Q > Diag (u) + Diag (BTy),
(y77)ERm+17(u7u)ERn+1{7 @ = Diag (u) g(B7y)
0> pty—{dy), p>E&s(-u)}

— max{—¢s(—w) + (d,y) : Q = Diag (u+BTy)}

u7y

= max{—{s (BTy +u) +(d,y) : Q+ Diag (u) = 0}
= max{—min{{s(BTy + ) - (d,y)} : Q + Diag (v) = 0}

= max{~&(u) : Q + Diag (u) = 0}.

Let us present an example of application of Theorems 13.2.3, 13.2.2. Con-
sider the following problem:

find ¢* = max{(Qz1,z2): [(z1,22)]* € F},
(13.2.19)
find ¢ = min{(Qz1,z2) : [(z1,22)]> € F},

where @ is a (k x n)-matrix, z; € RF, 2o € R" and F is a closed convex set,
which satisfies Assumption 13.2.1. Since the quadratic objective function in
this problem is bilinear, we conclude that ¢. = —¢* and 7* = 7, = 0.

The conic relaxation for this problem is defined as follows:

* ' . ( Diag(u1) —Q7
LA ol {§(U)' < ¢ Diug (uz) > - 0}’

_ . ( Diag(u1) QT
¥ u:%?i){—g(u). < Qo Diag (us) > = 0}'

It is clear that ¢, = —¢". At the same time, §* = 5, = L. Therefore,
a* = max{2w(B.),1 - B} = Zw(4).
Therefore, in view of Theorem 13.2.2 we have:
> $7 > pla) = (207 - 1.

Note that a* = Z(Larcsin i + \/Tg) = \/Tg + 1. Thus, we have proved the
following theorem.
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Theorem 13.2.4 In the problem (13.2.19) the optimal and relazation values
are related as follows:

P> 9T >yt
with y = 28 — 2 > (.43,

13.2.4 Why the linear constraints are difficult?

In the previous sections we have got a constant relative accuracy estimates for a
quadratic maximization problem with convex constraints on squared variables.
Such type of constraints are rather specific. Therefore it is natural to try to
extend the results onto the problems with convex constraints on the variables of
the quadratic form. However, it appears that this is not trivial. In this section
we show that even a single linear constraint can make a quadratic problem
completely intractable by the presented technique.
Consider the following optimization problem:

¢* = max (Qu,z),
st oze{-1,1)m, (13.2.20)

(c,z) =B,

where @ is an (n X n)-matrix, ¢ € R" and 8 > 0. Define ¢, as a minimal value
of the objective function in (13.2.20). A natural relaxation for this problem is
as follows:

P* = max{(Q, X): (Xc,c) = f%, diag(X) = 1,, X > 0}. (13.2.21)

Let us show that this relaxation can be arbitrary bad in terms of relative
accuracy.

Denote by v;, ¢ = 1,...,2" the nodes of the boolean unit box {—1,1}".
Let us assume that there exists only one node v,, which satisfies the linear
constraint of the problem (13.2.20). Moreover, let us assume that there are two
other nodes, vy and v_ such that

0 < {c,v_) < B <{c,vy). (13.2.22)

Note that in view of our assumption we have ¢* = ¢, independently on our
choice of the matrix Q).
Let us define a convex polytope P, of positive semidefinite (n x n)-matrices:

Pn, = Conv{Vi =vpl, i=1,...,2"}.

i

Lemma 13.2.4 Any V; is an extreme point of P,,. Any pair of nodes V;, V;
s connected by an exposed edge.

Proof.
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Since V; is a rank-one matrix, the first statement is evident. In order to prove
the second statement note that the edge [V;, V] is not exposed if and only if
there exist some coeflicients Ay >0, k € Z, 4,7 € T such that

aVi+(1—a)V; =) MVi, > =1,
kel kel

for some « € (0,1). Since all nodes of P,, are positive semidefinite rank-one
madtrices, we conclude that

vp € {v: v=av; + Pv;, (a,B) € R*}, VkeTI.

A simple calculation shows that it is possible only for v = +wv; or vy = +v;.

Note that in view of our assumption (13.2.22) there exists a matrix V EPa
such that

V:av_vrf—l—(l—a)v_l_vi, ac (07 1)7 <‘76,C>:ﬁ2.

Let us choose now @ = V- Vs vf. Note that the feasible set of the relaxation
problem (13.2.21) contains P,,. Therefore

b >(Q, V) > (Q,v.0T) = ¢

The lower relaxation value 1. never exceed ¢. = ¢*. Therefore, for our example
the value ¥* — 1), is strictly positive. This means that the relative accuracy of
the value 4~ is infinitely bad.

Note that the main source of our troubles in the above example is that the
linear constraint (Xe¢,c¢) = (3% intersects an edge of the matrix polytope P,.
That can happen with any value of 3 except § = 0. Thus, we still can hope
that for the problems with homogeneous linear constraints the conic relaxation
can work. In the next sections we will see some problems, for which it is true.

13.2.5 Maximization with a smooth constraint

In the previous section we have established some constant bounds on relative
accuracy of the conic relaxations (13.2.4) for a quadratic maximization prob-
lem with convex constraints for the squared variables. At the same time, in
Section 13.2.4 we have seen that some linear constraints on the initial variables
can make the problem intractable in terms of relative accuracy. In this section
we present another approach for deriving the conic relaxations. This approach
is based on the standard second order optimality conditions and it allows to
treat the quadratic maximization problems over l,-boxes, p > 2, with homoge-
neous linear equality constraints (see Section 13.2.6). However, the quality of
relaxation in this framework becomes dependent on p.
Let f(y), y € R™, be a homogeneous function of degree p:

flry) ="f(y), yeR™, 7>0. (13.2.23)



378 HANDBOOK OF SEMIDEFINITE PROGRAMMING

We assume that f(y) is non-negative and twice continuously differentiable at
any non-zero point of R™ (notation f € H,). Recall, that for homogeneous
functions we have the following simple relations.

Lemma 13.2.5 If f(y) is homogeneous of degree p then for any y € R™ and
7 > 0 we have

fliry) = 77 (y), (13.2.24)
My = @-1Df (), (18.2.25)
(f'wsyy = pfy), (13.2.26)
(F"Wyy) = ple—1f(). (18.2.27)

Proof.

Indeed, if we differentiate (13.2.23) in y we get (13.2.24). If we differentiate
(13.2.24) in 7 and take 7 = 1 we get (13.2.25). In order to get (13.2.26) we
differentiate (13.2.23) in 7 and take 7 = 1. Finally, (13.2.25) and (13.2.26) give
(13.2.27). n

Let @ be a symmetric (m x m)-matrix. Consider the following maximization
problem:

find ¢*(Q) = max{(Qy.v) : f(y) < 1). (13.2.28)

If @ < 0 then (13.2.28) is a concave maximization problem and ¢*(Q) = 0.
In the other cases we need some necessary conditions to characterize the local
solutions of the problem (13.2.28).

Lemma 13.2.6 Let f € H, with p > 0. Then for any local mazimum y. of
the problem (13.2.28) with (Qy.,y«) > 0 we have f(y.) = 1. Moreover, there
exists a value A = A(yx) > 0 such that

(Qye,ys) = PA, (13.2.29)
Que = M'(ys), (13.2.30)
Q = A|F) =T waf )| (15.250)

Proof.
Since (Qys,y<) > 0 and f(y) is a homogeneous function of positive degree, we
necessarily have f(y.) = 1. Let us write down a Lagrangean for this problem:

Ly, A) = HQu,y) — Alf(y) —1].

Then, the second order necessary conditions for the problem (13.2.28) can be
written as follows:

Ly (Yes A) 0, (13.2.32)
(Lyy(ye, VBB <0, Vh: (f'(g),h) =0, (13.2.33)
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with some A € R. Equation (13.2.32) is exactly (13.2.30). Multiplying (13.2.30)
by y. and using (13.2.26) we get

(QUsr y) = M f (W) =) = A0 (5 ) Ap > 0,

and that is (13.2.29). Finally, since {f'(y«),y«) = p > 0, any h € R™ such that
(f'(y«), h) = 0 can be represented in the form

h= (I - I%y*f’(y*)T) u, u€R"
Therefore the condition (13.2.33) can be rewritten as
(T = 70T ) £y (s N — 21/ (4)T) < 0. (13.2.34)

Note that E;’y(/y*, A) =0 — Af"(y.) and

(I = 3 (v )yD)QU = Ly ' (9:)")

=Q— L7 (y)v7 Q — 3Qu-f' ()" + 55(Qu, ye) ' () ()T

=Q— 3 () f (y)T
in view of (13.2.30) and (13.2.29). Similarly, since f(y.) = 1 we have

(I L7 ()8 P ()] — Ly ()7
= f"(y) = 5 )yl f () = 2" (g )y f (9)T
+1%<f”(y*)y*,y*>fl(y*)fl(y*)T

= () = 2 () £ )T+ 2 ) 7 ()T
= () = B ) (0

in view of (13.2.25) and (13.2.27). Substituting these expressions in (13.2.34)
we get

Q A" () + 3 () £ ()T = A2 () f ()T
= M| (ge) = B2 (y) £ (9)T | -

We will use Lemma 13.2.6 in order to estimate the quality of relaxations for
some non-convex maximization problems. Let A = (a1,...,a,) € R™*" be a
non-degenerate (m x n)-matrix. Consider the following function:

faly) = Z | {ai, y) 7,
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where p > 2. The problem we are going to address now is as follows:

find ¢°(Q, 4) = max{(Qu.y) : faly) < 1}, (13.2.35)
For this problem we can introduce the following relaxation:

#5(@, A) = min{]| ul,: ADiag(w)AT > Q). (13.2.36)
where ¢ = (§)* = 1% (compare with (13.2.17)). Now we can prove the main

result of this section.

Theorem 13.2.5 Let the feasible set of the problem (13.2.35) be bounded.
Then

p%fﬁ;(Q,A) < ¢7(Q, A4) < ¥, (Q, A). (18.2.87)

Moreover, any local mazimum y. of the problem (13.2.35) with positive value
of the objective function satisfies inequality (Qy., y.) > ﬁdJ;(Q, A).

Proof.
Indeed, let « be feasible for the problem (13.2.36). Then for any y € R™ with
fa(y) <1 we have

(Qu,y) < (ADiag (u) ATy, y) = (u,[ATy]*).

At the same time,
AT [P)5= 3" | (ar, ) P= Faly) < 1.
i=1

Therefore, for any feasible y we have
(Qu.y) < (u, [ATYP) <|lwllg - 11 TATY)? Hlpy2<l] w llg -

Hence, ¢*(Q, 4) < ¥5(Q, A).
On the other hand, let y, be alocal maximumof (13.2.35) with (Qy., y.) > 0.
Then, in view of Lemma 13.2.6 (13.2.31) for A = A(y.) we have:

Q = Af"(y) =p(p— DAY [ (ai,ye) P7% aia]
i=1

(we have used the condition p > 2). Thus, the vector « € R™ with the compo-
nents

ul) = p(p— DA | (ai, y«) |p_27 t=1,...,n,
is feasible for the problem (13.2.36). Note that

n 1/q
lall = oo = DA [ | (o0} 1072

= 0lp= 1 [ £ 1 e} ] v

= p(p — DA[fa(y:)]Y9 = p(p — 1)\
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Hence, in view of (13.2.29) we have

1
Quey == 1l 2 yii0.a)

Note that the above proof shows that under assumptions of the theorem the
function ¥, (Q, A) is well defined.

Finally, if there is no local maximum of the problem (13.2.35) with {Qu., y«)
> 0, then @ < 0 and in this case we have ¥;(Q, A) = ¢*(Q, 4) = 0. [ |

Let us estimate the relative accuracy of the relaxation (13.2.36). First, we
need the following trivial result.

Lemma 13.2.7 Let for some non-negative values ¢, b and v we have the
following relations:

VP < ¢ <.
Then, for 3 = 12_|_—77 we have: | B — ¢ |< (1 —B)¢.
Define ¢.(Q, 4) = min{{Qy,v) : fa(y) <1}
Theorem 13.2.6 Let 9" = 12—)1/);(Q,A). Then

| 47(Q, 4) — 9" [< (1= 2)(47(Q, 4) — ¢:(Q. 4)). (13.2.38)

Proof.
Note that ¢.(@Q, A) < 0. Therefore it is sufficient to prove

[ 47(Q. A) — ¥ 1< (1- 2)¢7(Q, A).

Let us choose v = %1 and B = 12_|_—77 = 1%' Then the above inequality follows

from Theorem 13.2.5 and Lemma 13.2.7. [ ]

Let us compare now the relaxation (13.2.36) with the conic relaxation
(13.2.17). Of course, we have to choose a problem which can be treated by
both approaches. Consider the problem

max{(Qz,z): ||z [[,< 1}, »>2.

This problem can be presented in the form (13.2.35) with A = I,,. On the other
hand, it can be written in the form (13.2.16) with

F=Av:|lvllp2< 1}

In this case &(u) =|| u ||, and we can see that (13.2.36) coincides with (13.2.17).



382 HANDBOOK OF SEMIDEFINITE PROGRAMMING

13.2.6 Some applications

Let us show that the results of the previous section can be extended onto the
problems with linear equality constraints. Consider the following quadratic
maximization problem:

find ¢; = max (Cz,z),
st |z |[p< 1, (13.2.39)
Bz =0,

where C is an arbitrary (n x n)-matrix, p > 2 and B is a non-degenerate
((n—m) x n)-matrix with n > m. Let the rows of some (m x n)-matrix A span
the null space of the matrix B:

BATy =0, VYyeR™.

Then we can change variables 2 = ATy and obtain a problem, which is equiv-

alent to (13.2.39):
43 = max ((ACATy. ) faly) < 1) = ¢ (404, 4)

Thus, in view of Theorem 13.2.5 and Lemma 13.2.7 we get the following result.

Theorem 13.2.7 For any p > 2 we have
1 * T * * T
S U ACAT, 4) < ¢} < 9;(ACAT. A).

The value ¢¥* = I%1/J;(ACAT,A) approzimates the solution of the problem
(13.2.39) with (1 — 12—)) relative accuracy.

Now, let us consider the case when the objective function of the problem
(13.2.39) has a non-zero linear term:

find qg;, = max (Cx, z) + 2{c, z),
st |z |[p,< 1, (13.2.40)
Bz = 0.

This problem can be homogenized in a standard way:

max Ce,z)+ 27{c, x),
ommx o (Co,e)+2n(e)

st e lb<1 |7l L, (13.2.41)

Bz = 0.
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Clearly, the optimal value of this problem is qAS;‘, However, this problem has
two separate constraints for # and 7. Therefore, in order to apply the results
of Section 13.2.5 we need to replace them by a single functional inequality.
Consider the following problem:

find ¢; = o hax (Cx,z) + 27(c, z),
sbo || (2, 7) |[p< 1, (13.2.42)
Bz =0,

Denote by 1/;; the value of the conic relaxation for the last problem.

Theorem 13.2.8 Let p > 2. For ), = 22/p1Z; we have:

1 N
< P <P
e < h <

The value ¥} = 1/;; has at least (1 — =) relative accuracy.

2
p+2-2/P—1 2p

Proof.

Note that the problems (13.2.41) and (13.2.42) have the same objective function
and the same system of linear equations. Denote by Fg the feasible set of the
problem (13.2.42) and by F; the feasible set of the problem (13.2.41). Clearly,
Fo C Fy C 2Y/PF,. Therefore

T T 2/p a*

¢r < ¢y < 22/Pgr.
On the other hand, in view of Theorem 13.2.7, we have:
1 -

* Tk
TV <4 <

Hence, for 9 = 22/p1Z; we obtain:
* _ o2 7k 2 1k e 1k 1 7% 1 *
1/)a_2/p1/1p22/p¢p2¢ Z%Zmd’p—md’a-

In order to get the statement on the relative accuracy, we take b = 7,
¢ = qﬁ;‘,, v = m and apply Lemma 13.2.7. Then the values 8 and %) can
be obtained as follow:

g = 2y 2 > 1
T 14y T 1422/P(p-1) = 2p°

_ _ 2 n
Py =PyY; = mﬁ-
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We see that the quality of conic relaxation decreases as p increase. Therefore,
we cannot directly apply the results of Section 13.2.5 to a problem with box
constraints. However, at the same time, when p increase the shape of [, balls
becomes very close to the shape of the n-dimensional unit box. Therefore,
we can use the values 1/);(ACAT, A) with p large enough in order to get some
bounds for ¢%.

Theorem 13.2.9 Let p = 2lun, ¢, = 6’(/);(ACAT,A) and v = m
Then
Y < o < by

The value ; = 2% has at least (1 —

iy ) relative accuracy.

1
elnn
Proof.

It is well known that for any two values p > 2 we have:

iy lelp<ll e llo<|lz|lp, = eR"

Therefore
(o€ R |2 ll,< 1} C {v € R" | 2 |lw< 1) C {s € R ]| & [[,< n¥/?).

Since the objective function of the problem (13.2.39) is homogeneous of degree
two, this implies that ¢; < ¢% < nz/p¢;‘,. Thus, using Theorem 13.2.7 we
obtain the following:

Vi = e (ACAT, A) = n2/Pyr (ACAT, A) > /v g

> 9% > ¢ > iy (ACAT, A) = ity ¥

In order to get the statement on relative accuracy we apply Lemma 13.2.7 with

2y 2 1

A= 1+ - 14+e(2lnn—1) ~

elnn

13.2.7 Discussion

In the previous sections we have presented some estimates for the quality of
the conic relaxation for different non-convex quadratic maximization problems.
The constant bounds of Sections 13.2.1, 13.2.2 can be applied to a quite large
class of non-convex problems and we can expect that they can be used in many
practical applications. The bounds we get in Section 13.2.5 are not so good.
Indeed, they can be applied only to a rather special feasible set, that is an
intersection of an I,-ball, p > 2, with a linear subspace. Moreover, the quality
of these bounds decrease as p increase.
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Nevertheless, the results of Section 13.2.5 suggest some interesting conclu-
sions. Firstly, the relative accuracy we get from the relaxation (13.2.36) is
(1-— g). Thus, the accuracy goes to zero as p approaches two. For p small
enough the results of Theorem 13.2.5 become even better than the bounds of
Section 13.2.1. An important advantage of the estimates (13.2.37) is that we
get the separate bounds for the minimal and the maximal value of the problem.
The lower estimate for the maximal value remains positive even if the minimal
value of the problems is a large negative value.

Secondly, Theorem 13.2.5 tells us that the value of the objective function of
the problem (13.2.35) at any local solution is not worse than the lower bound
we get from the conic relaxation. In fact, this statement is a kind of surprise.
Indeed, if we measure a hardness of a problem as a largest ratio of the values of
the objective function at the global and a local maximum, it appears that the
problem (13.2.35) is not so difficult, at least for p small enough. Usually the
general methods of nonlinear optimization are quite efficient in finding a local
solution. Since the computational cost of such schemes is much less than that
of the schemes of semidefinite programming, we can conclude that for practical
applications the traditional schemes look quite attractive.?

Finally, in Section 13.2.6 we have shown that the results of Theorem 13.2.5
provides us with some bounds for very difficult problems. Indeed, during last
years there were obtained many negative results related to the possibilities to
find an approximate solution of an N P-hard problem under hypothesis that
P # NP. The results relevant to the topic of our section can be found in [79]:

Consider a quadratic optimization problem in the following form:
max{(Cz,z): Bx <b, 0 <z < 1,}. (13.2.43)

Denote by P the class of languages recognizable in quasi-polynomial time.
Theorem 1.2. Assume NP ¢ P. Then therc is a constant § > 0
such that the problem (13.2.43) has no polynomial time, (1 — 9~ log’ ")-
approximation algorithm.

Theorem 1.3. Assume P # NP. Then there ts a constant i € (0, %)
such that a p-approzimation of the problem (18.2.48) cannot be found in
polynomaal time.

In these statements the p-approximation is understood in a weak sense. We
need to compute an estimate for the value of the objective function only.

Note that using Theorems 13.2.8 and 13.2.9, we can approximate in polyno-
mial time the optimal value of the problem

max{(Cz,z): Bz =11,, 0 <z <1,}. (13.2.44)

with (1 — O(%;)) relative accuracy. This result is better than the limiting

bound of Theorem 1.2 [79]. At the same time, the optimization problem, which

LOf course, in non-convex case we cannot prove any global efficiency estimates. Moreover, in
general we cannot guarantee a convergence to a point, which satisfies the necessary second
order optimality conditions. This negative result is valid even for the second order methods.
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is used in the proof of Theorems 1.2, 1.3 [79], has, in fact, only linear equalities
constraint:

max{(Cz,z): Bz =15, 0 <z <1,}. (13.2.45)

Thus, the difference in the formulations (13.2.44) and (13.2.45) looks very mi-
nor. Indeed, any system of linear equations Bz = b can be rewritten in the

following form: B
Bz = 11l,, (a,z)=1,

with some matrix B and a vector ¢ € R". Hence, the feasible set of the problem
(13.2.45) differs from the feasible set of the problem (13.2.44) just by a single
linear equation, which does not pass through the center of the box. However,
it appears that this linear equation makes the problem (13.2.45) completely
different.

Let us look at the concrete form of the problem (13.2.45) ( [79], p.438).
Denote by X and Y two (n x n)-matrices. And let ¢(X,Y) be a bilinear form
in X and Y with all non-negative coefficients. Then the problem (13.2.45) is
as follows:

max ¢(X,Y),
st. X1,=1,, Y1, =1,, (13.2.46)

0<X,Y < Lusn.

Now we can see the source of our troubles. Indeed, the technique of Section
13.2.5 can be applied only to I, boxes with p > 2. However, if we will try
to approximate the feasible set of the problem (13.2.46) with the boxes B, =
{z ||z — 11, |[,< L}, we need to choose p very large. It is necessary to take
p = O(nlnn) just to have a non-empty intersection of the box B, with the
gystem of linear constraints in (13.2.46).

Thus, we conclude that the feasible set of the problem (13.2.46) is too far
from the center of the box. On the other hand, it is clear that the box structure
in (13.2.46) is quite artificial: the constraint X, ¥ < 1, «pn can be eliminated
without changing the feasible set of the problem. Note that we can easily
rewrite the problem (13.2.46) in a more symmetric form:

max ¢(X,Y),
st || Xei 1< 1, i=1,...n, (13.2.47)
|| Yei 1< 1, i =1,...n.

Since the coefficients of the form ¢(X,Y') are non-negative, the optimal value of
the problem (13.2.47) is the same as that of (13.2.43). The polyhedral structure
of the feasible set in (13.2.47) can be seen as a combination of /o -structure with
l1-structure. However, it appears the latter structure is exactly that one, for
which no reasonable bounds for quadratic problems are known.

Thus, the above discussion highlights the following unsolved problem:
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Find some bounds for the optimal value of the following quadratic problem.:

¢* =max{(Qx,z): ||z |,<1,z€R"}, 1<p<2. (13.2.48)
For an indefinite @ a trivial bound for ¢* is given by its maximal eigenvalue
Amax(Q): )
Amax(@) > ¢ > Amax(Q) 0! 77, 1<p<2.

For p = 1 we can suggest for the problem (13.2.48) a kind of semidefinite
relaxation:

Pr o= r§ax{<Q,X> : Diag (u) = X, <1n7u> <1, X » 0}

(13.2.49)
= rgli)\n{/\ ¢ Al, = diag(S), S = @Q, S = 0}.

Note that for any z, || z ||1< 1, the pair (X = zzT,u = abs[z]) is feasible for
the primal form of the relaxation (13.2.49). Therefore we can guarantee that
P* > ¢*. However, the relative accuracy of such a bound is not known.

13.3 QUADRATIC CONSTRAINTS

Yinyu Ye

Consider the quadratic programming (QP) problem with diagonally quadratic
equality and inequality constraints

Q(Q) := Maximize q(gj) = xTQx

(QP) Subject to 2?21 ai]']}]z» =b;,1=1,...,m,

Z?:lcijsz' Sd“ = 1,...,p

where the symmetric matrix Q € 8", A = {ai;} € Mmn, C = {cij} € Mpa,
be R™, and d € RP are given. We assume that the QP problem is feasible and
its feasible set is bounded (this can be checked by a linear program considering
ZBJZ as nonnegative variables). Let (@) be a maximizer of the problem.

The (QP) problem has applications in combinatorial and global optimization

problems, see, e.g., Gibbons et al. [273]. Note that this quadratic problem
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includes the max-cut problem by letting ZBJZ =1, 5 = 1,...,n, be the quadra-
tic constraints. Also note that perturbing the diagonal of @ may change the
objective function on the feasible set of the problem.

Normally, there is a linear term in the objective function:

Maximize z7Qz+c'z
Subject to 2?21 ai]']}]z» =b;, 1=1,...,m,
Z?:l C”$]2 < di? 1=1,...,p
However, the problem can be homogenized as
Maximize z7Qz +tcTz
Subject to 2?21 ai]']}]z» =b;, t=1,...,m, t2 =1,

Z?:lcij]j]z' S di, = 1,...,p

by adding a scalar variable ¢. There always is an optimal solution (z,t) for this
problem in which ¢ =1 or ¢ = —1. If £ = 1, then Z is also optimal for the non-
homogeneous problem; if # = —1, then —Z is optimal for the non-homogeneous
problem. Thus, without loss of generality, we can let ¢(z) = 27 Q= throughout
this Section 13.3.

The function ¢(z) has a minimizer and a maximizer over the bounded feasible
set

n n
Fi={zeR": Zaij:v]z:bi, i=1,...,m, Zcij:vjz» <d;, i=1,...,p}.
j=1

j=1

Let ¢ := —¢(—Q) and ¢ := ¢(Q) denote their minimal and maximal objective
values, respectively. An e-maximal solution or e-maximizer, e € [0, 1], for (QP)
is defined as an = € F such that

q— (=) <e
-9
Recently, there were several significant results on approximating specific qua-
dratic problems. Goemans and Williamson [285] (also see Frieze and Jerrum
[255]) proved an approximation result for the Maxcut problem where ¢ < 1 —
0.878 when all arc weights are nonnegative. Nesterov [572] generalized their
result to approximating a boolean QP problem

Maximize ¢(z) = 27 Q=

Subject to :sz»zl, j=1,...,n,
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where € < 4/7. Ye [859] extended the 4/7 result to solving continuous noncon-
vex QP problems, such as,

Maximize ¢(z) = 27 Q=

Subject to ZBJZ <1l,57=1,...,n.

Note that some negative results on this problem were given by Bellare and
Rogaway [79]. Other results can be found in Fu, Luo and Ye [258], Pardalos
and Rosen [619], Vavasis [818], and Ye [855].

In this Section 13.3, we, based on the analyses of Ye [859] and Nesterov [575],
further generalize the 4/7 result to approximating (QP) containing (diagonally)
quadratic constraints. These constraints have added a few difficulties in ana-
lyzing the problem, and they frequently appear in some practical applications.

13.3.1 Positive Semi-Definite Relaxation

The approximation algorithm for (QP) is to solve a positive semi-definite pro-
gramming (SDP) relaxation problem

p(Q) := Maximize (Q,X)
(SDP) Subject to  (D(a;), XY =1b;, i=1,...,m, (13.3.50)

b
>§d“ i:l,...,p.

Here, a; = (ai1,---,0in) € R?, ¢; = (¢i1,.-.,¢n) € R", and unknown X €
R"X" is a symmetric matrix. Furthermore, (-,-) is the matrix inner product
(Q, X) = trace(QT X), D(a) is the diagonal matrix of vector a, and X > Z
means that X — Z is positive semi-definite. Since the original QP problem is
feasible and bounded, so is the SDP relaxation.

The dual of the problem is

p(Q) = Minimize dTz+ by

13.3.51
Subject to P ziD(ei)+ Y yiD(ai) = Q, z> 0. ( )

Note that the primal is feasible and bounded and the dual has an interior so
that there is no duality gap between the primal and dual. Denote by X(Q)
and (¥(Q),2(Q)) an optimal solution pair for the primal (13.3.50) and dual
(13.3.51).

The positive semi-definite relaxation was first proposed by Lovész and Shri-
jver [497], also see recent papers by Alizadeh [17], Fujie and Kojima [260] and
Polijak, Rendl and Wolkowicz [635]. This relaxation problem pair can be solved
in polynomial time, e.g., see Nesterov and Nemirovskii [583] and Alizadeh [17].

We have the following relations between (QP) and (SDP) from Ye [859].
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Proposition 13.3.1  Let ¢ = ¢(Q), ¢ = —¢(—Q), p = p(Q), p = —p(—Q),
and

(y,2) = (—y(—=Q), —2(—Q)). Then, q is the minimal objective value of 2T Qz
in the feasible set of (QP) and p = d¥z + ng is the minimal objective value of
(Q, X)) in the feasible set of (SDP). Furthermore,

p=-p(-Q) <g=-q(-Q) < Q) =q¢ < p(Q) =p.

In what follows, we let z = z(Q), X

definite, there is a factorization matri (T1,...,0,) € R**™, le., 7, is

the jth column of V, such that X = VTV. The algorithm (Goemans and

Williamson [285], Nesterov [572], and Ye [859]) generates a random vector «
uniformly distributed on the n-dimensional unit ball and then assigns

X(Q). Since X is positive semi-

NN

& = Do(VTu), (13.3.52)

where
b = diag(lfanll - - loull) = diag(v/Frr, ., vEmr),
and for any z € R", o(z) is the vector whose components are sign(z;), j =
1,...,n, that is,
sign(z;) = { Lo itz 2.0
I —1 otherwise.

It is easily seen that # is a feasible point for (QP) and we will show later
that the expected objective value, E,q(%), satisfies

13.3.2 Approximation Analysis
The following lemma is an analogue to the lemma of Nesterov [572] and Ye

859].

Lemma 13.3.1 Let u be uniformly distributed on the n-dimensional unit ball.
Then,
4(Q) = Mazimize E,(c(VTu)TDQDo(VTu))

Subject to  (D(a;), VIV)=1b;, i=1,...,m,

<D(Ci),VTV> S di, 1= 1, cees Dy

where
D = diagl|[onll, . l[onl]).

Proof. Since, for any feasible V, Do(V7Tu) is a feasible point for (QP), we
have

3(Q) > Eu(c(VTw) T DQDo(VTu)).
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On the other hand, for any fixed u with ||u|| = 1, we have

Eu(o(VTu)" DQDo (VT u) ZZ%;II%IIII%IIE (o (o] w)o(v] ).

i=1j5=1
(13.3.53)
2,4 =1,...,n. (Note that V is feasible for the problem

Let us choose v; =
above.) Then

Bu(otfuotfu) = { 1y Hol ot

Thus,

[[villl[o] [ Bu (o (v w)or (v w)) = 72

which implies that for this particular feasible V'
4(Q) = () < Bu(0(VTu)" DQDo(V7 ).

These two relations give the desired result. [ |

For any function of one variable f(¢) and X € R**", let f[X] € R**" be
the matrix with the components f(z;;). Nesterov [572] has proved the next
technical lemma.

Lemma 13.3.2 Let X = 0 and d(X) < 1. Then arcsin[X] = X. |

Now we are ready to prove the following theorem.

Theorem 13.3.1

q(Q) = sup 2(Q, Darcsin[D~*X D~']D)
Subject to  (D(a;), X)=1b;, i=1,...,m,
<D(Cz)7X>§dza 7’:17 y Dy
X =0,

where
D = Diag (v/Z11, - - -,/ Zan)-
Proof. For any X = VTV > 0, we have
E, (U(v?u)a(vfu)) =1- 2Pr{0'(vg;u) + O'(qu;u)}
= 1= 2Pr{o () # o)}

From Lemma 1.2 of Goemans and Williamson [285], we have

vFu 1 vF v;
Pr{O'( ) o(1—)} = = arccos(—~t——).
[[ill ol [Toallllo; i
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Using the above lemma and equality (13.3.53) and noting arcsin(¢)+arccos(t) =
T give the desired result. [ |

We have used Supremum and X > 0 in the problem above merely for the
technical presentation of D~1. The feasible set of this problem can be closed
if we rewrite it in terms of variable Y = D~1X D!

Theorem 13.3.1 leads to our main result.

Theorem 13.3.2 We have

1.
2
o2
q Q_Tr(p p)
2.
2
s 2
p—¢>—(p-p)
3.
, _ 4—7
p=p2d-¢>—@-p

Thus, for any X = 0 feasible for (SDP), and D = diag(\/Z11,--.,/Tnn), We
have from Theorem 13.3.1

54 =54(Q)
> (Q, Darcsin[ D~ X D~|D)
r m r
_ <Q YD)~ 3 Dla) + 3D
i=1 i=1 i=1

+ ZgiD(ai), D arcsin[D_lXD_l]D>

i=1
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Q- ZéiD(Ci) - ZgiD(ai), Darcsin[D_lXD_l]D>

i=1 i=1

+ <Z£z’D(Ci) + igiD(ai), Darcsin[D_lXD_l]D>
<Q - ZgiD(ci) — "y, D(a), DD—1XD—1D>

M .
LN
™

D

+
M 3
L

S h
=
IS

&

3]

£

S
I
S
IS}

\/

i=1 i=1

P m
+ ZQ’D(Q) + ZgiD(ai), Darcsin[D_lXD_l]D>

i=1 i=1

+zp;gZ<D(ci):,Darcsin[D_lXDz_l]D>
_ + iglw(ai), Darcsin[D~*XD~'|D)
= (@, X) :ZZP;MD(CZ), X) —yTb+ z_p;Z( (D(ei), X)) + gT(gb)
= (Q.X)+ (5 - 1>:1zz<D<ci>,X> +(5 - Dy
>(Q,X) + (5 - 1(zTd+yTh)

(since (D(¢;), XYy <d; ¢ =1,...,p, and z < 0)

= (@ X)+(5 - 1)p.

Let X converge to X, then (@, X) — p and we have the desired first inequality.
Replacing @@ with —@) proves the second inequality in the theorem.
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Adding the first two inequalities gives the third statement in the theorem.
|

The result indicates that the positive semi-definite relaxation value p — p is
a constant approximation of ¢ — g.
Similarly, the following corollary can be devised.

Corollary 13.3.1 Let X = VIV = 0, (D(a;), X) < d; (i=1,...,p), (D(a;),
X)="b; (i=1,...,m), D= diag(\/Z11,-..,\/Tun), and & = Do(VTu) where
u with ||u]| = 1 is a random vector uniformly distributed on the unit ball.
Moreover, let X — X. Then,

2
lim E,(¢(#)) = lim =(Q, Darcsin[D"*XD~]D) >
X=X XX T

IS

2
p+ (1 — —)p.
p+(1-—)p
Finally, we have

Theorem 13.3.3 Let & be generated above from X = X. Then

(j - Eu‘l(i)
q4—q

<1

b

Proof. The proof is similar to that in Nesterov [572] and Ye [859]. We include
it here for completeness. Since

2 2 2 2
p>q>—p+(l-=)p>(1-=)p+=-p>gq>p
i i i i
we have
7 — Euq(2) g—2p—(1-2)p
q—9q - q—9q
Q—-%ﬁ—(l—'zﬁ7
S — 2\ = 2
g—(1-2)p—3p
p—2p—(1—-2)p
S — 2 2
p—(1-2)p—zp
 1-3H-p
Z(p—p)
2
_ | zﬂ)_ﬁ_l
2 2
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13.3.3 Results for Other Quadratic Problems

Consider now another nonconvex QP problem:

Maximize zTQz+ Tz

Subject to zTA;z+cTz<b;, i=1,...,m,

where given symmetric matrices 4; € R"*". We summarize approximation
results for solving this problem.

If m =1, A; = I, the identity matrix, and ¢; = 0, then the problem
is polynomially solvable. That is, there is an algorithm to generate an
e-solution for any € > 0, and its running time is polynomial in n and
log(1/€), see an early proof by Vavasis [818] and Ye [855] and a later by
Rendl and Wolkowicz [661]. (Ye [856] further reduced the complexity
time dependency on € to loglog(1/e).)

If all A; are mutually commutative (they can be simultaneously diagonal-
ized) and all ¢; = 0, then the problem can be transformed into a problem
with only diagonally quadratic constraints, and thus can be approximated
for € = 4/7 according to our early analysis, also see Ye [859] and Nesterov

[575].

If all A; are positive semidefinite, then the problem can be approximated
fore=1-— %@‘mt by Fu et al. [258]; and in addition, if all ¢; = 0, then

it can be approximated for e = 1 — clgg_(s;“r?)t by Nemirovskii et al. [568].

13.4 RELAXATIONS OF Q%P

Henry Wolkowicz

In this part of the chapter we look at several different instances of Q*P. In
particular, we start with several different tractable relaxations for the max-cut
problem and show that, surprisingly, they are all equal to the Lagrangian (and
SDP) relaxation.
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We then illustrate a recipe for constructing relaxations for QQPs by finding
a strengthened SDP bound for the max-cut problem.

Other instances discussed are the quadratic assignment and graph partition-
ing problems.

We then consider trust region type problems and discuss when strong duality
holds. This includes problems where orthogonal constraints arise, e.g. orthog-
onal relaxations of the quadratic assignment and graph partitioning problems.
In particular, this part of the chapter emphasizes the theme about the strength
of the Lagrangian relaxation.

13.4.1 Relaxations for the Max-cut Problem

The success of the SDP relaxation (equivalently Lagrangian relaxation) over
the last few years is exemplified by the success on the Maz-Cut Problem. Let
G = (V, E) be an undirected graph with edge set V' = {v;}7_, and weights w;;
on the edges (vi,v;) € E. We want to find the index set T C {1,2,...n}, to
maximize the weight of the edges with one end point with index in Z and the
other in the complement. This is equivalent to

(MC) max %Zi<jwij(]—_$i$j)a z e F,

where F := {£+1}", and #; = 1if ¢ € 7 and -1 otherwise. The objective function
is a (homogeneous) quadratic form, z7 Qz.

Several Different Relaxations. We now look at several different tractable
relaxations of MCQ), (13.4.54). These have different motivations. For example,
one bound relaxes the constraints to the unit ball of radius y/n, while another
relaxes the constraints to the convex hull, i.e. to the unit cube. Following
[638, 635], we observe that several quadratic type bounds considered in the
literature are actually equal. The key to the simple proofs is the strong duality
result for the trust region subproblem, see [747]. A similar phenomenon occurs
for linearizations of (P), such as in roof duality, see e.g. [324], where many
bounds obtained from various linearizations have been shown to be equal and,
in fact, they have been shown to be equal to the Lagrangian dual of a linearized
problem, see [4]. (The quality of the SDP bounds is the main topic in the first
two parts of this chapter; see above.)

We allow a more general objective function, i.e. we consider the +1 con-
strained quadratic program

* — T T
(MCQ) ' :=maxgo(z) (= Qv — 2 x). (13.4.54)

The bounds are derived using the fact that we can perturb the objective func-
tion go and exploit the fact that 27 = 1 on the feasible set F. Note that

qu(z) = 2T(Q+ Diag(u))z —2cTz —uTe

= qo(z), Yz €F. (13.4.55)
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For each u we get a trivial upper bound obtained from ignoring the constraints
and allowing the diagonal perturbations, i.e. we have

w* < folu) := max g, (z). (13.4.56)
But, the function fy can take on the value +oo. Let
S = {u:uTe: 0,Q + Diag (u) < 0}.

We then get the following trivial bound.

p* < Bg = Hzinfo(u) <: urTneino folu), if S # @) . (13.4.57)
Note that if the set S is not empty, then we can minimize over the unconstrained
parameter u or add the restriction to uTe = 0. This can be seen from the
optimality conditions for min-max problems. This comment is true for the
following bounds as well. (Details can be found in [638].)

In addition we can restrict the parameters and avoid infinite values for the
inner maximization problem by adding the hidden semidefinite constraint, i.e.
we use the fact that a quadratic function is unbounded above if the Hessian is
not negative semidefinite. (Note that a quadratic function is bounded above if
and only if the Hessian is negative semidefinite and the stationarity equation
is consistent.) The following is a tractable bound since we minimize a convex
function over a convex set.

*< By = i . 13.4.58
KOS B0 = o oty (15:4:55)

Next we relax the feasible set to the sphere of radius /n. We get

pr < filu) = ||H|1|&2L§ qu(z). (13.4.59)
And our next bound is
" < By :=min f1(u). (13.4.60)

The inner maximization problem is the trust region subproblem and is tractable,
see e.g. Section 13.4.3 below. Thus we have our second tractable bound.
We can replace the spherical constraint with the box constraint.
pr < fa(w) := max gu(z). (13.4.61)
- les] <1
After adding the semidefinite constraint to make the bound tractable, 1.e. to
make the calculation of f5 tractable, we get our next bounds.

wt < IILiIl fa(u) (13.4.62)

and

* < By:= i . 13.4.63
KOS B = ot 20 (15:4.63)
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Given @ and ¢, define the (n+ 1) x (n + 1)-matrix Q¢ by adding a 0 — th

row and column, so that

960 =0
46, =q5o=—¢; fori>0
qzc] = 4ij for 7’7.7 > 07
ie. .
e, 0 —c¢
Q° = [ e Q ] . (13.4.64)

In order to have analogous functions ¢¢(y) and f;(«) as in the previous cases,
let us introduce

g5(y) == y7 (Q° + diag(u))y — uTe. (13.4.65)

Note that ¢f reduces to g, if the first component yo is +1. The equivalent
relaxed problem is

WS filw) = max ) = (0 DAmax(Q + diag(w) - uTe, (13.4.66)

where Apax denotes the maximum eigenvalue. Now another bound is
" < B7 := min f7 (u). (13.4.67)

Similarly, we get equivalent bounds B§ and homogenized bounds for the other
models.

The above argument shows that we can homogenize the problem by moving
into a higher dimension. Therefore, we can consider the special case that ¢ = 0.
We now look at the SDP bound, see also Section 13.2 above for the performance
guarantees. The relaxation comes from the fact that the trace is commutative,
i.e.

2T Qu = Trace 7 Qz = Trace QuaT

and, for z € F, y;; = x;z; defines a symmetric, rank one, positive semidefinite
matrix Y with diagonal elements 1. Therefore, we can lift the problem into
the higher dimensional space of symmetric matrices and relax the rank one
constraint. This yields the following relaxation and our bound 3.

Bs := max Trace QY
subject to diag(Y) =e¢ (13.4.68)
Y = 0.

This SDP is a convex programming problem and is tractable.

Now we replace the £1 constraints with #? = 1,Vi. This does not change the
feasible set of the original problem. In [638, 635] it is shown that all the above
relaxations and bounds for MC come from the Lagrangian dual of (Pg), the
following equivalent problem to MCQ. Thus we enforce our theme about the
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strength of the Lagrangian relaxation. The strong duality result for the trust
region subproblem is the key to the proofs.

(Pg) max go(z) = 27 Qz — 2Tz
subject to z?=1, i=1,---,n.

(13.4.69)

Note that the Lagrangian dual of Pg yields precisely our trivial first bound By
in (13.4.57).

Theorem 13.4.1 All the bounds for MCQ discussed above are equal to the
optimal value of the Lagrangian dual of the equivalent program Pg.

A Strengthened Bound for MC. From the results above, it would appear
that we might have the strongest possible tractable bound. However, adding re-
dundant constraints can strengthen bounds. The following bound is motivated
by the strong duality results presented in Section 13.4.3 below and is presented
in [41]. The SDP bound (13.4.68) for MCQ arises from a lifting procedure, i.e.
identifying

0< X = zz7 and 27 Qz = Trace X.

Discarding the rank one condition on X results in the tractable SDP bound.
It is not clear what constraints one can add to Pg in order to strengthen the
Lagrangian relaxation, i.e. linear combinations of the constraints will not help
since they are already included in the Lagrangian. But, in the space of matrices,

it 1s also true that
X% = 22T z2T = nX.

Therefore we can use the following equivalent quadratic matrix model for MCQ.

p' = max Trace QX
st diag(X)=e
X?—nX =0,

where X is a symmetric matrix. This problem is equivalent to Pg since X2 =
nX and Trace X = n implies X is rank one. Therefore we are including the
rank one information from the original problem. However, this problem is a
nonconvex problem and cannot be solved in general. Note that if X% = nX,
then Trace QX = (1/n)Trace QX?, and diag(X?) = ne. As a result, the above
quadratic model is equivalent to the model:

1
p* = max —Trace QX2
n

st. zlzi=n, i=1,...,n (13.4.70)
X% —npeX =0
g =1,
where T, i = 1,...,n denotes the ith row of X, and = is a scalar. Having a

quadratic objective is an advantage only if it results in a larger class of available
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Lagrange multipliers. Therefore, the sign of the eigenvalues of @ will determine
whether this objective or %Trace QX is better. (Note that if 29 = —1 then
changing z¢ to 1 and replacing X with —X leaves the objective and constraints
in (13.4.70) unchanged.) We will obtain an upper bound pz > p* by applying
a Lagrangian procedure to all of the constraints in (13.4.70). Using multipliers
u; for the constraints z¥z; = n, i = 1,...,n, uo for the constraint z3 = 1,
and a symmetric matrix S for the matrix equality X2 — nX = 0, we obtain a
Lagrangian problem

fo = Miny, w5 o+ nule + maxy, x %Trace QX? — TraceUX?
+ Trace SX? — nzoTrace SX — UOZB(Z),

where U = Diag (u). Letting 7 = (0, vec (X)T), this problem can be written
in Kronecker product form as

po = min  ug + nel u + max 7 Qz,
Uo,u,S z

where
0= —ug —%vec (8T
T\ —%vec(S) I®(;Q-U+S) )"
Applying the hidden semidefinite constraint @ < 0, we obtain an equivalent
problem

p2 = min wug+ nelu
g S vec (8T
s =257,

Note that if we take S = 0 in (13.4.71), then wo = 0 is clearly optimal, and the
problem reduces to

min  elu

_Q+U t 07

which is exactly the dual of the usual SDP relaxation for MC. It follows that
we have obtained an upper bound p2 which is a strengthening of the usual SDP
bound, i.e. us < By.

Alternative Strengthened Relaxation. This presents an alternative strength-
ened SDP relaxation for the max-cut problem, i.e. this continues from the
above Section 13.4.1 but tries to fully exploit the rank-one condition in the
Lagrangian.

We use the notation: For S € 8", the vector s = svec(S) € R1(®) s formed
(columnwise) from S while ignoring the strictly lower triangular part of S.
Its inverse is the operator S = sMat (s). The adjoint of svec is the operator
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hMat (v) which forms a symmetric matrix where the off-diagonal terms are
multiplied by a half, i.e. this satisfies

svec (8§)T v = Trace S hMat (v), VS e 8, v e R,
where ¢(n) = n(n + 1)/2. The adjoint of sMat is the operator dsvec (S) which

works like svec except that the off diagonal elements are multiplied by 2, i.e.
this satisfies

dsvec (S)Tv = Trace S sMat (v), VS € 8", v e R,

For notational convenience, we define the vectors sdiag (s) := diag(sMat (s))
and vsMat (s) = vec (sMat (s)); the adjoint of vsMat is then given by

vsMat *(s) = dsvec ((Mat (v) + Mat (v)T) /2).
As above we can start with the following equivalent program
§* = max %Trace QX
st  diag(X)=e

XoX=e
X2 -—nX=0.

MCo (13.4.72)

There are many redundant constraints. However, it is uncertain which of these
become redundant in the SDP relaxation. The recipe is to throw in redun-
dant constraints; then take the Lagranglan dual twice and delete redundant
constraints at the end. At the end one has an SDP with linear constraints
and one can often remove the redundancy using the structure of the problem.
This illustrates the strength of the Lagrangian relaxation approach. This is
done in [34]. (See also [635] and more recently [473].) The result after deleting
redundant constraints is the simplified SDP relaxation (see [34]):

v; = max Trace H Y
st diag(Y) =e
Yoriy=1, Vi=1,...,n

J
MCPSDP2 Y YiicntktG-n+e + 2 Ye—1)4it(i—1)+i
k=1 k=i+1
+ Ykmjr1 Yeli—1)+it(k—1)4 — PX0(—1)4i = 0
Vi<i<j<mn

Y = 0,Y € St
(13.4.73)
This problem has 2¢(n)—1 constraints. In fact, there is still some redundancy as
it can be shown that Slater’s constraint qualification fails for this problem. This
can be further exploited by projecting the problem onto the space determined
by the minimal face of the problem, see [34].



402 HANDBOOK OF SEMIDEFINITE PROGRAMMING

13.4.2 General QzP

We now move on to applying the Lagrangian relaxation to general quadra-
tic constrained quadratic problems, denoted Q?P; and, we apply it to several
specific instances: the quadratic assignment, graph partitioning, max-clique
problems. The general Q2P problem is also studied in e.g. [260, 442] and
[652, 451, 449, 510].

Quadratic bounds using a Lagrangian relaxation have been extensively stud-
ied and applied in the literature, for example in [444] and, more recently, in
[445]. The latter calls the Lagrangian relaxation the “best convex bound”.
Discussions on Lagranglan relaxation for nonconvex programs also appear in
[245]. More references are given throughout this chapter.

Remark 13.4.1 Any equality constraints are written as two inequality con-
straints; any linear equality constraints, Az = b, is transformed to a quadratic
constraint via ||Az — b||* = 0. The reason for these transformations for linear
equality constraints is discussed in [635], i.e. the Lagrangian dual essentially
ignores linear constraints as can be seen from: —oo = maxy min, —z? + Az,
which is the dual of the problem min{—z?:z = 0}.

We now recall the Q*Pin z.

q¢* := min go(z) := 2T Qoz + 297 = + o
subject to  qr(z) = 2T Qrr + 297z + o < 0
@r.) SR R

z e R,
where the matrices @y are symmetric. The feasible set is
Foi={z eR" : qi(x) <0,Vk € T}.

(Note that though the feasible set F, may be empty, the feasible set of the
relaxation may not be.) The objective function and the constraints are not
convex, necessarily. Therefore the feasible set can be a very “nasty” set. This

problem is a very hard problem to solve in general, see e.g. [614].
Let

T
_ | @ 9
P = 13.4.75

¥ [ g Q ] ( )

and, by abuse of notation, define

Qk(y) = yTPkya k= 0717"'7

m.
Then an equivalent homogenized formulation to (Q?P,) is
¢" = min q0(y)
subject to qr(y) <0,k
(QZP y) Y5 =
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It is clear that the optimal values of the two equivalent formulations are equal.
In fact, if yo = —1 is optimal, then we can replace y by —y. This is because
the objective function and all but the last constraint are homogeneous.

We will refer to both equivalent formulations of Q*P in the sequel. The
correct reference will be clear from the context.

Remark 13.4.2 Note that we could replace the constraint y3 = 1 by yo = 1.
(The constraint yo = 1 is used in [260].) In the latter case, the feasible sets of
the two formulations coincide exactly, while in the former case they can differ

by a sign, i.e. x € F, implies that both < :i > and < i > are in Fy, i.e. are

feasible for the homogenized problem Q>P,.
y

The Lagrangian Relaxation of a General Q?P. The Lagrangian re-
laxation of the homogenized problem Q2P , provides a simple technique for
obtaining the SDP relaxation. In addition, an application of the strong duality
result for the trust region subproblem shows that both the SDP and Lagrangian
relaxation are equal. The Lagrangian of Q?P , is

Ly, i A) = y" Poy — p(vf — 1) + Y Mey” Pay.
kel

The Lagrangian relaxation of QP is

(DQ*P,)  d":=maxmin v Poy — p(yg — 1) + > ey’ Pey.

A5>o0 ker
Note that
& = iny” Poy — p(yd — 1 Ayt P
maxmaxminy Poy 1Yo H% kY Pry

. T T
= P, E Ay P
1)1\12&%(;1312 Yy~ Loy + 2 vY IRY,

from strong duality of the trust region subproblem, see [747]. Therefore, we get
equivalence of the dual values for the problems in z and in y. (This is similar
to the approaches in [849, 733].)

(_DQZPx) df = ma,XH;inqo(:B) + Z /\qu(ib)

A>0
- kel

We immediately conclude that weak duality holds
d* <" = minmaxy” Poy — (g — 1) + > Mt/ Pry.

p
¥ a5 kel

Therefore, if the optimal p*, A* can be found, we have found a single quadratic
function whose minimal value approximates the original minimal value ¢*, i.e.

¢ >d = n;inyTPoy — (W = 1)+ > Ny Py (13.4.76)
kel
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Moreover, in the dual program, the Lagrangian is a quadratic function of
y. Therefore, the outer maximization problem has the nonnegativity and an
additional hidden semidefinite constraint

Po— pBoo+ Y APr = 0, A >0, (13.4.77)
kel

where Eqg is the zero matrix with 1 in the top left corner and M > 0 denotes the
Lowner partial order, i.e. that the symmetric matrix M is positive semidefinite.
The minimum of the minimization subproblem, in this case, is attained by
y = 0. Therefore the Lagrangian dual is equivalent to the SDP problem

d* := max 7
(DSDP) subject to  1Eoo — > ez M Pr < Po
A>0.

Valid Inequalities. Using the above approach we see that more constraints
qr(y) means that we have a stronger dual. This can be phrased as adding
redundant constraints to get new valid inequalities to strengthen the relaxation.
We will see how this occurs when we look at orthogonally constrained problems
below. Another approach is also specified in detail in Kojima and Tuncel
[442, 440].

For problems that also have linear equality constraints, one can use the
notion of copositivity to strengthen the SDP relaxation. However, this does
not result in a tractable relaxation in general, see [649].

Specific Instances of SDP Relaxation. We now study four specific in-
stances and show how to apply the recipe for relaxations. In each case we
derive a min-max eigenvalue problem from the Lagrangian dual of an appro-
priately chosen quadratic constrained program. The dual of this dual problem
provides a semidefinite relaxation for the original problem. Adding redundant
constraints at the start helps in reducing the duality gap. These redundant
constraints are automatically deleted at the end, i.e. in the SDP relaxation,
by ensuring full row rank and Slater’s condition. We do this for: the quadratic
assignment problem; graph partitioning; max-clique problem; and the stable
set problem.
Quadratic Assignment Problem

Typical relaxations for QAP, see the definition in Section 13.1, try to exploit
the trace formulation and use perturbations on A, B separately. Current ap-
proaches have two serious drawbacks. They completely discard the nonnega-
tivity constraints and then they derive a bound from the sum of two bounds
obtained by treating the quadratic and linear parts of the objective function
separately, see e.g. [610]. However, the Lagrangian relaxations and homoge-
nization for the special case S = R" shows that we should consider more general
perturbations and, in particular, we should consider perturbations that arise
from Lagrangian quadratic relaxations. This approach does not have the two
drawbacks mentioned above.
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We now use the fact that the set of permutation matrices is equal to the
intersection of the orthogonal matrices with the 0,1 matrices. We get the
following equivalent program to QAP.

utoi= max q(X) = Trace (AXB — 20) X7
(QAPg) subject to XXT =1 (13.4.78)
X3 - Xy =0, Vi,j.

We could also consider the square of the norm of the residual of the (redundant)
linear constraints
Xe=¢e, XTe=e.

Other relaxations and bounds can be obtained by adding redundant constraints
such as
Trace XXT =n, XTX =1,

or
0< Xi; <1, Vi, j.

We now devote our attention to homogenization since that results in a min-
max eigenvalue problem and an equivalent semidefinite programming problem.
We have seen that we can homogenize by increasing the dimension of the prob-
lem by 1. We first add the 0,1 constraints to the objective function using
Lagrange multipliers W;;.

. T 2

win max Trace (AXB — 2C)XT + ZW” (X% — Xij). (13.4.79)
ij

We now homogenize the objective function by multiplying by a constrained

scalar z.

min max_ Trace [AXBXT + W(X o X)T —z(2C+ W)XT]. (13.4.80)
W XXT=I,z2=1

We can now use Lagrange multipliers to get a parametrized min-max eigenvalue
problem in dimension n? + 1. We get the following bound. The parameters
are: the symmetric n x n matrix A = AT, the general n x n matrix W and the
scalar a.
Bgap = A{Ilﬂl/{la m)?XTrace [
AXBXT + AXXT + WT(X o X) 4 az? (13.4.81)
—z(2C + W)XT | — a — Trace A.

We have grouped the quadratic, original linear, and constant terms together.
The hidden semidefinite constraint now yields a semidefinite programming
problem.

min —Trace A — «

subject to Lq + Arrow (o, vec (W)) + BDiag (A) < 0, (13.4.82)
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where we define the matrix

il 0 —vec (C)T
Lg = | vec(C) BoA ] , (13.4.83)
and the linear operators
[ a —Lvec (W)T
— 2
Arrow (a, vec (W)) := _ —%vec (W) Diag (vec (W) |’ (13.4.84)
B°Diag (A) := [ g IgA ] . (13.4.85)

We can now introduce the (n? + 1) x (n? + 1) dual variable matrix Y > 0 and
derive the dual program to this min-max eigenvalue problem, i.e.

r}rflgécAmwifn —Trace A — a + Trace Y (Lg + Arrow (a, vec (W)) + B®Diag (A)).

The inner minimization problem is unconstrained and linear in the variables.
Therefore, after reorganizing the variables, we can differentiate to get the dual
problem to this dual problem, or the semidefinite relaxation to the original
QAP. (Recall that Y; ;. refers to the ¢-th row and columns j to & of the ma-
trix ¥; and b%diag (Y) is the block diagonal sum of ¥ which ignores the first
row.) The derivatives with respect to & and W yields the first constraint and
the derivative with respect to A yields the second constraint in the following
program. Equivalently, the constraints are the adjoints of the linear operators
Arrow and B°Diag.

max Trace LY
subject to  diag(Y) = (1, Yo 1:02)T
bOdiag (V) =1
Y = 0.

(13.4.86)

Another primal-dual pair can be obtained using a trust region subproblem
as the inner maximization problem, rather than homogenizing to an eigen-
value problem. This is done by adding the redundant trust region constraint
Trace X X7 = n. Also, as mentioned above, we can add the redundant con-
straint

[1Xe = el + [|1XTe — || = .

This type of constraint is discussed below for the graph partitioning problem.

A primal-dual interior point method based on the these types of dual pairs of

programs, such as (13.4.86),(13.4.82), are being tested and studied in [870].
Graph Partitioning

Let G = (V, E) be an undirected graph as in the description for (MC). The

graph partitioning problem is the problem of partitioning the node set V into

k disjoint subsets of specified sizes so as to minimize the total weight of the
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edges connecting nodes in distinct subsets of the partition. Let A = (a;;) be
the weighted adjacency matrix of G, i.e.

o — Wi ij € E
N 0 otherwise.

The graph partitioning problem can be described by the following (0,1)-quad-
ratic program see e.g. [660].

w( Eyncyt) = max %Trace XtAX
subject to Xep = e,
XTe, =m
Xij € {07 1}7 Vlja

(GP)

where e is the vector of ones of appropriate size and m is the vector of ordered
set sizes
my>...>mp > 1 and k <mn.

The columns of the 0,1 n x k& matrices X are the indicator vectors for the sets.
We can replace the 0,1 constraints by quadratic and also change the linear
constraints to quadratic by squaring. We get the following equivalent program.

W( Eynecyt) = mMax %Trace XtAX
subject to [|Xer —en||? + || XTen —m|> =0
X2 - Xi; =0, Vij.

The Lagrangian relaxation yields the following bound.

Bgp = minm)?x'l‘race[
a7

3 XTAX +aferef XTX + XTenel X) + WT(X 0 X) (13487
—2a(erel X + mel X) - WTX ]
+a(n+ 35 mi).

We can now homogenize the problem by adding a variable z.

Bgp = minm;mxTrace[
@ r2=1

IXTAX + a(eref XTX + XTepel X) + WP (X 0 X)
+z(—2a(erel X + mel X) — WTX) ]
+a(n+ 35 mi).

We now lift the variable z into the Lagrangian to get a min-max eigenvalue
problem.

Bgp := min maxTrace [
a,W,é X,z

IXTAX + a(erel XTX + XTeel X) + WT(X 0 X) + 622
+z(—2a(erel X + mel X) - WTX) ]
+a(n+ Y, m?) — 4.



408 HANDBOOK OF SEMIDEFINITE PROGRAMMING

The above has a hidden semidefinite constraint.

min an+>,m?)—4¢

subject to L4 + Arrow (d, vec (W)) + aLy < 0, (13.4.88)
where we define the matrices
0 0
Ly := [ 0 %I@A ], (13.4.89)
v = vece,m?,
_ 0 —(e+v)T
L, := [ —(e4v) (relI@I+I@eneT) |’ (13.4.90)
and the linear operator
) —L(vec (W))T
— 2
Arrow (9, vec (W)) := [ —%(vec (W) Diag (vec (W) (13.4.91)
The dual program yields the semidefinite relaxation of (GP).
max Trace LY
subject to  diag(Y) = (1,Yp 1.0)7
TraceY Ly — 0 (13.4.92)
Y = 0.

Max-Clique and Stable Set
Consider again the undirected graph G = (E,V) defined above. The maz-
clique problem consists in finding the largest connected subgraph. We let w(G)
denote the size of the largest clique in G. A stable set is a subset of vertices
of V such that no two vertices are adjacent. We denote the size of the largest
stable set in G, the complement of G, by a(G). Clearly

a(G) = w(G).

Bounds for these problems and relationships to the theta function, or Lovész
number of the graph, are described in the expository paper e.g. [425]; see also
[701].

In this section we show that the Lovasz bound on w(G) can be alternatively
obtained from two distinct 01-programs (13.4.93) and (13.4.96) by Lagrangian
relaxations. Let A be the incidence matrix of the graph, i.e. A = (a;;) with
a;; = 1if 45 € E and 0 otherwise. If z is the indicator vector for the largest
clique in G of size k, A then 27 (I + A)z/zTz = k*/k = k. A quadratic formu-
lation of the max-clique problem is the following (0,1)-quadratic program.

w(G) = max ﬂ%ﬁ
subject to  w;z; =0, fij ¢ E, i £ (13.4.93)

z; € {0,1}, Vi.
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Therefore, a quadratic relaxation of the max-clique problem is the following
quadratic constrained program.

w(G) <wj = max 2T (I+ A)z
subject to  zjz; =0, ifij ¢ E, ¢ £ (13.4.94)
ele = 1.

The Lagrangian relaxation for this problem is the perturbed min-max eigen-
value problem and the equivalent semidefinite program

w3 _min Max(I + A+ W) —azTz + o
Wi;=0, if ijeE, or i=j
= minmaxzT (I +A)z+ Y Wi LT —azTe+a
e T ijE, i#j
= min «
I+A+W<al
Wi;=0, if ijeE, or i=j

IA

i.e. minimize the max eigenvalue over perturbations in the off-diagonal ele-
ments corresponding to disjoint nodes. This bound is equal to the Lovasz theta
function on the complementary graph.
I(G) = Exneiﬂ Amax(4), (13.4.95)
where A = {A: A symmetric nxn matrix with A;; =1, if i € E, or i = j}.
By considering the (optimal) indicator vector for the largest clique, we see
that a (0,1)-quadratic program that describes the max-clique problem exactly
is the following one. Note that if node 7 is not in the largest clique, then
necessarily, z;z; = 0 for some j with node j in the clique, i.e. necessarily
z; = 0 in the indicator vector.

w(G) = max 2T

subject to  zjz; =0, ifij ¢ E, i £ (13.4.96)
z? —z; =0, Vi.

The Lagrangian relaxation yields the bound

. T 2
clique = Winmaxz” z + E Wi LiL; + E iz — =),
’ EE, i#] i

B

We let W be an n X n matrix with zeros in positions where 15 € E. We can
homogenize by adding the constraint y* = 1 and then lifting it into the La-
grangian.

min maxztz + E Wi T + E /\Z'ZB? + ay2 —y E AT — Q.
a,W,A ¥y “ " .
ij¢E 7 i

We now exploit the hidden semidefinite constraint to get the semidefinite pro-
gram.
min —a
W,Aa
subject to  La + Lw (W) + Arrow (o, A) <0 (13.4.97)
Wi; =0, Vij € E, ori=j,

B clique =
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where the matrix
0 0
Ly = [ 0 I ] , (13.4.98)

and the linear operators

Ly (W) = [ - ] , (13.4.99)

(13.4.100)

_1\T
Arrow (a, A) := [ q 2 ] .

—1\ Diag())

The dual of the above min-max eigenvalue problem yields the semidefinite
relaxation for the max-clique problem with Y € §,,41.

max Trace LY
subject to  diag(Y) = (1, Yo,1:0)T
Y, =0, Vij ¢ E
Y = 0.

(13.4.101)

The equivalence of the bounds (13.4.95) and (13.4.101) was shown in lemma
2.17 of [497].
Counsider the program (13.4.93) with an additional redundant constraint

ziz; > 0 forij € B (13.4.102)

That is

w(G) = max 2T (I4d)e xIT‘i'A i

subject to  ziz; Z 0,ifij¢ E, i#j (13.4.103)
ziz; >0, ifij € E, o
z; €{0,1}, Vi.
A quadratic relaxation of the max-clique problem is the following quadratic
constrained program.

w(G) <wi = max 2T (I+ Az
subject to  w;z; =0, ifij ¢ E, i £
xixy; > 0, ifz5 € E,

2Ty =1.

(13.4.104)

The Lagrangian relaxation for this problem is equal to the Schrijver’s im-
provement [701] of the theta function on the complementary graph.

¥(G) = min Amax(A),

where A" = {A : A symmetric nxn matrix with A;; > 1, if ¢j € E, or 1 = j}.

Haemmers [321] constructed graphs where 9'(G) is strictly smaller than J(G).

Analogously, it is possible to modify the program (13.4.96) by adding the
constraint (13.4.102).



NONCONVEX QUADRATIC OPTIMIZATION 411

13.4.3 Strong Duality

In the case of strong duality (zero duality gap and dual attainment), our bounds
are exact. As expected, this holds (generically) in the convex case. Surprisingly,
there are several cases on nonconvex quadratic programs where this holds as
well. In this Section 13.4.3 we amplify on our theme that illustrates the strength
of the Lagrangian relaxation, i.e. that a tractable bound implies a Lagrangian
relaxation is at work.

Recall the general quadratically constrained quadratic program (13.4.74).
For simplicity we have replaced each equality constraint by two inequality con-
straints. We will use equality constraints when absolutely required. We let F
denote the feasible set.

We define the Lagrangian

L(z, ) :=qo(z) + Z Akqr (),

and the dual functional

$(A) := min L(z, ).

x

The Lagrangian is linear in A and so the dual function is a minimum of linear
functions, i.e. it is a concave function of A. Thus the maximum of this concave
function is a tractable problem if the dual functional can be evaluated efficiently.
For each A > 0, we have the lower bound

po = mingo(z)
> minL(z, \)
- xEF
> minL(z, \)
> = A).
> V= maxg())

Thus we have defined our dual problem

>t = A
pr>v I§1§3<¢( )
which provides a lower bound for our primal problem. If, in addition, we have
found the feasible z € F with attainment in the Lagrangian z € argmin, L(z, A)
and with complementary slackness >, Arqx(Z) = 0, then

p> vt =Lz, )
= qo(@)
>

i.e. we have found an optimum z and have a zero duality gap when these
sufficiency conditions (feasibility, attainment, complementary slackness) hold.
Note that since we are dealing with an unconstrained minimum of a quadratic
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Lagrangian, we obtain the interesting statement: necessary conditions for the
sufficiency conditions to hold, 1.e. we need stationarity of the Lagrangian and
positive semidefiniteness of the Hessian of the Lagrangian. Thus, when these
two conditions are incompatible we lose strong duality; we can even expect a
duality gap.

We now present several Q*P problems where the Lagrangian relaxation is
important and well known. In all these cases, the Lagrangian dual provides an
important theoretical tool for algorithmic development, even where the duality
gap may be nonzero. We continue to emphasize our theme that illustrates that
the Lagrangian relaxation is best.

Convex Quadratic Programs. We start with the easy case; consider the
convex quadratic program

cQpP p* = min gqo(z)
st qr(z) <0, k=1,...m,

where all ¢;(z) are convex quadratic functions. We now see that Lagrangian
duality can always solve this problem.

The dual is

DCQP v = r)r\1>ax mln qo(z) + Zx\qu

If v* is attained at A*,z*, then a sufficient condition for ™ to be optimal for
CQP is primal feasibility and complementary slackness, i.e.

> Aa(zT) =0
k=1

In addition, it is well known that the Karush-Kuhn-Tucker (KKT) conditions
are suflicient for global optimality, and under an appropriate constraint quali-
fication the KKT conditions are also necessary. Therefore strong duality holds
if a constraint qualification is satisfied, 1.e. in this case there is no duality gap
and the dual is attained.

However, surprisingly, if the primal value of CQP is bounded then it is at-
tained and there is no duality gap, see e.g. [776, 630, 631, 629]. (This can be
considered to be an extension of the Frank-Wolfe Theorem, [510].) However,
the dual may not be attained, e.g. consider the convex program

0 = min{z : 2> < 0}
and its (unattained) dual

0 = maxminz + Az? = maxminz + \zZ.
A>0 @ A>0 T

Algorithmic approaches based on Lagrangian duality appear in e.g. [363,
509, 583].



NONCONVEX QUADRATIC OPTIMIZATION 413
Nonconvex Quadratic Programs.

Rayleigh Quotient. Suppose that A = AT € §". It is well known that the
smallest eigenvalue A; of A is obtained from the Rayleigh quotient, i.e.

A1 = min{zT Az : 2Tz = 1}. (13.4.105)

Since A is not necessarily positive semidefinite, this is the minimization of a
nonconvex function on a nonconvex set. However, the Rayleigh quotient forms
the basis for many algorithms for finding the smallest eigenvalue, and these
algorithms are very efficient. In fact, it is easy to see that there is no duality
gap for this nonconvex problem, i.e.

A1 — max min zT Az — A( Ty — 1) = max A (13.4.106)

A @ AZAIZ0

To see this note that the inner minimization problem in (13.4.106) is uncon-
strained. This implies that the outer maximization problem has the hidden
semidefinite constraint (an ongoing theme in the chapter)

A— A >0,

i.e. X is at most the smallest eigenvalue of A. With X set to the smallest
eigenvalue, the inner minimization yields the eigenvector corresponding to A;.
Thus, we have an example of a nonconver problem for which strong duality
holds. Note that the problem (13.4.105) has the special norm constraint, and
a homogeneous quadratic objective.

Trust Region Subproblem. We will next see that strong duality holds for
a larger class of seemingly nonconvex problems. The trust region subproblem,
TRS, is the minimization of a quadratic function subject to a norm constraint.
No convexity or homogeneity of the objective function is assumed. We allow
for a further extension, i.e. we do not assume convexity of the constraint and
allow indefinite quadratic functions for both objective and constraint. (See e.g.
[155] for applications of indefinite quadratic forms.) This problem is important
in nonlinear programming, e.g. [552, 551].

TRS p*i=min  go(z) = 2T Qox — 2che
s.t. 2Tz —30% <0 (or =0).

or the generalized trust region subproblem [747, 549].

GTRS pw*i=min qo(z) = 27 Qox — 2cix
s.t. q1(z) <0 (or =0),

where ¢; is another quadratic function. In addition, one can have two sided
constraints « < ¢1(z) < B, which are used in trust region algorithms as well.
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For TRS, assuming that the constraint is written “<,” the Lagrangian dual
is:
DTRS v* := max min qo(z) + MzTz — §?).
A>0 T

This is equivalent to (see [747]) the (concave) nonlinear semidefinite program

DTRS v*i=max ¢ (Qo+ M)ico — A2
s.t. Qo+ A =0
A>0.

where -T denotes Moore-Penrose inverse. It is shown in [747] that strong duality
holds for TRS, i.e. there is a zero duality gap p* = v*, and the dual is attained.
(The primal is also attained.) Thus, as in the eigenvalue case, we see that this
is an example of a nonconvex program where strong duality holds. In addition,
this implies that this problem can be solved efficiently; polynomial time results
are presented in [854].

Proof.

We include a short proof of strong duality, for the inequality constrained case,
based on the outline in [478], i.e. we fall back on the convex case after a
perturbation. Note that the key to the proof is being able to pass between the
inequality and equality constraints.

Without loss of generality, we can assume that TRS is nonconvex. (Other-
wise, we apply the convex results discussed above.) Therefore p* is attained
on the boundary of the feasible set and the smallest eigenvalue of @)y, denoted
v, is negative. Then TRS is equivalent to

uoo= x%l;i<11(52 2T(Qo — yI)z — 2chx + yzTz
= x%l;i:%2 2T(Qo — yI)z — 2chx + yztz, (Qo is indefinite)
x%l;i:%2 2T(Qo — vI)z — 2cix + 62
= x%l;i<11(52 2T(Qo — D)z — 2chx + 6%, (Qo — I is singular)
= r)r\1>aécr%in 2T (Qo — yI)z — 2chz + A(zTz — 6%) 4 762 (convex case)
= r)r\l;mg(n;in 2T Qoz — 2chz + (A — ) (zTz — 6%)
< maxmin 27 Qoz —2chr + (A —7)(=Tz — %) (v <0)
= i<y
(13.4.107)
|

As mentioned above, extensions of this result to a two-sided general, possi-
bly nonconvex, constraint are discussed in [747, 549]. An algorithm based on
Lagrangian duality appears in [661] and (implicitly) in [551, 691]. These algo-
rithms are extremely efficient for the TRS problem, i.e. they solve this problem
almost as quickly as an eigenvalue problem.
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The fact that we can solve the TRS efficiently even though the objective
and constraint may be nonconvex is surprising. In fact, in [524] Martinez
shows that the TRS can have at most one local and nonglobal optimum, and
the Lagrangian at this point has one negative eigenvalue. Therefore, it is even
more surprising that the Lagrangian dual (relaxation) allows one to find the
global minimum without ever getting trapped near the local minimum.

In fact, for GTRS we still have a 0 duality gap, though strong duality may
fail, e.g. consider the simple program minz s.t. 22 < 0. The results in [747]
provide strong duality for GTRS with a two sided constraint using the con-
straint qualification that « < B. In [549], necessary and sufficient optimal-
ity conditions are presented for GTRS using the constraint qualification that
mingo(z) < maxgo(z). Using these results in combination with the extension
of the Frank-Wolfe result (e.g. [510]) gives us the following.

Theorem 13.4.2 Consider GTRS: a zero duality gap always holds and, more-
over, if the optimal value is finite, then it is attained. [ |

Two Trust Region Subproblem. The two trust region subproblem, TTRS,
consists in minimizing a (possibly nonconvex) quadratic function subject to a
norm and a least squares constraint, i.e. two convex quadratic constraints.
This problem arises in solving general nonlinear programs using a sequential
quadratic programming approach, and is often called the CDT problem, see
[154].

In contrast to the above single TRS, the TTRS can have a nonzero duality
gap, see e.g. [626, 862, 863, 864]. This is closely related to quadratic theorems
of the alternative, e.g. [177]. In addition, if the constraints are not convex,
then the primal may not be attained, see e.g. [510].

As mentioned above, Martinez [524] shows that the TRS can have at most
one local and nonglobal optimum, and the Lagrangian at this point has one
negative eigenvalue. Therefore, if we have such a case and add another ball
constraint that contains the local, nonglobal, optimum in its interior and also
makes this point the global optimum, we obtain a TTRS where we cannot
have a zero duality gap due to the negative eigenvalue. It is uncertain what
constraints could be added to close this duality gap. In fact, it is still an open
problem whether TTRS is an NP-hard or a polynomial time problem.

General Q*P. The general, possibly nonconvex, Q?P has many applica-
tions in modeling and approximation theory, see e.g. the applications to SQP
methods in [451]. Examples of approximations to Q2P also appear in [258].
The Lagrangian relaxation of a Q?P is equivalent to the SDP relaxation,
and is sometimes referred to as the Shor relaxation, see [733]. The Lagrangian
relaxation can be written as an SDP if one takes into the account the hidden
semidefinite constraint, i.e. a quadratic function is bounded below only if the
Hessian is positive semidefinite. The SDP relaxation is then the Lagrangian
dual of this semidefinite program. It can also be obtained directly by lifting
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the problem into matrix space using the fact that z7Qz = TracezTQz =
Trace Qzz”, and relaxing zz” to a semidefinite matrix X.

One can relate the geometry of the original feasible set of Q2P with the
feasible set of the SDP relaxation. The connection is through walid quadratic
inequalities, i.e. nonnegative (convex) combinations of the quadratic functions;
see [260, 442] and our Section 13.4.2.

Orthogonally Constrained Programs with Zero Duality Gaps. We
now follow the approach in [41, 37, 36] and consider the orthonormal type
constraints

XTXx =1, X €My,

(sometimes known as the Stiefel manifold, e.g. [203]) and the trust region type
constraint

XTXx <1, X EMpn.

Applications and algorithms for optimization on orthonormal sets of matrices
are discussed in [203].) In this section we will show that for m = n, strong
duality holds for a certain (nonconvex) quadratic program defined over or-
thonormal matrices. Because of the similarity of the orthonormality constraint
to the norm constraint 7z = 1, the results of this section can be viewed as
a matrix generalization of the strong duality result for the Rayleigh Quotient
problem (13.4.105).

Let A and B be n x n symmetric matrices, and consider the orthonormally
constrained homogeneous Q*P

QQPo @ := min Trace AXBXT

ot xxT — . (13.4.108)

This problem can be solved exactly using Lagrange multipliers, see e.g. [318],
or using the classical Hoffman-Wielandt inequality, e.g. [112].

Proposition 13.4.1 Suppose that the orthogonal diagonalizations of A, B are
A = VIVT and B = UAUT, respectively, where the eigenvalues in % are
ordered nonincreasing, and the eigenvalues in A are ordered nondecreasing.
Then the optimal value of QQPo is u@ = Trace BA, and the optimal solution
is obtained using the orthogonal matrices that yield the diagonalizations, i.e.

X*=vUT. [}

The Lagrangian dual of QQPgo is

max min Trace AXBXT — Trace S(XXT —I). (13.4.109)
5=8

However, there can be a nonzero duality gap for the Lagrangian dual, see [870]
for an example. The inner minimization in the dual problem (13.4.109) is an
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unconstrained quadratic minimization in the variables vec (X), with hidden
constraint on the Hessian

BRA-I1®S 0.

The first order stationarity conditions are equivalent to AXB =SX or AXBXT
= 5. Once can easily construct examples where the semidefinite condition and
the stationarity are in conflict and result in a duality gap. In order to close the
duality gap, we need a larger class of quadratic functions.

Note that in QQPo the constraints XXT =TI and X7 X = I are equivalent.
Adding the redundant constraints X7 X = I, we arrive at

QQPoo p©:= min Trace AXBXT
st XXT=1I XTX=1

Using symmetric matrices S and T to relax the constraints XX7 = I and
XTX =1, respectively, we obtain a dual problem

DQQPoo pC > pP := max Trace S + Trace T
st. IS)+(T®I) < (B®A)
s=57, T=17T.

Theorem 13.4.3 Strong duality holds for QQPoo and DQQPoo,
ice., p? = p© and both primal and dual are attained. [ |

A further relaxation of the above orthogonal relaxation is the trust region
relaxation studied in [398]

PQapr ‘= min Trace AXBXT
st XXT <1

The constraints are convex with respect to the Lowner partial order and so
it is hoped that solving this problem would be useful. Also, this problem is
visually similar to the TRS discussed above. And so we would like to find a
characterization of optimality.
The set
{(X:W=XXT <1I}

is studied separately in [604, 233] and is useful in eigenvalue variational princi-
ples.
We now study the matrix trust-region relaxation of QAP:

wspppy = min Trace AXBXT
st XXT < I

The following generalization of the Hoffiman-Wielandt inequality holds.
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Theorem 13.4.4 For any XXT < I, we have
i min{Aipn—it1, 0} <trAXBXT < 370 max{ip;, 0}

And, the upper bound is attained if

X = PDiag(ey, €2, +,€,)Q7, (18.4.110)
where
1, AZ/'LZ > 07
& = OéE[O, 1], A = 0, (13.4.111)
0, Aipts < 05
The lower bound is attained if
X = PDiag(ey, €2, -+, €,)JQ7, (18.4.112)
where
17 /\i/Ln—i-I-l < 07
g =< ac0,1], Aipp—it1 =0, (18.4.113)
0, Xiftn—it1 > 0.
|

For a scalar £, let £~ := min {0,£}. The lower bound in the above theorem
states that pippr = Yoi_i[Aipi]™. Since the Theorem provides the feasible
point of attainment, i.e. an upper bound for the relaxation problem, we will
prove the theorem by proving another theorem that shows that the value u%sp pp
is also attained by a Lagrangian dual program. Note that since X X7 and X7 X
have the same eigenvalues, X X7 < T if and only if X7 X < I. Explicitly using
both sets of constraints, as in [41], we obtain

QAPTR pgapr = min Trace AXBXT
st XXT<I, XTX<I

Next we apply Lagrangian relaxation to QAPTR, using matrices S > 0 and
T > to relax the constraints XXT < I and XTX < I, respectively. This
results in the dual problem
DQAPTR HQapPT > /LgAPT := max —TraceS — TraceT
st. BA)+{ITS)+(TeI)-0
S>>0, T>0.

To prove that pi) 4 pr = /LgAPT we will use the following simple result.

Lemma 13.4.1 Let A € R*, Ay < Ay < ... < \,. Fory € R" consider the
problem

min  zp := Z[/\fyﬂ(i)]_,
i=1
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where 7(-) is a permutation of {1,...,n}, Then the permutation that minimizes
Zn SQLISfiES Yr(1) > Vr(2) 2 -+ Vr(n)- |

Theorem 13.4.5 Strong duality holds for QAPTR and DQAPTR, i.e.,
/LgAPT = poapr 9nd both primal and dual are attained. [ |

The above results illustrate the theme about the strength of the Lagrangian
relaxation, i.e. that tractable problems can be solved using Lagrangian duality
in some form.






