The citations do not have bibliographic entries associated with them.
The bbl file of bibliographic entries follows.
\begin{thebibliography}{77}
\bibitem{atw} Atwood, C.L. (1973). ``Sequences Converging to=20
D--optimal Designs of Experiments.'' {\it Ann. Stat.}, {\bf 1},=20
342--352.
\bibitem{don} Atkinson, G.L. and Donev, A.N. (1992). {\it=20
Optimum Experimental Designs}, Clarendon Press, Oxford.
\bibitem{Bala} Balakrishnan, A. (1971) {\it Introduction to
Optimization Theory in Hilbert Space}, Springer, New York.
\bibitem{bd} Box G.E.P. and Draper, N. (1987). {\it Empirical Model
Building and Responce Surfaces.} Wiley, New York.
\bibitem{CF} Cook, R.D. and Fedorov, V.V. (1995). ``Constrained
Optimization of Experimental design (with Discussion).'' {\it
Statistics}, {\bf 26}, 129--178.
\bibitem{cook} Cook, R.D. and Nachtsheim, C.J. (1989). =20
``Computer--aided Blocking for Factorial and Response--Surface=20
Designs.'' {\it Technometrics}, {\bf 31}, 339--346.
\bibitem{cookr} Cook, R. D. and Thibodeau, L.A. (1980).
``Marginally Restricted D--optimal Designs.'' {\it JASA}, {\bf 75}, 366--3=
71.
\bibitem{wong} Cook, R.D. and Wong, W.K. (1994). `` On the Equivalence=20
of Constrained and Compound Optimal Designs.'' {\it JASA}, {\bf 89}, 687--6=
92.
\bibitem{holg} Holger, D. (1995). ``Contribution to the
Discussion''. {\it Statistics}, {\bf 26}, 153--161.
\bibitem{fedr} Fedorov, V.V. (1972). Theory of Optimal=20
Experiments. Academic Press, New York.
\bibitem{fed} Fedorov, V.V. (1989). ``Optimal Design with=20
Bounded Density: Optimization Algorithms of the Exchange=20
Type.'' {\it JSPI}, {\bf 22}, 1--13.
\bibitem{FH} Fedorov, V.V. and Hackl, P. (1997). {\it Model--Oriented
Design of Experiments}. Springer, New York.
\bibitem{gav} Fedorov, V.V. and Gaivoronski, A. (1984). =20
{\it Design of Experiments Under Constraints}. International=20
Institute for Applied System Analysis. WP--84-8, Austria,=20
Laxenburg.
\bibitem{maly} Fedorov, V.V. and Malyutov, A.B. (1972). =20
``Design of Experiments in Regression Problems.'' {\it Mathemat.=20
Operationsforschung und Statist.}, {\bf 3}, 281--321.
\bibitem{fn} Fedorov, V.V. and Nachtsheim, C. (1995) ``Optimal Design
for Time-Dependent Responces.'' in {\it MODA4 - Advances in
Model-Oriented Data Analysis}. Eds. Kitsos, C. and M\"{u}ller,
W.. Springer, New York.
\bibitem{up} Fedorov, V.V. and Uspensky, A.B. (1975). =20
{\it Numerical Aspects of Design and Analysis of Experiments}. =20
Moscow State University.
\bibitem{GH} Gaffke N. and Heligers, B. (1995). ``Algorithms for
Optimal Design with Application to Multiple Polynomial
Regression.'' {\it Metrika}, {\bf 42}, 173--190.
\bibitem{gh} Gaffke N. and Heligers, B. (1995). ``Second Order Methods
for Solving Extremum Problems from Optimal Linear Regression
Design.'' {\it Optimization}, {\bf 36}, 41--57.
\bibitem{gm} Gaffke N. and Mathar, R. (1992). ``On a Class of Algorithms
from Experimental Design Theory.'' {\it Optimization}, {\it 24}, 91--126.
\bibitem{hua} Huang, M.L. and Hsu, M.C. (1993).
``Marginally Restricted Linear--optimal Designs.'' {\it JSPI}, {\bf 35},
251--266.
\bibitem{gavo} Gaivoronski, A. (1986). ``Linearization Methods=20
for Optimization of Functionals Which Depend on Probability=20
Measures.'' {\it Mathematical Programming Study}, {\bf 28},=20
157--181.
\bibitem{HL} Hiriart-Urrurty J.-P. and Lemar\'{e}chal C. (1993) {\it
Convex Analysis and Minimization Algorithms I}. Springer, New York.
\bibitem{kar} S. Karlin and W.J. Studden (1966). {\it Tchebycheff=20
Systems: with Applications in Analysis and Statistics}. Wiley=20
and Sons, New York.
\bibitem{kief} Kiefer, J. (1959). `` Optimal Experimental=20
Design.'' {\it Journal of the Royal Statistical Society}, B,=20
{\bf 21}, 272--319.
\bibitem{nud} Krein, M. and Nudelman, A. (1977). {\it The Markov=20
Moment Problem and Extremal Problems.} {\it Translation=20
Mathem. Monographs 50}, American Mathematical Society,=20
Providence, EI.
\bibitem{laut} L\"{a}uter, E. (1976). Optimal Multipurpose=20
Designs for Regression Models. {\it Math. Operationsforschung
und Statist.}, {\bf 7}, 51--68.
\bibitem{lee} Lee, C.M.--S. (1988). ``Constrained Optimal=20
Designs.'' {\it JSPI}, {\bf 18}, 377--389.
\bibitem{lew} Lewis, A.S. (1996). ``Convex Analysis on Hermitian Matrices.'=
'=20
{\it
SIAM J. Optimization}, {\bf 6}, 164--177.
\bibitem{mit} Mitchell, T.J. (1974). `` An Algorithm for the=20
Construction of D--optimal Experimental Designs.'' {\it=20
Technometrics}, {\bf 16}, 203--211.
\bibitem{puk} Pukelsheim, F. (1980). ``On Linear Regression=20
Designs Which Maximize Information.'' {\it JSPI}, {\bf 4},=20
339--364.=20
\bibitem{pu} Pukelsheim, F. (1993) {\it Optimal Design of
Experiments}. Wiley, New York.
\bibitem{sch} Schwabe, R. (1996). {\it Optimum Designs for Multi-Factor
Models}. Springer, New York.
\bibitem{sil} Silvey, S.D. (1980). {\it Optimal Design},=20
Chapman and Hall, London, 1980.
\bibitem{vb} Vandenbeghe, L. and Boyd, S. (1996). ``Semidefinite
Programming.'' {\it SIAM Review}, {\it 38}, 49--95.
\bibitem{vbw} Vandenbeghe, L., Boyd, S. and Wu,
S.P. (1996). ``Determinant Maximization with Linear Matrix
Inequality Constraints.'' TR, Stanford University, Stanford.
\bibitem{wz} Wang, B.Y. and Zhang, F. (1995). ``Trace and Eigenvalue
Inequalities for Ordinary and Hadamard Products of Semidefinite
Hermitian Matrices.'' {\it SIAM J. Matrix Anal. Appl.}, {\it 16},
1173--1183.=20
\bibitem{whi} Whittle, P. (1973). ``Some General Points in the=20
Theory of Optimal Experimental Design.'' {\it Journal of the=20
Royal Statistical Society}, Ser. B, {\bf 35}, 123--130.
\bibitem{wu} Wu, C.F. and Wynn, H. (1978). ``The Convergence=20
of General Step--Length Algorithms for Regular Optimum Design=20
Criteria.'' {\it Ann. Statist.}, {\bf 6}, 1273--1285.
\bibitem{wynn} Wynn, H. (1982). `` Optimum Submeasures=20
with Applications to Finite
Population Sampling.'' {\it Statistical Decision Theory and Related=20
TopicsIII}, Vol. 2,
Academic Press, New York, 485--495.
\end{thebibliography}