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Abstract

The fundamental problem of distance geometry, F P DG , involves the characteriza-
tion and study of sets of points based only on given values of (some of) the distances
between pairs of points. This problem has a wide range of applications in various ar-
eas of mathematics, physics, chemistry, and engineering. Euclidean Distance Matrices,
EDM , play an important role in F P DG . They use the squared distances and pro-
vide elegant and powerful convex relaxations for F P DG . These EDM problems are
closely related to graph realization, GRL ; and graph rigidity, GRD , plays an impor-
tant role. Moreover, by relaxing the embedding dimension restriction, EDM problems
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‡Dipartimento di Ingegneria dell’Impresa Università degli Studi di Roma “Tor Vergata” Via del Politec-
nico, 1 00133 Rome, Italy.

§Research supported by Natural Sciences Engineering Research Council Canada, MITACS, and AFOSR.

1



can be approximated efficiently using semidefinite programming, SDP . Throughout
this survey we emphasize the interplay between: F P DG , EDM , GRL , GRD ,
and SDP . In addition, we illustrate our concepts on one instance of F P DG , the
Sensor Network Localization Problem, SNL .
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1 Introduction

The fundamental problem of distance geometry (FPDG ) involves the characterization
and study of sets of points, p1, . . . , pn ∈ R

r based only on given values for (some of) the
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distances between pairs of points. More precisely, given only (partial, approximate) distance
information d̄ij ≈ ‖pi − pj‖, ij ∈ E, 1 between pairs of points, we need to determine whether
we can realize a set of points in a given dimension and also find these points efficiently. This
problem has a wide range of applications, in various areas of mathematics, physics, chemistry,
astronomy, engineering, music, etc. Surprisingly, there are many classes of FPDG problems
where this hard inverse problem with incomplete data can be solved efficiently.

Euclidean Distance Matrices (EDMs ) play an important role in this problem since they
provide an elegant and strong relaxation for FPDG . The EDM consists of the squared
Euclidean distances between points, Dij = ‖pi − pj‖2, i, j = 1, . . . , n. Using the squared
rather than ordinary distances, and further relaxing the embedding dimension r, means that
completing a partial EDM is a convex problem. Moreover, a global solution can be found
efficiently using semidefinite programming (SDP ). This is related to problems in the area
of compressed sensing, i.e., the restriction on the embedding dimension is equivalent to a
rank restriction on the semidefinite matrix using the SDP formulation. (See e.g., [84, 21]
for details on compressed sensing.)

A special instance of FPDG is the Sensor Network Localization problem (SNL ). For
SNL , the n points pi, i = 1, . . . , n, are sensors that are part of a wireless ad hoc sensor
network. Each sensor has some wireless communication and signal processing capability. In
particular, m of these sensors are anchors (or beacons) whose positions are known; and, the
distances between sensors are (approximately) known if and only if the sensors are within a
given radio range, R. The SNL has recently emerged as an important research topic. In
this survey we concentrate on the SNL problem and its connections with EDM , graph
realization (GRL ), graph rigidity (GRD ), and SDP .

Our goal in this survey is to show that these NP-hard problems can be handled elegantly
within the EDM framework, and that SDP can be used to efficiently find accurate solu-
tions for many classes of these problems. In particular, working within the EDM framework
provides strong solution techniques for SNL .

2 Preliminaries, Notation

We work with points (real vectors) p1, . . . , pn ∈ R
r, where r is the embedding dimension of

the problem. We let P T =
[
p1, . . . , pn

]
∈ Mr×n denote the matrix with columns formed from

the set of points. For SNL , P =

[
A
X

]
, where the rows pT

i = aT
i , i = 1, . . .m, of A ∈ Mmr

are the positions of the m anchor nodes, and the rows xT
i = pT

m+i, i = 1, . . . , n − m, of
X ∈ M(n−m)r are the positions of the remaining n − m sensor nodes. We let G = (V, E)
denote the simple graph on the vertices 1, 2, . . . , n with edge set E. Typically, for FPDG the
distances ‖xi − xj‖, i, j ∈ E, are the ones that are known.

The vector space of real symmetric n × n matrices is denoted Sn, and is equipped with
the trace inner product, 〈A, B〉 = trace AB, and the corresponding Frobenius norm, denoted

1We use the bar to emphasize that thse distances are not necessarily exact.
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‖A‖F . More generally, 〈A, B〉 = trace AT B denotes the inner product of two compatible,
general, real matrices A, B, and ‖A‖F =

√
trace AT A is the Frobenius norm. We let Sn

+ and
Sn

++ denote the cone of positive semidefinite and positive definite matrices, respectively. In
addition, A � B and A ≻ B denote the Löwner partial order, A−B ∈ Sn

+ and A−B ∈ Sn
++ ,

respectively. Moreover, A ≥ 0 denotes A nonnegative elementwise. We let En (E when the
dimension is clear) denote the cone of Euclidean distance matrices D ∈ Sn, i.e., the elements
of a given D ∈ En are Dij = ‖pi − pj‖2, for some fixed set of points p1, . . . , pn. We let ei

denote the i-th unit vector, e denote the vector of ones, both of appropriate dimension, and
E = eeT ; R(L),N (L) denotes the range space and nullspace of the linear transformation
L, respectively; L∗ denotes the adjoint of L, i.e., 〈L(x), y〉 = 〈x,L∗(y)〉, ∀x, y; L†, denotes
the Moore-Penrose generalized inverse of L; and A ◦ B = (AijBij) denotes the Hadamard
(elementwise) product of two matrices. Let Mkl denote the space of k × l real matrices;
and let Mk = Mkk. For M ∈ Mn, we let diag M denote the vector in R

n formed from
the diagonal of M . Then, for any vector v ∈ R

n, Diag v = diag ∗v is the adjoint linear
transformation consisting of the diagonal matrix with diagonal formed from the vector v.

We follow the notation in e.g., [70]: for Y ∈ Sn and α ⊆ 1 : n, we let Y [α] denote the
corresponding principal submatrix formed from the rows and columns with indices α. If, in
addition, |α| = k and Ȳ ∈ Sk is given, then we define

Sn(α, Ȳ ) :=
{
Y ∈ Sn : Y [α] = Ȳ

}
, Sn

+(α, Ȳ ) :=
{
Y ∈ Sn

+ : Y [α] = Ȳ
}

,

i.e. the subset of matrices Y ∈ Sn (Y ∈ Sn
+ ) with principal submatrix Y [α] fixed to Ȳ .

Similar notation, En(α, D̄), holds for subsets of En.
The centered and hollow subspaces of Sn (and the offDiag linear operator) are defined

by
SC := {B ∈ Sn : Be = 0}, (zero row sums)
SH := {D ∈ Sn : diag (D) = 0} = R(offDiag ).

(2.1)

The set K ⊂ R
n is a convex cone if R

n
+(K) ⊆ K, K +K ⊆ K. cone (S) denotes the smallest

convex cone containing S, i.e., the generated convex cone of S. A set F ⊆ K is a face of the
cone K, denoted F � K, if

(
x, y ∈ K,

1

2
(x + y) ∈ F

)
=⇒ (cone {x, y} ⊆ F ) .

We write F � K to denote F � K, F 6= K. If {0} 6= F � K, then F is a proper face of K.
For S ⊆ K, we let face (S) denote the smallest face of K that contains S.

For a set S ⊂ R
n, let S∗ := {φ ∈ R

n : 〈φ, S〉 ⊆ R+} denote the polar cone of S. That
Sn

+ = Sn
+

∗ is well known, i.e., the SDP cone is self-polar. Due to the importance of the
SDP cone, we include the following interesting geometric result. This result emphasizes the
difference between Sn

+ and a polyhedral cone: it illustrates the nice property that the first
sum using F⊥ in (2.2) is always closed for any face; but, the sum in (2.3) using span is never
closed. The lack of closure results in problems in duality. Here F c = Sn

+ ∩ F⊥ denotes the
conjugate face of F .
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Lemma 2.1 ([101],[83]) Suppose that F is a proper face of Sn
+ , i.e., {0} 6= F �Sn

+ . Then:

F+ = Sn
+ + F⊥ = Sn

+ + span F c, (2.2)

Sn
+ + span F c is not closed. (2.3)

Further notation is introduced as needed, and summarized in the index beginning at page
47.

3 FPDG and EDM

Distance geometry involves the characterization and study of sets of points based only on
given values of (some of) the distances between pairs of the points. The origins of the
algebra for distance geometry can be traced back to 1896 and the work of Grassmann [52]
and continued in the modern era in e.g. [51, 32, 39]. One of the methods used to study
FPDG is to view the problem using the squared distances, i.e., using a Euclidean Distance
Matrix, EDM . This allows the application of powerful tools from convex analysis and
linear algebra and, more specifically, from Semidefinite Programming, SDP . (This is the
approach we emphasize in this survey.)

Theoretical properties of EDMs can be found in e.g., [10, 42, 19, 50, 56, 65, 73, 90].
This includes characterizations as well as graph theoretic conditions (such as chordality) for
the existence of completions of partial EDMs , i.e., for the EDM completion problem
(EDMC ). More information can be found in the survey article Laurent [73], and more
recently in the book [33]. A discussion on the difficulty in finding efficient algorithms for
EDMC appears in [95]. There are many algorithms that find approximate completions;
e.g., [95, 94, 93] presents results on finding EDM completions based on spectral decom-
positions. The computationally hard part is fixing the rank. Work on finding the closest
EDM to a given symmetric matrix appears in e.g., [48, 104, 2]. (The harder global model
without squared distances but with intervals for the distances, is used in e.g., [76, 77, 105].)

We now present FPDG using the squared distances between the points, the EDM model.
A matrix D = (Dij) ∈ Sn with nonnegative elements and zero diagonal is called a pre-
distance matrix or a dissimilarity matrix. In addition, if there exist points p1, p2, . . . , pn ∈ R

r

such that
Dij = ‖pi − pj‖2

2, i, j = 1, 2, . . . , n, (3.4)

then D is called a Euclidean distance matrix, denoted EDM . The set of EDM matrices
forms a convex cone in Sn, denoted En. This cone is closed, pointed (En ∩−En = {0}), but
has empty interior. Given D ∈ En, then the smallest value of r such that points pi can be
found satisfying (3.4) is called the embedding dimension of D.
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Suppose that we are given a subset of the elements of a pre-distance matrix D, i.e we
are given a partial EDM , D. Then the EDM completion problem (EDMC ) consists
in finding the missing elements of D to complete the EDM , and/or determine that this is
not possible. Equivalently, this means that we have found a set of points for (3.4). Alterna-
tively, suppose that we are given an approximate pre-distance (or partial distance) matrix

D̄ and a symmetric matrix of nonnegative weights W . Then the approximate (nearest)
EDM completion problem can be modelled as, see [64, 4],

min ‖W ◦ (D̄ − D)‖
subject to D ∈ E .

(3.5)

The most common norms for the objective function are the Frobenius and ℓ1 norms. The
magnitude of the weights in W typically come from consideration of the magnitudes of the
known distances and any knowledge of the error/noise, e.g. [17]

Wij :=

{
1√
D̄ij

if the ij-distance is approximately
√

D̄ij

0 otherwise
(3.6)

3.1 Distance Geometry, EDM , and SDP

Let P T =
[
p1 p2 . . . pn

]
∈ Mrn be as defined above in Section 2, where pj, j = 1, . . . , n,

are the points used in (3.4). We assume that P is full column rank r. Let B = PP T . Then
B � 0 is also of rank r. Now, define the linear operators K and De on Sn by

K(B) := De(B) − 2B
:= diag(B) eT + e diag(B)T − 2B
=

(
pT

i pi + pT
j pj − 2pT

i pj

)n
i,j=1

= (‖pi − pj‖2
2)

n

i,j=1

= D.

(3.7)

This illustrates the relationship between pj , P, B, D, i.e., a mapping between En,Sn
+ . Now

let J := I − 1
n
eeT denote the orthogonal projection onto the subspace {e}⊥; and, define the

linear operator

T (D) := −1

2
JoffDiag (D)J, (3.8)

where offDiag (D) replaces the diagonal of D with zeros; see (2.1). The linear operators
K, T are one-one and onto between the centered and hollow subspaces of Sn. In the classical
literature, the linear operator T is only defined on the subspace SH . We extend it to all of
Sn with the addition of the operator (projection) offDiag . This means that we now have a
simple explicit expression for the Moore-Penrose generalized inverse K† = T . See (2.1) and
Prop. 3.1 below.

From the definition of the positive semidefinite matrix B, we see that the elements Bkl

can be used to form the squared distances Dij in (3.4). Therefore, the linear operators
K, T map between the cones Sn

+ , En. The following linear transformation L provides an
alternative to K.
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Lemma 3.1 ([3]) Let X ∈ Sn−1 and partition

L(X) :=

[
0 diag (X)T

diag (X) De(X) − 2X

]
=

[
0 dT

d D̄

]
:= D. (3.9)

Then En = L(Sn−1
+ ) and

L∗(D) = 2{Diag (d) + Diag (D̄e) − D̄}, L†(D) =
1

2
(deT + edT − D̄).

Following are several relationships for K, T acting on Sn. In particular, the adjoint and
generalized inverse of K have explicit, easy to use, expressions.

Proposition 3.1 ([3]) The operators K, T satisfy

K(Sn
+ ) = En ∩ SH = En, T (En) = Sn

+ ∩ SC . (3.10)

The adjoint and generalized inverse of K are, respectively,

K∗(D) = 2(Diag (De) − D), K† = T . (3.11)

Moreover,
R(K) = SH , N (K) = R(De) (3.12)

R(K∗) = R(T ) = SC , N (K∗) = N (T ) = Diag (Rn) (3.13)

Sn = SH ⊕ Diag (Rn) = SC ⊕R(De). (3.14)

3.1.1 Characterizations of the EDMCone and Facial Reduction

It is well known that a nonnegative, hollow matrix, 0 ≤ D ∈ SH , is a EDM if and only if
D is negative semidefinite on {e}⊥, the orthogonal complement of e; see e.g. [90, 50, 56, 92].
We now collect this with other characterizations; see e.g. [4, 34]. First, define the n × n

orthogonal matrix Q :=
[

1√
n
e, | V

]
, QT Q = I, i.e., V T e = 0 and V T V = I. Then the

projection J = I − eeT

n
= V V T . Now define the composite linear transformation

KV (X) := K(V XV T ). (3.15)

The adjoint of KV is
K∗

V (D) = V TK∗(D)V. (3.16)

Let
TV (D) := V TT (D)V = −1

2
V T DV. (3.17)
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Lemma 3.2 ([4])

KV (Sn−1) = SH ,

TV (SH) = Sn−1,

and KV and TV are inverses of each other on these two spaces.

Remark 3.1 To obtain a one-one mapping between D ∈ En and X ∈ Sn
+ , one usually

adds the centering constraint Xe = 0. However, this means that X is restricted to a face
of Sn

+ and is singular; and therefore, the Slater constraint qualification (strict feasibility)
fails for a SDP formulation that uses K. Lemma 3.2 shows that we can reduce the problem
by projecting onto this face, i.e., we facially reduce the problem. The mapping KV reduces
the dimension of the unknown semidefinite matrix and allows for a one-one mapping that
also has strictly feasible points, i.e., there exists X̂ ∈ Sn−1

++ such that KV (X̂) = D̂ ∈ En

and TV (D̂) = X̂. This is essential for interior-point methods and for stability of numerical
methods. (See Section 3.2, below.)

This is a first step for facial reduction. We will see below, Section 5.2.3, that we can
continue further to reduce the size of the problem and even solve the problem.

We now present several characterizations of En. These are used to derive relaxations and
algorithms.

Theorem 3.1 The following characterizations of D ∈ En hold.

1. D ∈ SH ∩Mn
+ ∩ {D ∈ Sn : vT e = 0 =⇒ vT Dv ≤ 0}

2. D = K(B), for some B � 0, with Be = 0, B ∈ Sn

3. D = KV (X), for some X ∈ Sn−1
+

4. D = L(X) :=

[
0 diag (X)T

diag (X) De(X) − 2X

]
, for some X ∈ Sn−1

+

5. D =

[
0 diag (X)T + (sXeT − 2xT

r )
diag (X) + (sXe − 2xr) De(X) − 2X

]
, for some X ∈ Sn−1

+ , where

sX := eT Xe, xr := Xe

6. En = K
(
Sn

+

)
= KV

(
Sn−1

+

)
, TV (En) = Sn−1

+

7. En = SH ∩
(
S⊥

C − Sn
+

)
= SH ∩

(
R(De) − Sn

+

)

Proof.
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1. Item 1 is the classical characterization of En. Proofs are given in e.g. [90, 50, 56, 92].
The result also follows from (3.10) and the fact that T = K†.

2. The linear transformation K is the standard transformation used to map between En

and Sn. Item 2 follows from the definition of K given in (3.7).

3. Item 3 is proved in [4]. Also, it follows from the definition of V and Item 2.

4. Item 4 is given in [1, 3].

5. Item 5 is proved in [3]. It also follows from Item 4 since

K†
V

([
0 (sXeT − 2xT

r )
(sXe − 2xr) 0

])
= 0.

6. Item 6 is proved in [4] and is also a summary of previous items.

7. Item 7 is proved in [34]. We include a self-contained proof that uses our tools developed
above. First we note that cone (E) � Sn

+ and {E}⊥ = SC . From Lemma 2.1 and
Proposition 3.1, we have that

(SC ∩ Sn)∗ = S∗
C + Sn = R(De) + Sn.

Now
En = −(SC ∩ Sn

+ )∗ ∩ SH , from Item 1
= (S⊥

C − Sn
+ ) ∩ SH

= (R(De) − Sn
+ ) ∩ SH , from Proposition 3.1.

We have emphasized several times that we are using squared distances. The advantages
are that we get a convex relaxation if we use EDM and relax the rank. A distance geometry
problem is typically specified by the distances

√
Dij between nodes i, j ∈ V , for edges ij ∈ E.

The solution is the set of points p1, . . . , pn ∈ R
r that satisfy

‖pi − pj‖2 = Dij, ∀ij ∈ E.

In practice, the distances are only known approximately, e.g. upper and lower bounds are
given

lij ≤ ‖pi − pj‖ ≤ uij, ∀ij ∈ E.

See e.g. [75, 78], where the distances (not squared) are used. If the rank constraint is not
relaxed, then it is well known that the FPDG is NP-hard as it is equivalent to the set
partition problem, [46].
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3.2 SDP Relaxation of the EDMC Problem

Given a partial or approximate EDM D̄, we can find the nearest EDM in some norm us-
ing (3.5). However, if the embedding dimensions is fixed, then this is an NP-hard problem in
general, see e.g., [60] for complexity issues related to EDMC . This formulation can be re-
laxed using the characterizations in Theorem 3.1 and not restricting the rank of the optimum
matrix Y . We replace the unknown EDM D̄ using one of the equivalent representations.
For example,

min ‖W ◦ (D̄ −K(Y ))‖2

F

subject to Y ∈ Sn
+ ,

(3.18)

where we have chosen the Frobenius norm in the objective function. Since int Ek = ∅ and K
maps one-one between Ek and the face Sk

+ ∩ SC � Sk
+ , this problem is degenerate, i.e. the

optimal set contains the unbounded set Y ∗ + N (K), for any optimal solution Y ∗. This
means that the Slater constraint qualification fails for the dual problem. The following
smaller dimensional and more stable problem is derived in [4]. Additional equality or upper
and lower bound constraints (in D̄UB, and D̄LB, respectively) can be added using additional
weight matrices WE, WUB and WLB, respectively.

min ‖W ◦ (D̄ −KV (Y ))‖2

F

subject to
WE ◦ KV (Y ) = WE ◦ D̄

WLB ◦ D̄LB ≤ WLB ◦ KV (Y )
WUB ◦ KV (Y ) ≤ WUB ◦ D̄UB

Y ∈ Sk−1
+ .

(3.19)

Here KV is defined in (3.15), and B ≤ C denotes C −B ≥ 0, elementwise. Though we have
a convex relaxation of EDMC , the approximation is generally poor if the optimal solution
has a large rank, e.g., see the estimates in [4, Lemma 2]. Reducing the rank is an NP-hard
problem and related to compressed sensing, e.g., [84, 21].

In Section 5.2.3 we derive recent SDP relaxations of SNL using this approach and show
how to easily obtain low rank solutions.

3.3 Applications of FPDG

The distance geometry problems and, in particular, EDMs , have a seemingly unlimited
number of applications. In this section we present a few of these. It is not our objective here
to present an exhaustive list. Rather, we want to demonstrate to the reader the striking
variety of interesting applications.

A well known application is in molecular conformation problems from biology and chem-
istry. A specific problem of interest is that of determining the structure of a protein given a
(partial or complete) set of approximate pairwise distances between the atoms in the protein.
Understanding the structure of a protein is key because the structure of a protein specifies
the function of the protein, and hence its chemical and biological properties.
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Distances between atoms in a protein can be approximated theoretically using potential
energy minimization, or experimentally using X-ray crystallography or Nuclear Magnetic
Resonance (NMR) spectroscopy. The FPDG arises via the NMR approach to the problem.

NMR spectroscopy is based on the principle that the nucleus of a hydrogen atom has
two spin states. There is a fixed energy separation between the two states, and the spin flips
when a particular frequency is attained. If two atoms are sufficiently close, then their spins
interact and the frequency at which the spin flip occurs shifts. This causes the peaks in each
atom’s spectrum to shift as well. Because the intensity of this effect depends on the distance
between the two atoms, the NMR analysis is able to estimate the distance between the two
atoms. Thus, the outcome of NMR is a set of experimentally estimated distances between
the atoms in a molecule. Given such a set of distances, the problem of interest is to deduce
the three-dimensional structure of the molecule.

However, the NMR data is inexact and sparse. One of the most important problems
in computational biology is the determination of the protein given only the partial inexact
EDM . This problem is also called the molecular distance geometry problem. If the distances
between all pairs of atoms in a molecule are known precisely, then the unique corresponding
EDM D is known. Hence a unique molecular structure can be determined from the points in
the rows of the matrix P ∈ Mnr found using the full rank factorization B = K†(D) = PP T ,
see Theorem 3.1. However, if only a subset of the distances is known and/or the known
distances have experimental errors, then the distances may be inconsistent; and even if they
are consistent, the three-dimensional structure may not be unique. The early work in this
area is presented in the seminal book of Crippen and Havel [32]. There has since been huge
progress in this area, see e.g. [81, 31, 59, 4, 103, 55] and the references therein.

A second application of EDMs we highlight is in the fields of anatomy and anthropology.
This application is due to the use of so-called landmark data to analyze biological forms, in
particular to study the morphological differences in the faces and heads of humans. First,
one defines a set of landmarks on the biological structure; for example, the paper [43] uses 16
standardized soft-tissue facial landmarks that include the pronasale (the nasal apex, or“tip
of the nose”) and the soft-tissue pogonion (the most prominent point on the chin). Second,
one obtains coordinates for each of these landmarks on each subject. Of course, what is
really of interest is the relative position of each of these landmarks on each subject, so
we need a representation that is invariant under translation, rotation, and reflection. The
EDM representation of this data is ideal for this purpose. Finally, the researchers define
various measures to compare two biological structures based on these landmarks. This allows
them to quantify phenomena such as the changes in facial geometry due to growth [20], or
the normal levels of facial asymmetry in humans [43].

Another application of EDMs is in similarity search, a common problem in the areas
of databases and expert systems. The problem of similarity search consists of finding the
data objects that are most similar to a given query object. This problem is of fundamental
importance in applications such as data mining and geographical information systems (GIS).
The objective is to carry out similarity search in an automatic manner, i.e., without manual
intervention.

11



An EDM -based approach to similarity search was proposed recently in [11]. The gist
of this approach is to define a similarity measure between objects. First, each object is
represented as a point in a high-dimensional feature space, where the dimensions correspond
to features of the objects. A numerical coordinate representation table (NCRT) is defined as
a matrix with one row per feature, and one column per object. Then, the similarity between
two objects is defined based on the Euclidean distance between their corresponding points in
the feature space. It is clear that an EDM containing all these distances can be generated
using the NCRT.

Computing the similarities between objects is not a static problem, however. This infor-
mation is then used within some form of automated learning process, and as a consequence
of this learning, the information in the similarity matrix is updated. Now we are faced with
the problem of ensuring that the resulting matrix remains an EDM . Furthermore, the
updated NCRT is also of interest. This leads us right to solving an instance of the FPDG .

A closely related application is in the area of statistical language modelling, where a
problem of interest is to predict the next word in a sentence, given knowledge of the n − 1
previous words. Given a set of sentences, or corpus, we can determine how many words
appear in the corpus. Then we define, for each word, a vector of length equal to the number
of words in the corpus, with each entry of the vector containing the probability that the
corresponding word follows the word for which the vector is defined. These vectors thus
provide a representation of the words in the corpus under consideration.

One problem with this representation is that it is typically extremely large. It is therefore
of interest to transform it into a set of vectors in a space of much smaller dimension that
captures as much of the information as possible. A popular technique to do this is Principal
Component Analysis (PCA). Using EDMs , it is actually possible to do much better.
Blitzer et al. [18] propose to generate a new set of vectors such that two objectives are
attained:

1. vectors representing semantically similar words should be close to each other;

2. vectors representing semantically dissimilar words should be well separated.

The idea in [18] is to pursue both of these objectives via the following SDP :

max
∑

ij Dij

subject to TV (D) � 0
Dij = ‖pi − pj‖2, for all similar vector pairs pi, pj,

(3.20)

where TV is given in (3.17). Thus, if pi and pj lie within some given (small) neighborhood of
each other, then the corresponding element Dij is fixed to their current Euclidean distance.
This achieves the first objective above. Simultaneously, the second objective is achieved by
maximizing a weighted objective function of the non-fixed Dij entries so that other pairs of
words have their vector representations as far apart as possible. A closely related formulation
that also preserves the angles between pairs of vectors was presented in [99].

We briefly mention the application of EDM to graph realization, GRL . Given a simple
graph G with vertices 1, 2, . . . , n and non-negative edge weights {Dij : ij ∈ E}, we call a
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Figure 4.1: An example of three bar frameworks in R
2. Frameworks (a) and (b) are equivalent

and flexible; while framework (c) is rigid.

realization of G in R
d is any placement of the vertices of G in R

d such that the Euclidean
distance between pairs of vertices ij ∈ E is given by the weights Dij. If d is fixed, then
GRL is NP-complete, see Saxe [89] and Aspnes et al. [9]. However, some graph families
admit polynomial-time algorithms [12, 13, 14, 22, 22]. Also, Connelly and Sloughter [29]
show several characterizations of r-realizable graphs for r = 1, 2, 3, including the fact that
G is realizable for r = 3 if and only if it does not contain K5 or K2,2,2 as a minor. The
graph realization problem is discussed in more detail with the SNL problem below. We
conclude by mentioning again that our list of applications here is by no means extensive.
Other applications can be obtained from the citations in our references.

4 FPDG and Bar Framework Rigidity

In many applications of FPDG , one is interested in determining whether or not a given
solution of FPDG is either locally unique, unique in the given dimension, or unique in all
dimensions. These notions of uniqueness have been extensively studied for bar and tensegrity
frameworks under the names rigidity, global rigidity and universal rigidity, respectively.
Eren et al [41] is an excellent paper on the study of network localizations in the context
of bar framework rigidity. In this section we survey some of the known results regarding
the problems of bar framework rigidity. The problems of tensegrity framework rigidity are
beyond the scope of this paper. Hence in the sequel we use the terms “framework” and “bar
framework” interchangeably.

A finite collection of points p1, . . . , pn in R
r which span R

r is called an r-configuration p.
Let G = (V, E) be a simple graph on the vertices 1, 2, . . . , n. A bar framework, denoted by
G(p), in R

r, consists of a graph G together with an r-configuration p, where each vertex i of
G is located at pi. To avoid trivialities, we assume that G is not a complete graph.

Two frameworks G(p) in R
r and G(q) in R

s are said to be equivalent if ‖qi − qj‖=
‖pi − pj‖ for all (i, j) ∈ E, where ‖.‖ denotes the Euclidean norm. The term bar is used to
describe such frameworks because in any two equivalent frameworks G(p) and G(q), every
two adjacent vertices i and j must stay the same distance apart. Thus edges of G can be
thought of as stiff bars and the nodes of G can be thought of as universal joints. See Figure
4.1 for an example of 3 bar frameworks in the plane. Nodes (joints) of the framework are
represented by little circles, while the edges (bars) are represented by line segments.

Two frameworks G(p) and G(q) in R
r are said to be congruent if ‖qi− qj‖= ‖pi−pj‖ for

all i, j = 1, . . . , n. That is, G(p) and G(q) are congruent if r-configuration q can be obtained
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from r-configuration p by applying a rigid motion such as a translation or a rotation in R
r.

In this section we do not distinguish between congruent frameworks.
A framework G(p) in R

r is said to be generic if all the coordinates of p1, . . . , pn are
algebraically independent over the integers. That is, G(p) is generic if there does not exist
a polynomial f of the components of the pi with integer coefficients such that

f((p1)1, . . . , (p1)r, . . . , (pn)1, . . . , (pn)r) = 0.

We begin first by presenting some known results on bar framework rigidity or local
uniqueness.

4.1 Bar Framework Rigidity

A framework G(p) in R
r is said to be rigid (or locally unique) if for some ǫ > 0, there does

not exist any framework G(q) in R
r, which is equivalent to G(p), such that ‖qi − pi‖ ≤ ǫ

for all i = 1, . . . , n. Recall that we do not distinguish between congruent frameworks. If a
framework is not rigid we say it is flexible. For other equivalent definitions of rigidity, and
consequently of flexibility, see [47].

Given a framework G(p), consider the following system of equations:

(pi − pj)
T (p̄i − p̄j) = 0 for all (i, j) ∈ E. (4.21)

Any p̄ = (p̄1, . . . , p̄n) that satisfies (4.21) is called an infinitesimal flex of G(p). We say
that an infinitesimal flex is trivial if it results from a rigid motion of G(p). A framework
G(p) is said to be infinitesimally rigid if it has only trivial infinitesimal flexes. Otherwise,
G(p) is said to be infinitesimally flexible [27, 25, 32, 53, 100].

As the following theorem shows, the notion of infinitesimal rigidity of a framework is
stronger than that of rigidity.

Theorem 4.1 (Gluck [47]) If a bar framework G(p) is infinitesimal rigidity, then it is
rigid.

The converse of the previous Theorem 4.1 is false. However, Asimow and Roth [7] showed
that the notions of rigidity and infinitesimal rigidity coincide for generic bar frameworks.

It is well known [47, 8] that bar framework rigidity is a generic property. i.e., if a generic
framework G(p) in R

r is rigid, then all generic frameworks G(q) in R
r are also rigid.

Given a framework G(p) in R
r with n vertices and m edges, let R be the m× nr matrix

whose rows and columns are indexed, respectively, by the edges and the vertices of G such
that the (i, j)th row of R is given by

[ 0 . . . 0

vertex i︷ ︸︸ ︷
(pi − pj)

T 0 . . . 0

vertex j︷ ︸︸ ︷
(pj − pi)

T 0 . . . 0 ]. (4.22)
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R is called the rigidity matrix of G(p) and obviously, the space of infinitesimal flexes of a
framework is the nullspace of its rigidity matrix R. i.e., an infinitesimal flex of G(p) is just
a linear dependency among the columns of R.

Theorem 4.2 (Asimow and Roth [7]) Let R be the rigidity matrix of a generic bar frame-
work G(p) of n vertices in R

r. Then G(p) is rigid if and only if

rank R = nr − r(r + 1)

2
. (4.23)

Therefore, the rigidity of a generic bar framework can be efficiently determined via ran-
domized algorithms. Next we consider the problem of combinatorial characterization of
generic bar frameworks.

Let G(p) be a generic bar framework in R
1. Then obviously, G(p) is rigid if and only if

G is connected. For generic bar frameworks in the plane we have the following theorem.

Theorem 4.3 (Laman [71] Lovász and Yemini [74]) Let G(p) be a generic bar frame-
work on n vertices in R

2 (n ≥ 2), then G(p) is rigid if and only if

2n − 3 ≤
k∑

i=1

(2|VEi
| − 3),

for every partition of the edge set E of G into nonempty subsets E1, . . . , Ek, where VEi

denotes the set of nodes incident to some edge in Ei.

Thus generic bar framework rigidity in R
2 can also be determined in polynomial time

[44, 54, 72]. Obtaining a combinatorial characterization of generic bar framework rigidity in
dimension 3 or higher is still an open problem.

4.2 Bar Framework Global Rigidity

A framework G(p) in R
r is said to be globally rigid if there does not exist a framework G(q)

in the same space R
r which is equivalent to G(p). Recall that we do not distinguish between

congruent frameworks. Obviously, rigidity is a necessary, albeit not sufficient, condition for
global rigidity of a framework. Framework (c) in Figure 4.1 is rigid but not globally rigid.

A graph G is said to be k vertex-connected if G remains connected after deleting fewer than
k of its vertices. A bar framework G(p) is said to be redundantly rigid if G(p) remains rigid
after deleting any one edge of G. Recently, the problem of global rigidity of bar frameworks
has received a great deal of attention [28, 41, 61, 62]. Hendrickson [58, 59] proved that
if a generic framework G(p) in R

r with at least r + 1 vertices is globally rigid, then the
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graph G = (V, E) is r + 1 vertex-connected and G(p) is redundantly rigid. Hendrickson also
conjectured that r + 1 vertex-connectivity of G and redundant rigidity of G(p) are sufficient
for global rigidity of a generic framework G(p). This conjecture, which is obviously true for
r = 1, was shown by Connelly [26] to be false for r ≥ 3.

Jackson and Jordán [61] proved that Hendrickson’s conjecture is true for r = 2.

Theorem 4.4 (Jackson and Jordán [61], Hendrickson [58]) Given a generic bar frame-
work G(p) in R

2, then G(p) is globally rigid in R
2 if and only if G is either a complete graph

on at most three vertices or G is 3-vertex-connected and redundantly rigid.

Let G(p) be a framework in R
r where G has n vertices and m edges. Associate with each

edge (i, j) of G a scalar ωij . The vector ω = (ωij) in R
m such that

∑

j

ωij(pi − pj) = 0 for all i = 1, . . . , n, (4.24)

is called an equilibrium stress for G(p). Note that if ω is an equilibrium stress for G(p) then
ω belongs to the left null space of R, the rigidity matrix of G(p), i.e., RT ω = 0. Given an
equilibrium stress ω, let S = (sij) be the n × n symmetric matrix such that

sij =






−ωij if (i, j) ∈ E
0 if (i, j) 6∈ E∑

k:(i,k)∈E ωik if i = j.

S is called the stress matrix associated with ω. Connelly [28] gave a sufficient condition, in
terms of S, for a generic framework G(p) in R

r to be globally rigid.

Theorem 4.5 (Connelly [28]) Let G(p) be a given generic bar framework G(p) with n
vertices in R

r; and let S be the stress matrix associated with an equilibrium stress ω for G(p)
such that rank S = n − 1 − r. Then G(p) is globally rigid in R

r.

Connelly also conjectured that the above sufficient condition is also necessary. This
conjecture was later proved to be true by Gortler et al.

Theorem 4.6 (Connelly [28], Gortler et al [49]) Let G(p) be a given generic frame-
work G(p) with n vertices in R

r. Then G(p) is globally rigid in R
r if and only if there exists

a stress matrix S associated with an equilibrium stress ω for G(p) such that rank S = n−1−r.
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Figure 4.2: An example of two frameworks in R
2. The framework in (a) is universally rigid

while the framework in (b) is globally rigid but not universally rigid.

4.3 Bar Framework Universal Rigidity

A framework G(p) in R
r is said to be universally rigid if there does not exist a framework

G(q) in R
s, for any s, 1 ≤ s ≤ n − 1, which is equivalent to G(p). It immediately follows

that universal rigidity implies global rigidity but the converse is not true. The framework
(b) in Figure 4.2 is globally rigid in R

2 but it is not universally rigid.
Alfakih [6] presented a sufficient condition for generic universal rigidity of bar frameworks

and conjectured that this condition is also necessary. This condition is given in terms of the
Gale matrix Z of the configuration p, (See page 17, below.) As it turns out, the condition
can also be equivalently given in terms of the stress matrix S since Z and S are closely
related as will be shown at the end of this section.

Let G(p) be a given framework with n vertices in R
r and let e denote the vector of all

1’s in R
n. Consider the (r + 1) × n matrix

[
P T

eT

]
=

[
p1 p2 . . . pn

1 1 . . . 1

]
.

Recall that p1, . . . , pn are not contained in a proper hyperplane in R
r, i.e., the affine space

spanned by p1, . . . , pn has dimension r. Then r ≤ n− 1, and the matrix

[
P T

eT

]
has full row

rank. Let r̄ = n− 1− r and for r̄ ≥ 1, let Λ be the n× r̄ matrix whose columns form a basis

for the nullspace of

[
P T

eT

]
. Λ is called a Gale matrix corresponding to P ; and the ith row

of Λ, considered as a vector in R
r̄, is called a Gale transform of pi [45]. The Gale transform

plays an important role in the theory of polytopes. We take advantage of the fact that Λ is
not unique to define a special sparse Gale matrix Z which is also more convenient for our
purposes.

Let us write Λ in block form as

Λ =

[
Λ1

Λ2

]
,

where Λ1 is r̄× r̄ and Λ2 is (r +1)× r̄. Since Λ has full column rank, we can assume without
loss of generality that Λ1 is non-singular. Then Z is defined as

Z := ΛΛ1
−1 =

[
Ir̄

Λ2Λ1
−1

]
. (4.25)
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Let ziT denote the ith row of Z then it readily follows that z1, z2, . . . , zr̄, the Gale transforms
of p1, p2, . . . , pr̄ respectively, are simply the standard unit vectors in R

r̄.

Theorem 4.7 [Alfakih [6]] 2 Let G(p) be a generic bar framework with n vertices in R
r for

some r ≤ n−2, and let Z be the Gale matrix corresponding to G(p). Recall that r̄ = n−1−r.
Then the following is a sufficient condition for G(p) to be universally rigid:

∃ r̄ × r̄ symmetric positive definite matrix Ψ : ziT Ψzj = 0, ∀(i, j) 6∈ E, (4.26)

where ziT is the ith row of Z.

Conjecture 4.1 (Alfakih [6]) Let G(p) be a given generic bar framework in R
r with n

vertices for some r ≤ n − 2, and let Z be the Gale matrix for G(p). If G(p) is universally
rigid then Condition (4.26) holds.

In [5, Example 3.1] it is shown that this conjecture is false if the framework G(p) is not
generic.

4.4 Gale Matrices and Stress Matrices

As we mentioned earlier, the Stress matrix S of a bar framework G(p) is closely related to
the Gale matrix Z corresponding to G(p).

Lemma 4.1 (Alfakih [6]) Given a framework G(p) with n vertices in R
r, let Z be the Gale

matrix corresponding to G(p) and recall that r̄ = n−1−r. Further, let S be the stress matrix
associated with an equilibrium stress ω for G(p). Then

S = ZΨZT for some r̄ × r̄ symmetric matrix Ψ. (4.27)

Furthermore, let ziT be the ith row of Z. If Ψ′ is any r̄ × r̄ symmetric matrix such that
ziT Ψ′zj = 0 for all (i, j) 6∈ E, then ZΨ′ZT is a stress matrix associated with an equilibrium
stress ω for G(p).

The following corollary obtained by Connelly follows immediately from the previous
lemma.

Corollary 4.1 (Connelly [25]) Let S be the stress matrix associated with an equilibrium
stress ω for framework G(p) with n vertices in R

r, then

rank S ≤ r̄ = n − 1 − r (4.28)

2Theorem 4.7 was also obtained by Connelly in an unpublished manuscript.
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In light of Lemma 4.1, we can express the sufficient conditions for global rigidity and for
universal rigidity of a bar framework in terms of either the stress matrix S or the Gale matrix
Z. Thus Theorems 4.6 and 4.7 and Conjecture 4.1 can be stated equivalently as follows:

Theorem 4.8 Let G(p) be a given generic framework G(p) with n vertices in R
r for some

r ≤ n − 2, and let Z be the Gale matrix corresponding to G(p). Recall that r̄ = n − 1 − r.
Then G(p) is globally rigid in R

r if and only if

∃ r̄ × r̄ symmetric non-singular matrix Ψ : ziT Ψzj = 0, ∀(i, j) 6∈ E, (4.29)

where ziT is the ith row of Z.

Theorem 4.9 Let G(p) be a generic framework with n vertices in R
r. Then G(p) is univer-

sally rigid if there exists a positive semi-definite stress matrix S associated with an equilibrium
stress ω for G(p) such that rank S = r̄ = n − 1 − r.

Conjecture 4.2 Let G(p) be a given generic framework in R
r with n vertices. If G(p) is

universally rigid then there exists a positive semi-definite stress matrix S associated with an
equilibrium stress ω for G(p) such that rank S = r̄ = n − 1 − r.

5 Algorithms Specific to SNL

One goal in this survey is to show that EDM is an elegant and powerful tool for looking
at FPDG problems. There are many advantages to using the well studied linear operators
K, T , e.g., Proposition 3.1. Many algorithms for EDM can be applied to FPDG problems
and, in particular, to the active area of research of SNL , the problem outlined in Section 1.
Wireless sensor networks have many applications, e.g. in monitoring physical or environmen-
tal conditions (temperature, moisture, sound, vibration, pressure, battlefield surveillance,
etc.), home automation, hospital patients, traffic control, etc. They are often referred to as
smart dust as they can be used to dust e.g. farmland or chemical plant explosions, etc.

A quote: “Untethered micro sensors will go anywhere and measure anything
- traffic flow, water level, number of people walking by, temperature. This is
developing into something like a nervous system for the earth, a skin for the
earth. The world will evolve this way.” (See 21 Ideas for the 21st Century,
Business Week. 8/23-30, 1999)
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This research area has several workshops and conferences each year, e.g. MELT 2008, and
many publications, e.g., International Journal of Sensor Networks; recent related theses and
books include: [57, 85, 33, 24, 63, 66, 23, 79, 97]. Research groups include CENS at UCLA
and Berkeley WEBS. The algorithmic side has advanced quickly. From solving problems
with n = 50 sensors with low accuracy, current codes can quickly solve problems with
100, 000s of sensors to high accuracy:

www.math.nus.edu.sg/˜mattohkc/SNLSDP.html
www.math.uwaterloo.ca/˜ngbkrisl/Publications files/SNLSDPclique ver01.tar

The algorithms for SNL often use minor modifications that identify anchors with sen-
sors. In fact, see [69, 35, 36, 70], a set of anchors simply corresponds to a given fixed clique
for the graph of the EDM problem. It can be advantageous to delay using the difference
between anchors and sensors and instead solve the resulting EDM problem. Then, starting
from the obtained solution, a best rank -r approximation is found. Finally, in order to get
the sensors positioned correctly, the approximation is rotated to get the anchors (approxi-
mately) back into their original positions. In fact, it is shown in [70] that it is advantageous
to also delay completing the distances, see Section 5.2.3, below.

In the literature there are many algorithms that are specific to SNL and are not based
on EDM . In these algorithms, the presence of the anchors plays a fundamental role, and
in some of them their position influences the quality of the solutions obtained. In addition, a
significant property that makes SNL unique from other FPDG problems is its distributed
nature, i.e., even for many anchor free problems, distances between sensors are known only
locally.

The SNL problem presents three main difficulties. It is a nonconvex problem, and in
real applications it requires the localization of a large number of sensors where, in addition,
the measured distances are noisy. Therefore, the algorithms proposed in the literature on
the one hand introduce convex relaxations of SNL , where the constraints are e.g. linear,
semidefinite, conic, or polynomial; and, on the other hand they define distributed, rather
than centralized, approaches to handle the large sizes of problems arising from real networks.
And, finally, they try to find a nearest realization of the points using a measure related to a
reasonable error model.

Historically, [37] is one of the early papers based on solving a convex relaxation of SNL .
In particular, the authors use convex (SDP) constraints to model the constraints for the
proximity between sensors (nodes) that are within radio range. Let xi, xj ∈ R

r be two
sensors that communicate so that their distance apart is available, i.e., they must be within
the radio range R. Then, the SDP constraint

‖xi − xj‖ ≤ R ⇔
(

R Ir xi − xj

(xi − xj)
T R

)
� 0 (5.30)

must hold. As an alternative, the true distance between the two sensors may be used if
available.
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A different convex constraint is obtained by considering information on the angles between
transmitters in the case of sensor nodes with laser transmitters and receivers that scan
through some angle. The receiver first rotates its detector coarsely, until it gets a signal;
and then it rotates finely to get the maximum strength signal. The angle at which the best
signal is obtained provides an estimate of the angle to the transmitter and a vague estimate
of the maximum distance between receiver and transmitter. This results in three linear,
LP , constraints: two to bound the angle; and another one to bound the distance. Any
combination of the SDP and LP constraints for each sensor can be used in principle to get
an approximate location of the nodes. In [37], the authors consider separately the problem
obtained by including only the radio range constraints, and then the problem obtained by
considering only the angle derived LP constraints. The first set of constraints (5.30) can
be solved using a second order cone programming solver, the other set uses an LP solver.
A linear objective function is introduced and its choice is exploited in order to bound the
feasible set with a rectangle parallel to the axes. In the computational tests, the network
is solved many times, each time adding an anchor, until a maximum number of anchors is
reached. The performance is evaluated by using the mean error from the real positions. The
results show that this approach is influenced by the position of the anchors; indeed, the
performance improves if the anchors are on the boundary of the feasible set, i.e. when all
the localized sensors are within the convex hull of the anchors.

The importance of [37] also lies in providing the first distributive approach and in in-
troducing the idea of dividing a large network into smaller subnetworks on the basis of
connectivity information. Other papers that use a distributed approach for SNL include
[63, 22, 86, 88]. This idea has been exploited and further developed by Ye and his coauthors
in [16, 12, 13, 14, 91, 98]. Their approach is termed the Biswas-Ye (B−Y ) SDP relaxation
and is used as well in e.g., [82, 67, 68]. The above methods use localization near anchors. A
distributed approach based on a natural division using just cliques and independent of the
anchors is given in [70], see Section 5.2.3.

5.1 Biswas-Ye SDP Relaxation, EDMC , and Facial Reduction

The B−Y SDP relaxation of SNL (see the discussion in Section 5 above and (5.35)
below) is used in many algorithms for solving SNL problems. Therefore, it is of inter-
est to understand its relationship with the classical relaxations based on EDMC . The
B−Y relaxation can be derived directly from the definitions, e.g., [15]. Alternatively, we
can use the approach in [69, 35, 70] and derive this relaxation from the EDM framework. In
fact, we now show that the B−Y relaxation can also be obtained as a restricted second step
in facial reduction for the EDM relaxation, following on the one for centering in Remark
3.1. This second step is based on the fact that the anchors form a clique in the graph of the
SNL (corresponding to a principal submatrix in the EDM D) with given embedding di-
mension r. Therefore, the corresponding principal submatrix of K†(D) has rank restricted to
at most r+1. Lemma 5.1 and Remark 5.1, below, provide the details as well as a comparison
between the B−Y relaxation and EDMC .

If we ignore the anchors (and, temporarily ignore the upper and lower bounds) we can use
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the relaxation in (3.19), where the given approximate (incomplete) EDM D̄ is approximated
by KV (Y ) = K(V Y V T ), Y ∈ Sn−1

+ . However, we have an additional constraint to make use
of, i.e. we know the distances for the clique of anchors. This allows for a facial reduction of
SNL . We first give the basic result for facial reduction for EDMC .

Theorem 5.1 ([35, 70]) Let D ∈ En, with embedding dimension r. Suppose that D[1 :
k] ∈ Ek has embedding dimension t; and let B := K†(D[1 : k]) = ŪBSŪT

B , where ŪB ∈
Mk×t, ŪT

B ŪB = It, and S ∈ St
++. Furthermore, let UB :=

[
ŪB

1√
k
e
]
∈ Mk×(t+1), U :=

[
UB 0
0 In−k

]
, and let

[
V UT e

‖UT e‖

]
∈ Mn−k+t+1 be orthogonal. Then

faceK† (En(1 :k, D[1 :k]) =
(
USn−k+t+1

+ UT
)
∩ SC = (UV )Sn−k+t

+ (UV )T . (5.31)

Theorem 5.1 shows that if we know the distances for a clique of cardinalty k with embed-
ding dimension t, then we can reduce the size of the matrix variable in the SDP representation
of the EDM from n to n− k + t. Now suppose that we are given an SNL problem, i.e. we
are given the position of the anchors aj , j = 1, . . . , m, and a partial EDM D̄, i.e. some of
the elements are unknown, and, for pairs of indices in two given index sets Na, Nx, we know
the exact squared Euclidean distance values: the anchor-sensor values D̄ij between ai and
xj for (i, j) ∈ Na and the sensor-sensor values D̄ij between xi and xj for (i, j) ∈ Nx. We
wish to find a realization of x1, . . . , xn−m ∈ R

r such that

‖ak − xj‖2 = D̄kj, ∀(k, j) ∈ Na

‖xi − xj‖2 = D̄ij , ∀(i, j) ∈ Nx.
(5.32)

Furthermore, there exist lower and upper bounds on some of the unknown distances between
sensors and between sensors and anchors, i.e. lower bounds rkj for anchor-sensors (k, j) ∈ La,
lower bounds rij for sensor-sensors (i, j) ∈ Lx; and, upper bounds r̄kj for anchor-sensors
(k, j) ∈ Ua, and upper bounds r̄ij for sensor-sensors (i, j) ∈ Ux. The model becomes

‖ak − xj‖2 = D̄kj ∀(k, j) ∈ Na

‖xi − xj‖2 = D̄ij ∀(i, j) ∈ Nx

‖ak − xj‖2 ≥ rkj ∀(k, j) ∈ La

‖xi − xj‖2 ≥ rij ∀(i, j) ∈ Lx

‖ak − xj‖2 ≤ r̄kj ∀(k, j) ∈ Ua

‖xi − xj‖2 ≤ r̄ij ∀(i, j) ∈ Ux.

(5.33)

Recall the description of the SNL problem in Section 2. The matrix P of nodes is partitioned

as P =

[
A
X

]
, where the position of the anchors pi = ai, i = 1, . . .m, are the columns of

AT ∈ Mrm; and the unknown positions of the sensors pm+i = xi, i = 1, . . . , m − n, are the
columns of XT ∈ Mr(n−m).
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Note that the two terms ‖ak − xj‖2 and ‖xi − xj‖2 in (5.32) can be expressed as

‖ak − xj‖2 = (aT
k − eT

j )

(
Ir XT

X XXT

)(
ak

−ej

)

‖xi − xj‖2 = (ei − ej)
T XXT (ei − ej).

(5.34)

In Biswas-Ye [15], problem (5.32) is modelled using the equivalent (5.34) and is formulated
as the following SDP feasibility problem: find a symmetric matrix Z ∈ Sn−m+r such that

(aT
k − eT

j )Z

(
ak

−ej

)
= D̄kj, ∀(k, j) ∈ Na

(ei − ej)
T Y (ei − ej) = D̄ij, ∀(i, j) ∈ Nx

Z =

(
Ir XT

X Y

)
∈ Sn−m+r

+ .

(5.35)

We emphasize that this SDP solves a EDMC problem, but, it fixes the positions of the
anchors explicitly. This SDP relaxes the equality Y = XXT to Y � XXT ; equivalently,

relaxing to Z =

[
I XT

X Y

]
� 0. The rows of the X part of the resulting Z are used as the

approximation of the positions of the sensors.
Note that the original P satisfies

0 � PP T =

[
AAT AXT

XAT XXT

]
=

[
A 0
0 I

] [
I XT

X Y

] [
A 0
0 I

]T

, with Y = XXT . (5.36)

However, if the Y part of the Z found in (5.35) has rank larger than the embedding di-

mension r, then Z cannot be factored as

[
I
X

] [
I
X

]T

. Therefore, it is not clear that the

rows of X yield the best approximation for the localization of the sensors. For example,
a better approximation might be to use the spectral decomposition of the right-handside

in (5.36), i.e. the spectral decomposition of

[
A 0
0 I

]
Z

[
A 0
0 I

]T

. One can choose the r

eigenvectors vi corresponding to the largest r eigenvalues λi to form the approximation
P̄ =

[
v1 . . . vr

]
Diag (λ). In addition, it may be better not to fix the I part of Z, i.e. it

may be better to allow the anchors to move during the approximation process. (We amplify
on this below.)

Now let

UA ∈ Mm×r and R ∈ Mr satisfy R(UA) = R(A), UA = AR−1. (5.37)

Define the linear transformation KUA
(Z) : Sn−m+r → Sn by

KUA
(Z) := K

([
UA 0
0 In−m

]
Z

[
UA 0
0 In−m

]T
)

. (5.38)

We can define the weight and bound matrices in (3.19) to coincide with the index sets and
bounds in (5.33). We now combine (5.36) with Theorem 5.1. This yields the following
comparison of the feasible sets in the B−Y and EDM relaxations.
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Lemma 5.1 Define the nonnegative weight matrix 0 ≤ WE ∈ Mn by

(WE)ij :=

{
1 if ij ∈ Na ∪ Nx

0 otherwise

where Na, Nx are defined as in (5.35). Similarly, define the lower and upper bound weight
matrices WLB, WUB. Let UA be defined as in (5.37). Define the feasible sets

FEDM
UA

:=





Z :

WE ◦ KUA
(Z) = WE ◦ DE

WLB ◦ DLB ≤ WLB ◦ KUA
(Z)

WUB ◦ KUA
(Z) ≤ WUB ◦ DUB

Z ∈ Sn−m+r
+





(5.39)

and

FBY
A :=






Z :

WE ◦ KA(Z) = WE ◦ DE

WLB ◦ DLB ≤ WLB ◦ KA(Z)
WUB ◦ KA(Z) ≤ WUB ◦ DUB

Z =

[
I XT

X Y

]
∈ Sn−m+r

+






(5.40)

Then the feasible sets FEDM
UA

and FBY
A correspond to the EDM and B−Y relaxation, re-

spectively. Moreover,

Z ∈ FBY
A =⇒

[
R 0
0 I

]
Z

[
R 0
0 I

]T

∈ FEDM
UA

. (5.41)

Proof. That FEDM
UA

corresponds to the SDP relaxation follows from the facial reduction
in Theorem 5.1. That FBY

A is the B−Y relaxation follows upon expanding the terms.
The inclusion in (5.41) follows upon expanding the right-hand side.

Remark 5.1 Lemma (5.1) illustrates the benefits and drawbacks of the two relaxations.
For both relaxations, the quality of the relaxation results from considering the quality of

the approximation Y ≈ XXT , see e.g., the discussion in Section 5.1.2. Therefore, if we
replace the objective functions in Lemma 5.1 with the convex function trace (ZY − ZXZT

X),
where ZY , ZX are the appropriate blocks of the unknown matrix Z, then we get a comparison
of the strength of the relaxations in the case that the weight matrix W = 0, i.e. in the case
that only exact distances are considered.

If we choose an appropriate objective value based on minimizing an appropriate error
model, then the first relaxation using EDMC provides a better solution for the objective
value, i.e. it is a better least squares approximation. However, the optimum may have a
large rank and the rank r approximation may result in a poor approximation. The Biswas-Ye
relaxation fixes the upper r dimensional block of Z to I. This has the effect of fixing the
anchors. (Since typically r ∈ {2, 3} this reduction in variables is small.) The optimum in
the Biswas-Ye relaxation immediately yields an approximation X∗

B−Y for the sensors with
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the correct rank. There is no need to find a best rank-r approximation or the rotation Q.
However, restricting this rank during the relaxation may result in a larger objective value.

The tests in [35] show empirically that the relaxation using EDMC is usually better on
randomly generated problems, i.e. treating the anchors as sensors in the relaxation, using
a best rank-r approximation and then rotating the sensors back so the anchors are as close
as possible to their original position generally provides a better estimate for the sensors,
compared to fixing the anchors throughout the relaxation.

5.1.1 Unique Localizability

The notion of localizability is discussed in e.g., [40, 79]. In contrast to using the EDMC approach
outlined in Section 5.1 and Lemma 5.1, localizability is based on finding the location of a
sensor using neighbouring anchors, i.e. specifically concentrating on the properties of the
anchors. Once a sensor’s location is found, it becomes an anchor. Results in [40] provide con-
ditions that guarantee that all the sensors can be localized and also discuss the expense/time.
(This localizability is related to the geometric build-up discussed below.)

In [91], the authors introduce the notion of a uniquely localizable problem, i.e., (5.32) is
uniquely localizable if it cannot have a non-trivial localization (i.e., a localization different
from the one obtained by setting xj = (x̄j , 0), j = 1, . . . , n − m where x̄j is the realization
of sensor j in R

r) in some higher dimensional space R
h, with h > r. (The anchors are

augmented to

(
ak

0

)
∈ R

h, k = 1, . . . , m.)

If the network is connected, the authors in [91] prove that the solution matrix Z of Prob-
lem (5.40) satisfies Y = XXT if and only if Problem (5.32) is uniquely localizable. Therefore
if the original problem (5.32) is uniquely localizable the solution of the SDP relaxation (5.40)
correctly localizes all the sensors, and it can be computed in polynomial time.

The condition of unique localizability (or realizability) of a graph is then related to
rigidity theory in [91]. Let G′ = (V, E) be the graph having n nodes corresponding to the
sensors and anchors, an edge for each pair (i, j) ∈ Na ∪ Nx, i, j ∈ {1, . . . , n} and an edge
for each pair (k, l), with k, l ∈ {1, . . . , m}, k 6= l. In practice, this graph is obtained from
the original one by adding the edges connecting the anchors. In [91] the authors prove that,
assuming that there are sufficient anchors, problem (5.32) is uniquely localizable if and only
if the corresponding graph G′ is globally rigid.

The notion of unique realizability, although very useful, is not stable under perturbation.
For this reason the notion of strong localizability is introduced in [91]. Strong localizability
requires that the optimal solution of the dual of problem (5.40) has rank n−m. This notion
can be related to the linear independence of a certain system of linear equations, and it
has the desirable property that if a graph contains a strongly localizable subgraph, then the
SDP solution of (5.40) correctly localizes all the sensors in the subgraph.
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5.1.2 Noise in the Data

All the results in [91] assume that problem (5.32) is feasible, i.e that all the distances are
exact. However in practice both distances and lower and upper bounds are noisy, so that
(5.32) (or (5.33)) may be infeasible. For this reason, in [15] an appropriate objective function
is used to modify the relaxation (5.33):

min trace (J(W ◦ (C+ + C−))) + trace (J(WLB ◦ B−)) + trace (J(WUB ◦ B+))
s.t. W ◦ (KA(Z) − C+ + C−) = W ◦ D̄

WLB ◦ (KA(Z) + B−) ≥ WLB ◦ DLB

WUB ◦ (KA(Z) − B+) ≤ WUB ◦ DUB

Z =

[
I XT

X Y

]
� 0

B+, B−, C+, C− ≥ 0

(5.42)

If the number of known distances and number of variables are the same, we have accurate
distances and linearly independent constraints, the bound constraints are feasible, and the
optimal value of (5.42) is zero, then (5.42) has a unique solution that is proven to localize
the sensors exactly, see [15]. In the general case where the distances are noisy, a probabilistic
analysis is carried out in [15], where each xj is considered as a random variable x̃j due to the
errors in the distances. Under this interpretation, the solution of problem (5.42) provides
the first and second moment information on x̃j , for all j. In particular, given the solution

Z̄ =

(
I X̄T

X̄ Ȳ

)

of (5.42), the quantity
Ȳ − X̄X̄T

represents the covariance matrix of the random variable x̃j , j = 1, . . . , n, and therefore the
quantity

trace
(
Ȳ − X̄X̄T

)
=

n∑

j=1

(Ȳjj − ‖x̄j‖2)

is a measure of the quality of the distances, while the individual trace

Ȳjj − ‖x̄j‖2 (5.43)

can be helpful to detect distance measure errors of single sensors.
The case of noisy distances is again considered in [12]. The authors introduce upper

and lower bounds on the distances that represent confidence intervals of the measurements.
Therefore problem (5.32) is formulated as the problem of finding an X such that:

Dl
kj ≤ ‖ak − xj‖2 ≤ Du

kj ∀(k, j) ∈ Na

Dl
ij ≤ ‖xi − xj‖2 ≤ Du

ij ∀(i, j) ∈ Nx
(5.44)
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where [Dij, D̄ij] represents the confidence interval for the squared distance Dij . Its SDP relaxation

is the problem of finding Z ∈ S(n+2) such that

W ◦ D ≤ W ◦ KA(Z) ≤ W ◦ D̄

Z =

[
I XT

X Y

]
� 0.

(5.45)

If the distance measurements are exact and the sensor network is uniquely localizable, then
the SDP relaxations provide the exact localization. In case of noise, the model (5.45)
provides a central solution that is the mean of all the SDP solutions. However, if the noise
level is too high the results obtained by the relaxations can be unsatisfactory.

In [13], two different formulations of the sensor localization problem are considered. The
first one corresponds to minimizing the sum of the absolute errors in the localization, namely

min
X

∑

(i,j)∈Nx

γij|‖xi − xj‖2 − D̄ij| +
∑

(k,j)∈Na

γkj|‖ak − xj‖2 − D̄kj|. (5.46)

The second one corresponds to the sum of squared errors:

min
X

∑

(i,j)∈Nx

γ2
ij

(
‖xi − xj‖2 − D̄ij

)2
+

∑

(k,j)∈Na

γ2
kj

(
‖ak − xj‖2 − D̄kj

)2
. (5.47)

In both formulations the weights γij and γkj can be used to exploit the available infor-
mation, if any, on the reliability of the measures. By relaxing problem (5.46), the following
SDP is obtained

min trace (J(Γ ◦
∣∣W ◦ (KA(Z) − D̄)

∣∣))

s.t. Z =

[
I XT

X Y

]
� 0.

(5.48)

While problem (5.46) is relaxed to

min
{

trace (J(Γ ◦
(
W ◦ (KA(Z) − D̄)

)2
))
}1/2

s.t. Z =

[
I XT

X Y

]
� 0

(5.49)

where Z as usual is given in (5.35). Error bounds depending on the error in the distances are
derived in [13] for both of these formulations, and it is empirically shown that these bounds
are quite tight. Furthermore, in [13] a different objective function is considered, where a
regularization term is introduced. The effect of this term should be to reduce the problem of
crowding. In fact, when the higher rank solution of one of the SDP problems is projected
on R

r, it often happens that the sensors get crowded together because a large contribution
to the distances between two points could come from an ignored dimension. The idea is then
to penalize crowding from the start, by subtracting from the objective function of problem
(5.48) the term

λ〈I − aaT , Z〉, (5.50)
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where a =
[
e/(n + m)

∑m
k=1 ak/

√
n + m

]
, and λ > 0 is a regularization parameter. The

heuristic choice of λ used in [13] is

λ∗ = trace (J(Γ ◦
∣∣W ◦ (KA(Z∗) − D̄)

∣∣))/
〈
I − aaT , Z∗〉,

where Z∗ is the optimal solution of problem (5.48) without the regularization term. Again,
the solution obtained by solving problem (5.48) with or without the regularization term can
be refined by applying a gradient descent method to the smooth problem

min
X∈Mn×d

f(X) =
∑

(i,j)∈Nx

γ2
ij

(
‖xi − xj‖ − D̄ij

)2
+

∑

(k,j)∈Na

γ2
kj

(
‖ak − xj‖ − D̄kj

)2
. (5.51)

Also in this case each sensor localization is moved along the negative gradient direction of
f(X). In presence of high noise a combination of the regularization and gradient method
yields a good accuracy in the solution.

5.2 Distributed Algorithms

The bottleneck for the SDP relaxations has been the large dimension and low accuracy of
the problems that can be solved. For this reason a distributed SDP algorithm was recently
developed in [63, 22] and further refined in [16] and [12]. The idea is to partition the anchors
in many clusters depending on their physical position, and then each unpositioned sensor is
assigned to a cluster whenever it is directly connected to an anchor in the cluster. In this
way, a sensor can be assigned to more than one cluster, and some sensors can be unassigned.
The SDP problem corresponding to each cluster is solved separately, and this can be done
in an efficient way, since the size of the cluster is kept below a certain threshold. After solving
each cluster the quality of localization of each unknown sensor is evaluated by considering
a suitable error measure: in [16] the trace error measure (5.43) is considered, while in [12] a
different error measure is introduced:

LDMEj =

∑

i∈Nj
x

(‖xi − xj‖ − D̄ij)
2 +

∑

k∈Na

(‖ak − xj‖ − D̄kj)
2

|N j
x| + |Na|j

, (5.52)

where i ∈ N j
x if (i, j) ∈ Nx and k ∈ N j

a if (j, k) ∈ Na. If the considered error measure is
below a certain threshold, the sensor becomes an anchor and the process is reiterated.

In [16] the SDP model used for the k-th subproblem is:

min trace (J(Wk ◦ B))
s.t. Wk ◦ KA(Z) = Wk ◦ D

W̄k ◦ KA(Z) ≥ RW̄k ◦ J

Z =

[
I XT

X Y

]
� 0, B ≥ 0

(5.53)
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where Wk has positive weights corresponding to the subset of known distances included in the
subproblem, and W̄k has positive weights corresponding to the subset of unknown distances
between sensors and anchors considered in the subproblem.

In solving the SDP model for each cluster, many of the ”bounding away” constraints,
namely the constraints between two sensor that do not communicate, are often redundant
or not active. For this reason a strategy of constraint generation is used. First only a subset
of equality and inequality constraints is added and then the violated ones, if any, are added
to the model and it is solved again with a ”warm start” solution. This strategy considerably
speeds up the solution of problem (5.53) since in general the number of iterations needed to
get a feasible optimal solution is small. One advantage of this distributed strategy is that
the error does not propagate throughout the whole network, but remains in the cluster.

In [12] after the distributed method has produced a localization, the gradient based
method is applied to the whole network in order to improve the solution. Different algo-
rithms are implemented, depending on which SDP model is used and whether or not there
exists a local gradient based phase. For problems with low noise and low radio ranges, the
SDP model (5.58) combined with a gradient based method is better, while for situations
where there is more noise the SDP model by itself (5.45) gives a better accuracy. In this
approach, the position of the anchors plays an important role. On the one hand, as usual,if
the anchors are positioned on the boundary of the feasible set, the quality improves, while if
the anchors are in the interior to get a good localization it is necessary to have a high con-
nectivity (i.e a high number of anchors or a large radio range for each sensor). On the other
hand, since each cluster is built on the basis of the physical positions of the anchors, the
approach proposed in [16] and [12] works well only if the anchors are uniformly distributed
in the search space.

5.2.1 SPASELOC

To overcome the drawback of poorly positioned anchors, a different distributed algorithm is
proposed in [22], called SPASELOC. In particular, in [22], the subsensors and subanchors for
each subproblem are chosen dynamically according to some specific rules. In this way, the
resulting subproblems may have different dimensions, but always below a certain maximum
value. The algorithm fixes the maximum number of unlocalized sensors to be included
in the considered subproblem. During the algorithm whenever a sensor is localized with
a sufficient accuracy, it is labelled as localized. If the accuracy is higher than a certain
threshold, then it becomes an acting anchor, i.e., it is treated as an anchor for the rest of
the iterations. All the acting anchors have assigned a certain level depending on what kind
of anchors have been used to localize them. The original anchors are of level 1. In general,
the lower the level the higher the reliability of the acting anchor. The choice of included
subsensors is based first on the number of connected anchors they have and then on the level
of connected anchors. The subsensors connected to at least three anchors are considered first.
To localize the ones connected to less than two anchors some geometric heuristics are used.
The subsensors not connected to anchors are classified as outliers. Not all the candidate
anchors are included in the subproblem because adding too many anchors would increase
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the number of distance constraints, increasing the time needed to solve the SDP problem
and introducing some redundancy. However, in conditions of high noise, a large number of
anchors improves the quality of the solution, so there is a trade off. In choosing the anchors in
each subproblem, the original anchors have higher priority. Furthermore, a condition of linear
independence between anchors is introduced, and its evaluation requires the computation of
a QR factorization of a suitable matrix. The algorithm favors the independent anchors since
they minimize the redundant information.

For each subproblem the SDP relaxation (5.42) is considered where the upper bound
constraints are removed, namely WUB = 0. As for the lower bound constraints, three
strategies are implemented:

(i) Problem (5.42) is solved setting WLB = 0

(ii) First, problem (5.42) is solved for WLB = 0 and a certain Ẑ is found, and then it is

solved again including only the inequality constraints that are violated by Ẑ.

(iii) Problem (5.42) is solved first with WLB = 0 and then it is solved again adding each
time the violated inequality constraints until they are all satisfied.

The strategy of adding violated inequalities increases the solution time and not always gives
better solutions. On the other hand, using the geometric heuristics to localize sensors that
are connected to less than three anchors, greatly improves the quality of the solution.

It turns out that in general algorithm SPASELOC finds a better localization than the full
SDP approach, and this derives from the strategy of building each subproblem considering
subsensors that are connected to at least three anchors. This makes often exact the solution
of the SDP relaxation of the subproblem. Furthermore, SPASELOC is less sensitive to
the number of anchors in the network, and if the number of anchors is more than 10%
of the nodes of the network, there is no improvement derived from adding more anchors.
The SPASELOC algorithm has been extended for solving problems in R

3 in [63]. A related
distributed algorithm is presented in [87]. More recently, a distributed approach that exploits
the sparsity in the SDP relaxations is given in [67, 68].

5.2.2 Multidimensional Scaling

In [30] a different distributed localization algorithm is proposed, that is based on a weighted
version of multidimensional scaling. The multidimensional scaling consists in finding a low
dimension representation of a group of objects such that the distances between objects fit as
well as possible a set of measured pairwise dissimilarities. When the measured dissimilarities
coincide with the exact distances between sensors, classical multidimensional scaling consists
in a singular value decomposition of the centered squared dissimilarity matrix. When the
measured dissimilarities contain noise, it consists in iteratively minimizing a loss function
between dissimilarities and distances. The idea in [30] is to define a distributed algorithm
where some local loss functions are minimized. The local nonlinear least squares problem is
then solved by using quadratic majorizing functions. The algorithm produces a sequence of
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position estimates with corresponding non increasing global cost and limited communications
between sensors. In the paper [30] the considered global function is:

S = 2
∑

(i,j)∈Nx

∑

1≤t≤K

w
(t)
ij (‖xi − xj‖ − δ

(t)
ij )2 +

∑

(k,i)∈Na

∑

1≤t≤K

w
(t)
ik (‖xi − ak‖ − δ

(t)
ki )2

+
∑

1≤i≤n ri‖xi − x̄i‖,
(5.54)

where the authors assume that for each distance Dij there are K different measurements

δ
(t)
ij . The arbitrary weights w

(t)
ij , w

(t)
ik ≥ 0 classify the accuracy of each measurement. The

last term is a penalty term that takes into account prior knowledge about node locations.
The stress (5.54) function can be rewritten as

S =
∑

1≤i≤n

Si + c (5.55)

where

Si =
n∑

j=1,j 6=i

w̄ij(‖xi − xj‖ − δ̄ij)
2 +

m∑

k:(i,k)∈Na

2w̄ik(‖xi − ak‖ − δ̄ik)
2 +

n∑

i=1

ri‖xi − x̄i‖ (5.56)

with w̄ij =
∑K

t=1 w
(t)
ij and δ̄ij =

∑K
t=1 w

(t)
ij δ

(t)
ij /w̄ij. The function Si is the local function at

node i. Therefore each sensor updates its position estimate by minimizing its function Si,
on the basis of the position estimates of its neighboring nodes. A crucial issue is how to
adaptively choose the neighbors of each node. Given a sensor, its neighborhood contains all
the sensors that are distant from it less than a certain threshold. However, distances contain
noise, so that due to the noise in the measurements, some sensors could be not assigned to
the neighbors. In order to take into account noise, the neighbor is built in two steps: in
the first step, only the sensors with measurements below a certain threshold are included
in the neighborhood, and the algorithm is run with this neighborhood setting, generating
certain sensor locations x̂1, . . . , x̂n. Then for each sensor the neighborhood is built again on
the basis of the distances ‖x̂i − x̂j‖ and the algorithm is rerun. In this way the negative bias
effect deriving from the errors in the distances is removed.

A particular case of function (5.54) is considered in [12], that is the one obtained by

setting K = 1, w
(t)
ij = 1/(2π

1

2 σij) and w
(t)
ik = 1/(2π

1

2 σkj), and ri = 0, for all i = 1, . . . , n.
The obtained function is

min v(X) =
∑

(k,j)∈Na

1

σ2
kj

ǫkj +
∑

(i,j)∈Nx

1

σ2
ij

ǫij

s.t. (‖ak − xj‖ −
√

D̄kj)
2 = ǫkj ∀(k, j) ∈ Na

(‖xi − xj‖ −
√

D̄ij)
2 = ǫij ∀(i, j) ∈ Nx

(5.57)
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In [12] problem (5.57) is relaxed into the following SDP problem:

min
∑

(k,j)∈Na

1

σ2
kj

ǫkj +
∑

(i,j)∈Nx

1

σ2
ij

ǫij

s.t. (−
√

D̄kj 1)Mkj

(
−
√

D̄kj

1

)
= ǫkj ∀(k, j) ∈ Na

(−
√

D̄ij 1)Mij

(
−
√

D̄ij

1

)
= ǫij ∀(i, j) ∈ Nx

(aT
k − eT

j )Z

(
ak

−ej

)
= vkj ∀(k, j) ∈ Na

(0T (ei − ej)
T )Z

(
0

(ei − ej)

)
= vij , ∀(i, j) ∈ Nx

Mkj � 0 ∀(k, j) ∈ Na

Mij � 0 ∀(i, j) ∈ Nx

Z � 0,

(5.58)

where Z is defined as in (5.35) and

Mkj =

(
1 ukj

ukj vkj

)
∀(k, j) ∈ Na and Mij =

(
1 uij

uij vij

)
∀(i, j) ∈ Nx.

If the noise is multiplicative, i.e., the distances are equal to
√

D̄ij =
√

Dij(1 + N (0, σ2)),

where Dij and D̄ij are the true and measured squared distances respectively, then σij =
Dijσ

2. Since the true distances are not known the variances can be approximated by the
measured distances, and the objective function of (5.58) is

∑

(k,j)∈Na

1

D̄kj

ǫkj +
∑

(i,j)∈Nx

1

D̄ij

ǫij .

In [12] the authors introduce a gradient local search phase that refines the solution obtained
by projecting in the two dimensional space the solution of the two SDP relaxation (5.58).
The idea is to move each sensor location in the opposite direction of that of the gradient of
the sum of error squared function. In particular, the maximum likelihood estimation is the
solution of the unconstrained optimization problem

X∗ ∈ arg min
X

f(X) :=
∑

(k,j)∈Na

1
σ2

kj

(‖ak − xj‖ − D̄kj)
2

+
∑

(i,j)∈Nx

1
σ2

ij

(‖xi − xj‖ − D̄ij)
2.

(5.59)

Let the gradient be ∂fxj
for sensor xj . This gradient can be computed in a distributed way

since it relates only to sensors and anchors connected to sensor xj . The location of sensor
xj is updated in the following way:

xj = xj − α∂fT
xj
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where α is the step size. This updating rule improves the localization obtained by relaxation
(5.58). The effects of this local phase are more pronounced when the anchors are in the
interior of the network.

5.2.3 Exact SNLSolutions Based on Facial Reductions and Geometric Build-up

A different distributed SDP approach to SNL is presented in [70]. This successful tech-
nique uses the EDM model and solves the SNL without using an SDP solver. It effi-
ciently finds high accuracy solutions of large problems.

As in [69, 35, 36], using the positions of the anchors is postponed till after the corre-
sponding EDMC problem is done. A first elimination phase finds faces of the SDP cone
that correspond to faces of the EDM cone that contain cliques in the SNL problem. Then,
by finding the intersection of appropriate subspaces, the intersection of faces is found. Each
intersection of faces corresponds to completing the missing distances in the union of the cor-
responding cliques. However, finding the distances are postponed. Once the appropriate face
of proper dimension is found, then the second substitution phase solves for all the missing
distances in the EDM at once. Then, the third finalize phase rotates the anchors to their
(approximate) original positions. Extremely large problems can be solved to high accuracy.
Current tests with random data (with no noise) solve problems of order n = 100, 000, m = 9
on a laptop in 5 minutes to 16 decimals accuracy.

The facial reduction approach is closely (dually) related to the geometric build-up,
e.g., see the formulas in [10] and the algorithms in [38, 102]. The connection is through
the EDMC problem and the factorization PP T = B = K†(D).

5.3 Weaker SNLFormulations

Another more recent stream of research is the one that aims at defining different relaxations,
maybe weaker than the ones considered up to this point, but faster to be solved. In [96] a
second order cone programming (SOCP ) relaxation has been introduced. It derives from
a different reformulation of the sensor network localization problem. Let G be the graph
having n + m nodes corresponding to the sensors and anchors, and let A be the set of edges
connecting all the nodes (both sensors and anchors) where distance measures are available.
Then the SNL problem can be formulated as:

minx1,...,xn,yij

∑

(i,j)∈A
yij

s.t. yij = ‖xi − xj‖2, ∀(i, j) ∈ A

that can be relaxed in

minx1,...,xn,yij

∑

(i,j)∈A
yij

s.t. yij ≥ ‖xi − xj‖2, ∀(i, j) ∈ A
(5.60)
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that is an SOCP . This relaxation is always weaker than the SDP relaxation (5.48) (where
all the weights are equal to one). As for the SDP relaxation, the solution set is bounded if
and only if each connected component of the graph contains an anchor. Indeed in absence
of anchors, the solution set is unbounded and each solution can be rotated and translated to
yield another solution. For the SOCP (5.60), there exists a unique set B ⊆ A of constraints
that are active in all the solutions, namely

‖xi − xj‖ = yij, ∀ solutions x1, . . . , xn, (yij)(i,j)∈A of (5.60) ⇔ (i, j) ∈ B. (5.61)

Any interior solution satisfies (5.61) and satisfies strictly all the other constraints of
(5.60). Let

NB(i) = {j ∈ {1, . . . , n} ∪ {1, . . . , m} : (i, j) ∈ B}, MB = {i ∈ {1, . . . , n} : NB(i) 6= ∅}.

In [96] it is proved that all the points with i ∈ MB belong to the convex hull of the points
for which the distances are exact, namely satisfy

xi ∈ conv{xj}j∈NB(i), i ∈ MB. (5.62)

Furthermore, each connected component of GB = (MB ∪ {1, . . . , m},B) contains at least an
anchor and for every i ∈ {1, . . . , n}, xi is invariant over all the solutions of (5.60) if and only
if i ∈ MB. If a particular solution of (5.60) is considered, that is called the analytic center
solution, i.e., the interior solution that maximizes

∑

(i,j)∈A\B
log(yij − ‖xi − xj‖2)

over all the interior solutions, then

xj ∈ conv{xj}j∈NA(i).

If the distances contain errors, in [96] it is shown that if the distance error are small, then
(xi)i∈MB

in a solution of (5.60) has small error that grows proportionally to the square root
of the distance error. Relaxation (5.60) can be solved faster than the SDP relaxation, and
in [96] a smoothing coordinate gradient descent method is proposed that is very effective in
solving problem (5.60). The author also suggests the use of problem (5.60) as a problem
preprocessor or combined with the SDP method.

In the same stream of research, in [80] a sum of squares (SOS) relaxation is proposed,
starting from the polynomial formulation (5.51) (with all γij = 1) of the SNL Problem. The
idea in [80] is to propose a sparse SOS relaxation that exploits the special structure of f(X).
In general, the term SOS relaxation describes the process of approximating nonnegative
polynomials by polynomials that can be expressed as sum of squares. Checking whether a
polynomial is SOS is done by SDP . In particular, a polynomial p(z) (z ∈ R

N) of degree
2l is SOS if and only if there exists a symmetric matrix W � 0 such that

p(z) ≡ ml(z)T Wml(z)
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where m(z) is the column vector of monomials up to degree l, of dimension up to

(
N + l

l

)
.

The first SOS relaxation for Problem SNL introduced in [80] is

f ∗
sos := max γ

s.t. f(X) − γ = m2(X)T Wm2(X)
W � 0.

(5.63)

If the distances are exact, the SOS relaxation (5.63) is exact, and the solution of its dual
can help finding the sensor locations under a technical condition on the solution of the dual
(called flat extension condition). A more clever relaxation can be obtained by noting that
f(X) can be written in SOS form:

f(X) =
∑

(i,j)∈Nx




(‖xi − xj‖2 − D̄ij) +
1

|Sj|
∑

k:(k,j)∈Na

(‖xj − ak‖2 − D̄kj)
2




 , (5.64)

where Sj = {i : (i, j) ∈ Nx}. Then,

f(X) − γ =
∑

(i,j)∈Nx

sij(xi, xj)

where sij(xi, xj) are SOS polynomials only in variables xi, xj . The corresponding SOS relax-
ation is

f ∗∗
sos = max γ

s.t. f(X) − γ =
∑

(i,j)∈Nx

m2(xi, xj)
TWijm2(xi, xj)

Wij � 0, (i, j) ∈ Nx.

(5.65)

In this formulation, the size of Wij is equal to (d + 1)(2d + 1) which is independent from n,
and the total number of decision variables is O(d4|A|), with d = 2 if we are in the plane. Also
in this case, if the distances are exact, the SOS relaxation (5.63) is exact, and the solution of
its dual can help find the sensor locations under the same technical condition on the solution
of the dual. If the distances are perturbed by random noises, it can be shown, under some
technical assumptions (including the unique localizability of sensors), that the perturbed
solution is accurate within a factor of the perturbation error occurring in the distances.

In [98] the SDP approach is further relaxed. The authors propose two new SDP relaxations
that are obtained by relaxing the single semidefinite matrix cone into a set of small-size
semidefinite matrix cones. In particular, the first relaxation is a node-based relaxation:

(NSDP )

min 〈0, Z〉
s.t. Z(1,2),(1,2) = I2

W ◦ KA(Z) = W ◦ D
Z i = Z(1,2,i,Ni)(1,2,i,Ni) � 0 ∀i

(5.66)
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where Ni = {j : (i, j) ∈ Nx}. Here the single (n + 2)-dimensional cone is replaced by n
smaller 3 + |Ni|-dimensional matrix cones, and each of these cones is a principal submatrix
of Z. Problem (5.66) can be relaxed for inexact distances in:

(NSDPOP )

min trace (J(W ◦ (U + V )))
s.t. Z(1,2),(1,2) = I2

W ◦ (KA(Z) − U + V ) = W ◦ D̄
Z i = Z(1,2,i,Ni)(1,2,i,Ni) � 0, ∀i
U, V ≥ 0.

(5.67)

The second relaxation is an edge-based relaxation, as in [80]:

(ESDP )

min 〈0, Z〉
s.t. Z(1,2),(1,2) = I2

W ◦ KA(Z) = W ◦ D̄
Z(1,2,i,j)(1,2,i,j) � 0 ∀(i, j) ∈ Nx.

(5.68)

Here the single (n + 2)-dimensional cone is replaced by |Nx| smaller 4-dimensional matrix
cones, and also in this case each of these cones is a principal submatrix of Z. In case of
inexact distances, it can be relaxed into

(ESDPOP )

min trace (J(W ◦ (U + V )))
s.t. Z(1,2),(1,2) = I2

W ◦ (KA(Z) − U + V ) = W ◦ D̄
Z(1,2,i,j)(1,2,i,j) � 0, ∀(i, j) : Wij > 0
U, V ≥ 0.

(5.69)

Given a problem P, let us denote by F P the set of solutions of problem P . Then the
following relation exists between the three relaxations (5.68), (5.66) and (5.40) (that we
denote by SDP ):

F SDP ⊂ FNSDP ⊂ FESDP.

However, problem (5.40) has (n+2)2 variables and |Nx|+ |Na| constraints, while problem
(5.66) has at most 4+2n+

∑
i |Ni|2 variables and |Nx|+ |Na| constraints and problem (5.68)

has 4 + 3n + |Nx| variables and also |Nx|+ |Na| constraints. Therefore, problems (5.66) and
(5.68) can be solved much faster, since in general 4 + 2n +

∑
i |Ni|2 and 4 + 3n + |Nx| are

smaller than (n + 2)2. Furthermore, the two relaxations (5.66) and (5.68), although weaker
than (5.40), preserve some interesting theoretical properties of relaxation (5.40). Indeed,
relaxation (5.66) is proved to be equivalent to relaxation (5.40) under the chordal condition,
i.e., if every cycle of length greater than three has a chord.

As for relaxation (5.68), in [98] the authors prove that the trace criterion (5.43) to measure
the localization accuracy is still valid, but only for its max rank solution (that can be easily
identified by using a path-following interior-point method). In fact, if the max rank solution
of (5.68) satisfies

Ȳii − ‖x̄i‖2 = 0, i ∈ {1, . . . , n}, (5.70)
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then the i-th column of X is the true location of the i-th sensor, and it is invariant over all
solutions Z of (5.68). Furthermore, although weaker than relaxation (5.40), relaxation (5.68)
is stronger than the SOCP relaxation introduced in [96]. To solve problem (5.68) in [98],
it turns out that solving the dual is much faster than solving directly problem (5.68), and a
primal solution can be easily derived via the complementarity conditions. Furthermore, the
quality of the solution of problem (5.68) does not depend on the quantity and location of
anchors, as for example in SPASELOC.

The two edge based relaxations (5.68) and (5.69) are again considered in [82], and the
authors prove that, given a solution of problem (5.68), the trace criterion (5.70) is also neces-
sary for the sensor i to be correctly localized by an interior solution. This desirable property
does not hold anymore if the distances are inexact, i.e for relaxation (5.69) (a counterexam-
ple is provided). In order to recover this interesting property, the authors define a ”robust”
version of relaxation (5.69) that mantains this efficient characterization of correctly localized
sensors for a certain analytic center solution, provided that the noise in the distances is
sufficiently small. In particular, they assume that the squared distances are of the form

D̄ij = ‖pi − pj‖2 + δij , ∀(i, j) ∈ A

where |δij| < ρij , and the threshold values ρ are known. In order to find the analytic center
solution the authors define the problem

min −
∑

(i,j)∈Nx

ln det(Z(1,2,i,j)(1,2,i,j)) −
m∑

i=1

ln det

(
I xi

xT
i yii

)

s.t. |W ◦ (KA(Z) − D̄)| ≤ W ◦ ρ
Z(1,2),(1,2) = I2

(5.71)

where ρ is the matrix containing the values ρij . In this way, the true solution becomes feasible
for this relaxation. The authors show that for a certain analytic center solution (Ȳ , X̄) of this
relaxation the trace criterion (5.70) is necessary and sufficient for the correct localization of

the sensor i, and that the position error for sensor i is O(
√

Ȳii − ‖x̄i‖2). Furthermore, they
introduce a coordinate gradient descent method to minimize a log-barrier penalty function
in order to find such analytic center solution. This method is much faster than applying
an interior point method to problem (5.69), gives a comparable accuracy, and it is highly
parallelizable, feature that can be exploited for applications where the localization is required
in real time.

6 Summary and Outlook

We have shown in this survey that FPDG is an elegant problem with many applications and
solution techniques. In particular, many instances of FPDG such as GRL , GRD , and
SNL , are NP-hard problems that can be handled elegantly within the EDM framework,
and SDP can be used to efficiently find solutions for many classes of these problems.
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We focused particularly on the SNL problem. Many algorithms that are specific for
SNL use a distributed approach, SDP and SOCP relaxations, and SDP (parallel) solvers.
The efficiency for these algorithms has improved from solving instances with about n = 100s
of nodes in seconds to instances with n = 1000s to an accuracy of several decimals, see e.g.
the software at URLs:
www.math.nus.edu.sg/˜mattohkc/SNLSDP.html
www.stanford.edu/˜yyye/Col.html
www.convexoptimization.com/dattorro/sensor network localization.html Recently, a differ-
ent approach that does not rely on a SDP solver is given in [70], where problems of order
n = 100, 000 are solved efficiently to high accuracy.

Motivated by the many important applications, we have seen a rapid development and
improvement in both the theory and algorithms for FPDG problems. Exploiting sparsity
and parallelization has just begun. We can expect new efficient algorithms for larger classes
of problems.
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De operator, 6
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K operator, 6
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L operator, 6
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T operator, 6
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dissimilarity matrix, D, 5
distributed algorithms, 28

embedding dimension, 3, 5
equilibrium stress for G(p), 16
equivalent frameworks, 13
Euclidean distance matrix, EDM , 5

face, F � K, 4
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Löwner partial order, A � B, 4

matrix of ones, E, 4
matrix of points in space, P , 6
molecular distance geometry problem, 11
Moore-Penrose generalized inverse of L, L†,

4
multidimensional scaling, 30

nearest EDM , EDMC , 6
noise in the data, 26
nonnegativity elementwise, B ≥ 0, 10
NP-hard, 9, 10
nullspace of L, N (L), 4

partial EDM , D, 6
pointed cone, 5
polar cone of S, S∗, 4
pre-distance matrix, D, 5
principal submatrix positive semidefinite set,

Sn
+(α, Ȳ ), 4
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