University of Waterloo, Waterloo, ON

Faculty of Mathematics

Department of Applied Mathematics

AMATH 341 / CS 371

Introduction to Computational Mathematics

Midterm Test October 28, 2004

Instructor: Professor H. De Sterck Time: 2 hours

AIDS: AMATH 341 Course Notes, one book, calculator, four pages (sides) of notes

[15] 1. (Errors in numerical computation.)

With x = 101 and y = 100, you are asked to calculate $z = x^2 - y^2$.

- a) Calculate $z = x^2 y^2$ in the floating point number system $F_1(b = 10, m = 5, e = 3)$ (assume chopping).
- b) Calculate $z = x^2 y^2$ in the floating point number system $F_2(b = 10, m = 3, e = 3)$ (assume chopping). Show your work and explain why the result is not the same as in a).
- c) Devise a different, more stable method to calculate $z = x^2 y^2$, and show that using this method you can obtain the exact result for z when calculating in floating point system $F_2(b = 10, m = 3, e = 3)$.

[20] 2. (Interpolation.)

The piecewise polynomial function y(x) is defined as

$$y(x) = \begin{cases} ax^3 + bx^2 - 9/2x + c & \text{for} & x \in [-3, -1] \\ x^3 & x \in [-1, 0] \\ dx^3 + ex^2 & x \in [0, 1] \\ -x^3 + 6x^2 - 6x + f & x \in [1, 2] \end{cases}$$

Can the coefficients a, b, c, d, e and f be determined such that y(x) is a natural cubic spline? If so, determine the coefficients a, b, c, d, e and f.

[25] 3. (Interpolation. Integration.)

- a) Given f_0, f_1, f'_1 in points $x_0 = 0$ and $x_1 = h$, determine the coefficients a, b and c of the interpolating polynomial $y(x) = a(x h) + b(x h)^2 + c$ that satisfies $y(x_0) = f_0, y(x_1) = f_1$ and $y'(x_1) = f'_1$.
- b) Derive an integration rule for $I = \int_0^h f(x)dx$ by integrating the interpolating polynomial y(x). Express your result as $\hat{I} = w_0 f_0 + w_1 f_1 + w_2 f'_1$ (determine w_0, w_1, w_2).
- c) Using the integration rule \hat{I} , derive a composite integration rule $\hat{I}_{\text{composite}}$ for $I = \int_a^b f(x) dx$, using n+1 equidistant points $x_i = a + i(b-a)/n$ $(i=0,\cdots,n)$, with h = (b-a)/n. Find the weights of $f_i(i=0,\cdots,n)$, and $f_i'(i=1,\cdots,n)$ in $\hat{I}_{\text{composite}}$.

[20] 4. (Differentiation.)

- a) Given f_0 and f_1 in points x_0 and x_1 , determine a and b in $\hat{f}'_0 = af_0 + bf_1$ such that \hat{f}'_0 approximates f'_0 as accurately as possible. Determine the leading order term of the truncation error.
- b) Given f_0 , f_1 , and f'_1 in point x_0 and x_1 , determine a, b and c in $\hat{f}'_0 = af_0 + bf_1 + cf'_1$ such that \hat{f}'_0 approximates f'_0 as accurately as possible. Determine the leading order term of the truncation error.
- [20] 5. (Integration.) Given $\{(x_i, f_i = f(x_i))\}_{i=0}^n$ with $x_i \neq x_j$ when $i \neq j$, derive an integration rule $\hat{I} = \sum_{i=0}^n w_i f_i$ for approximating $I = \int_a^b f(x) dx$ with degree of precision n. (This means that the functions f(x) = 1, f(x) = x, $f(x) = x^2, \dots, f(x) = x^n$ are integrated exactly). Show that the weights w_i can be found by solving a matrix equation $A \cdot w = r$, with w the vector containing the weights w_i . Find expressions for the matrix A and the right hand side r. Discuss existence and uniqueness of the solution w.