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Multidimensional upwind residual distribution schemes for the numerical solution of
the ideal magnetohydrodynamics equations have been extended to three spatial dimen-
sions. The schemes operate on unstructured grids composed of tetrahedra. Both the two
and the three dimensional schemes have been implemented into a multipurpose parallel
implicit solver. The code is used to investigate a complex interacting shock structure,
involving intermediate shock segments appearing in a bow shock flow in space physics.

Introduction

The ideal magnetohydrodynamics (MHD) equations
serve as a useful model for the description of many
problems in the field of astrophysics. The set of ideal
MHD equations forms a system of highly nonlinear
conservation laws, therefore the solution of more com-
plicated problems require the use of numerical meth-
ods.

In the paper of Csik, Deconinck and Poedts™? (in
what follows CSDP) the authors developed fluctuation
splitting or residual distribution (RD) schemes for the
solution of the ideal MHD equations in two spatial
dimensions. These schemes operate on an arbitrary
unstructured triangulation of the computational do-
main, assuming piecewise linear variation of a certain
set, of variables. From computational point of view an
attractive feature of the RD method is that a time step
is constructed as a loop over all of the elements, and
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the numerical procedure in a given element does not
require any information outside of this element. This
results in a very compact stencil containing only the
nearest neighbours of a node which makes an efficient
parallel and implicit coding. From the theoretical side,
RD schemes incorporate multidimensional upwind in-
formation derived from physical considerations. For
more information on the RD schemes see the recent
review paper of Deconinck et al.”

In the present paper we extend the 2D schemes of
CSDP to three spatial dimensions and apply them to
the simulation of MHD flows relevant to space physics.
Both the 2D and the 3D schemes have been imple-
mented into the multipurpose VKI flow solver called
THOR, which will be used to perform the numerical
experiments.

The structure of the paper is as follows. After the
introduction, in section two we describe the governing
equations of ideal MHD. In the third section we recall
the basic principles of the RD method and we outline
the solution procedure. In the fourth section we give
a brief description of the THOR code. In the fifth
section we present a test problem and the solution of a
steady magnetized bow shock flow involving a complex
structure of interacting shock segments. In the last
section we give some concluding remarks.

The governing equations of ideal MHD

The hyperbolic system of the single fluid ideal MHD
equations in conservative form is given by:
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where the conservative state vector U and the flux vec-
tor F' containing the isotropic pressure tensor are:

U = [p, pu, pv, pw, By, By, B, E|* (2)
and
pu
| puu+I(p+B-B/2)-BB
B uB - Bu (3)

(E+p+B-B/2)u-—-B(u-B)

Here, I represents the 3 x 3 identity matrix, p is the
density, u, v, and w are the z, y, and z components of
the velocity vector u, respectively, B is the magnetic
induction vector, p is the thermal pressure, and E is
the total energy density defined by

P 1 1
- Zpov - “B-B
7__1+2pv V+2

where v is the ratio of specific heats. Equation (1) de-
scribes the conservativion of mass, momentum, mag-
netic flux and energy and is to be supplemented by the
divergence free condition of the magnetic field:

V-B=0 (4)

Equation (4) is an initial constraint which is pre-
served in an analytic treatment if it is initially satisfied.
However, in the course of the numerical solution of the
MHD equations V - B may deviate from zero, which
has a destabilizing effect on a numerical algorithm.
Therefore a special care has to be taken to avoid the
appearance of magnetic monopoles, or to stabilize the
scheme against nonzero V - B. There are three most
often used methods to overcome this problem.

The original work of Evans and Hawley® is based
on the observation that the induction equation should
be discretized in a form which describes the temporal
variation of the magnetic flux across a surface element,
rather than the magnetic field itself. There are several
implementations of this basic concept to maintain the
solenoidal condition of the magnetic field up to ma-
chine accuracy in a certain discretization.” However,
all of these schemes operate on structured Cartesian or
curvilinear grids and they do not extend to irregular
structured and other unstructured meshes.

The projection method is an often used tool to re-
move the solenoidal component of the magnetic field

generated by the numerical scheme. Although in cer-
tain cases the projection method is proven to be work-
ing,” its highly inconsistent nature with the hyperbolic
MHD equations prevents it from being useful in sev-
eral other applications. Thus, the projection method
is not considered further in this paper.

In order to stabilize the RD schemes against the
instability due to the numerically generated nonzero
divergence of the magnetic field, we employ the so-
lution technique first proposed by Powell et al.,° in
which a nonconservative source term is added to the
right hand side of conservation law (1). In 1972 it was
shown by Godunov,” that the resulting set of equa-
tions is the unique symmetrizable form of the ideal
MHD equations:

oU )

where § = —|[0, By, By, B.,u,v,w,u - B|TV -B. Al-
though equations (1) and (5) are identical at the an-
alytic level, experience has shown, that the numerical
solution of equation (5) is much more stable and ro-
bust. In this formulation the solenoidal condition is
not strongly enforced, therefore V - B may deviate
from zero. Consequently, the presence of the non-
conservative source term S may lead to inconsistent
jumps accross discontinuities. Indeed, Toth presented
computational evidence® showing that the numerical
solution of equation (5) converges to wrong jumps ac-
cross the fast shocks present in that specific problem.
However, the eight wave formulation has been tested
on a wide range of problems and succesfully used in
many astrophysical applications.! 310

In the quasilinear form of equation (5) the source

term S can be incorporated into the singular Jacobian
matrices OF, /00U, OF,/0U and OF., /OU, giving

oU oU oU ou
— +Ay—+By— +Cyp— =0 6
ot e U@y Y52 (6)

where Ay, By and Cp are the regularized Jacobian
matrices (see CSDP).

Fluctuation Splitting Spatial
Discretisation

In this section we briefly describe the RD method
particularly for the ideal MHD equations in three spa-
tial dimensions, which is a direct extension of the 2D
schemes developed in CSDP.

We solve the eight-wave equations (5) of ideal MHD
over spatial domain ) devided into non overlapping
tetrahedra. The geometry of an elementary tetrahe-
dron using local nodal indices j € [1,2,3,4] is shown
in figure 1. The inward pointing normal vector nj is
scaled with the area of the face opposite to node j.
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The solution over €2 is approximated by a continu-
ous piecewise linear function, just like in linear finite
element menthods:

Yw; (z, vy, 2)

(25025 t)—ZU

where N is the total number of nodes in the mesh,
Ui(t) is the time dependent value U(z;, y;, z;,t) at node
i, and the piecewise linear shape function w;(z,y, 2)
equals to unity at node i and vanishes outside the sup-
port of all tetrahedra meeting at node i. Consequently,
the components of the state vector U vary linearly in
each element.

Integration of equation (6) yields the definition of

the cell residual or total fluctuation 7 in tetrahedron
T-

BT = /%ltde /VF S) do

U oU oU
e i RS
/ ( U + By — 3y + Cy 3z) df)
A

= (Z}H@H@k) -/VUdQ

where ./ZU, §U and C'U are constant matrices in each
tetrahedron taken in an appropriate averaged state U.
Since the variation of the conservative state vector U
is linear in tetrahedron 7', ®7 can be expressed as

4
" = "K,U; (7)

J=1

Here index j goes through the local node numbers of
element 7', U; is the solution at node j, and K; is
defined by the following linear combination of the Ja-
cobians:

- - e
K; = 5(Avi+ Byj + Cuk) -

Fig. 1 General tetrahedron with inward pointing
scaled normal vectors n;.

Matrix K, has real eigenvalues and a complete set
of left and right real eigenvectors, which can be ap-
propriately scaled in order to remove the degeneraties
present in the original form.% '3 Diagonalization of
matrix K; yields:

1
K; = gRiAL; (8)

where the columns of R; contain the scaled right eigen-
vectors, the rows of L; contain the scaled left eigenvec-
tors and A; is the diagonal matrix of the eigenvalues
proportional to |n;|. Matrices K J+ and K are the so
called generalized upwind parameters, defined as

KT = —R A+L and K; =

b,

RA L, (9

Here AT and A7 contains the positive and the negative

elgenvalues respec.tlvelv Ai (Ag - |Az]) /2.

In the solution procedure of equation (6) first the
cell residual @7 is computed in all the tetrahedra T
and distributed to the nodes of T'. The distribution
function @f is the fraction of the total cell residual
distributed to node j in element 7. For consistency
we require that

&7 + o7 + o1 + o7 = o7 (10)

The fully multidimensional upwind property of the
RD schemes implies that residual is not distributed
to node 7 if all the eigenvalues of the corresponding
matrix K; is negative:

g & . A

where 0 is the null matrix. The contributions <I);r are
assembled to compute the nodal update. This treat-
ment leads to a very compact stencil, containing only
the nearest neighbours of node j even for the second or-
der accurate schemes. This property makes an efficient
parallel implicit coding. The semi-discretised form of
equation (6) at point 7 with the lumped Galerkin mass
matrix is

=7 Z T (12)

TtGT

Here, V; is the volume of the median dual cell around
node i equal to one fourth of the volume of tetrahedra
sharing node 1.

The properties of the different schemes in the fluctu-
ation splitting context are determined by the way &7
is defined. In this paper we use the first order linear
monotone N scheme and the nonlinear B scheme which

JOF9
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is second order and monotone at the steady state. The
corresponding distribution functions ®» and ®F are
not given here, because they are trivial extensions of
the 2D variant of these schemes (see CSDP).

The THOR code

[n the last five years a software package has been de-
veloped at the Von Karman Institute for the numerical
solution of conservation laws with source terms, based
on the RD method. The THOR code is a 2D /3D par-
allel implicit solver written in C' language. Due to its
modular structure different equations can be easily in-
tegrated beside the Euler, turbulent Navier-Stokes and
the ideal MHD equations. A powerful feature of the
THOR code is that it operates on unstructured hybrid
orids, thus allowing to use appropriate elements for
specific flow structures (e.g. quadrilaterals with high
aspect ratio can be used in viscous layers and trian-
gles or tetrahedra in other domains). THOR contains
automatic grid adaptation as an option, to follow and
resolve fine structures in the flow filed in an economic
manner. The THOR code expanded with the MHD
modules was used in the computations presented in
the next section.

Simulation Results and Discussion

Numerical experiments were performed on the IBM
SP2 computer of the Katholic University of Leuven
(KUL) using only 6 nodes connected by ethernet, each
of them containing 4 processors.

Quasi-2D Nozzle flow

In order to test the implementation of the 3D RD
MHD schemes and the performance of the parallel
solution technique, we present the computation of a
magnetized flow in a 3D nozzle. Super-magnetosonic
flow enters the domain from the left, a shock devel-
opes in the converging part and the flow leaves at
the right with a super-magnetosonic speed. At the
back, front, top and bottom surfaces of the nozzle per-
fectly conducting ideal wall boundary conditions are
imposed. The 3D grid is obtained by extruding the
corresponding mesh of a 2D nozzle (see figure 2) into
the direction normal to the 2D plane, then cutting the
resulting prismatic elements into tetrahedra. The size
of the 3D nozzle can be extended in the z direction by
combining more layers of elements. A coarse 3D mesh
containing 5 layers of tetrahedra is shown on figure 3
for visualization purpose only.

A simple test to check the 3D code is to solve a 2D
problem on a 3D mesh and compare the result with the
true 2D solution. In the initially imposed uniform flow
field the density p = 1, the velocity vector v = (3,0,0),
the magnetic induction vector B = (2,0,0), and the
thermal pressure p = 0.6. Computations are done by
the first order linear N scheme and the second order
nonlinear B scheme with CFL = 0.9.

Fig. 2 Unstructured triangulation of a 2D nozzle
containing 5.086 elements and 2.662 nodes. This
grid serves as the basis of the 3D grid in the scaling
problem and it was also used in the 2D computa-
tions.
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Fig. 3 A coarse grid for the 3D super-
magnetosonic nozzle test case containing 5 layers
of elements in the z direction.

The 3D steady state solution is plotted on figure 4
in a plane parallel to the z — y plane. The density
contour lines are superimposed by the magnetic field
lines. The true 2D solution of the problem is shown on
figure 5. The second order B scheme produces sharp
shocks without spurious oscillations, while the first or-
der N scheme gives more dissipative results. The 3D
solution is slightly more diffusive than the 2D, due to
the operation of the true multidimensional upwind RD
schemes on the 3D mesh.

In order to perform the parallel scaling, we solve
the 3D nozzle problem on 2, 4, 8, 16, and 24 proces-
sors such that the number of layers in the 3D grid
equals to the number of processors (see table 1). This
way the averaged workload of the processors is ap-
proximately the same for each computations. In the
initially imposed uniform flow field we take a slightly
different state than in the previous case: the density
p = 1, the velocity vector v = (3,0,0), the magnetic
induction vector B = (1,0,0), and the thermal pres-
sure p = 1. On figure 6 the total CPU time required
to reach the steady state is plotted versus the num-
ber of processors. In the ideal situation the total CPU
time would be constant for any numbers of processors,
which is indicated by the straight dashed line parallel
to the horizontal axes. The relatively strong deviation
of the experimental curve from the ideal line is mainly
attributed to the following features of the hardware
setup in the SP2 at KUL. First, the ethernet connec-
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Fig. 4 Magnetic nozzle flow in 3D computed by the RD N (left) and B (right) schemes. Solution is

shown in a plane parallel to the =z — y plane.
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Fig. 5 Magnetic nozzle flow in 2D computed by the RD N (left) and B (right) schemes.
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Fig. 6 Parallel scaling on the 3D magnetic nozzle
test case. Total CPU time is plotted versus the
number of processors. The straight dashed line in-
dicates the ideal scaling.

tion between the nodes slows down the computation
when more than four processors operate parallel. Sec-
ond, the scaling plot is considerably affected by writing
(the final solution) onto the hard disc, since this is a
particularly slow process in this specific version of the

SP2.

processors elements  nodes
1 15.258 9.324

?, 30.516  7.986

4 61.032 13.310

8 122.064 23.958

16  244.128 45.254

24  366.192 66.550

Table 1: Number of nodes and elements in the 3D grids
used for the parallel scaling. The number of processors
equals the number of layers of elements in the z direction.

Complex Bow Shock Flow Around a Sphere

MHD bow shocks can be found in Space Physics
flows where the super-magnetosonic solar wind en-
counters planetary obstacles.!¥'7  Recent simula-
tions using a high-resolution Finite Volume (FV)
shock-capturing code® on structured grids have shown
that 3D MHD bow shock flows exhibit a new com-

plex double-front topology in a well-defined param-
eter regime in which the upstream magnetic field is
strong enough.'> 17 This parameter regime is called
the magnetically dominated regime, as opposed to the
pressure-dominated regime in which a regular single-
front bow shock flow occurs.

In the left of figure 10 we show a 3D simulation result
of such a complex bow shock flow around a perfectly
conducting sphere that was obtained by a FV code on
a structured grid, containing 128.000 (40 x 80 x 40)
volumes. The inflow is specified by three parameters,
i.e. the plasma beta 3 = 2p/B? = 0.4, the Alfvénic
Mach number in the z direction Ma, = vy /p/Bz =
1.49, and the angle between the velocity and magnetic
fields 0,5 = 5°. The radius of the sphere is taken as
r = 0.125. In the upstream flow the magnetic field is
aligned to the z-axis.

In the right of figure 10 we show the 3D simulation
result of the same bow shock flow obtained by the
new RD method on an unstructured grid consisting of
830.280 tetrahedral elements and 149.310 nodes. Fig-
ure 7 shows the structure of the mesh (coarser than
the one used in the final simulation of figure 10) in
the # — y symmetry plane. The RD simulation re-
sult was obtained by using the system N scheme on
16 processors with explicit time integration and local
timestepping. The reader can observe that the new
RD code produces a result consistent with the earlier
FV computations, confirming the new physical find-
ing that MHD bow shock flows may consist of several
consecutive interacting shock fronts.'®=!7

MHD shock types

The new bow shock topology involves shock front
segments of all three MHD shock types. Correspond-
ing to the three types of linear waves, the MHD equa-
tions allow for three different types of shocks, namely
the fast, intermediate and slow shocks (see figure 8).
All MHD shocks have the property of co-planarity,
which means that the downstream magnetic field lies
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Fig. 7 2D unstructured triangular grid, obtained
by a hybrid grid generator. This 2D mesh was used
to construct the 3D tetrahedral grid for the bow
shock simulations by an extrusion algorithm com-
bined with rotation and stretching of the 2D grid.

(a) fast (b) intermediate (d) fast switch-on

(¢) slow

Fig. 8 The three types of MHD shocks (thick) re-
fract the magnetic field (thin) in different ways.
The shock normals are dashed. The left state
is upstream, the right state is downstream. The

switch-on shock (d) is a limiting case of the fast
shock.

in the plane defined by the upstream magnetic field
and the shock normal. Three types of shocks are thus
described by the MHD equations, connecting plasma
states which are traditionally labeled from 1 to 4, with
state 1 a super-fast state (v, > ¢y, in the shockframe,
with n the direction of the shock normal), state 2
sub-fast but super-Alfvénic, state 3 sub-Alfvénic but
super-silow, and state 4 sub-slow. The fast 1-2 shock
transition brings a superfast upstream plasma to a
subfast but super-Alfvénic downstream state, refract-
ing the magnetic field away from the shock normal.
A limiting case of the fast 1-2 shock is the 1-2=3
switch-on shock, for which the upstream magnetic field

is parallel to the shock normal, while the magnetic
field makes a finite angle with the shock normal in
the downstream state. The tangential component of
the magnetic field is thus switched on. Intermediate
shocks (1-3, 1-4, 2-3 and 2-4) bring a super-Alfvénic
upstream plasma to a sub-Alfvénic downstream state,
while the magnetic field is flipped over the shock nor-
mal — the tangential component of the magnetic field
changes sign. The slow 3-4 shock transition brings a
superslow but sub-Alfvénic upstream plasma to a sub-
slow downstream state, refracting the magnetic field
towards the shock normal.

Shock topology

The simulation results of figure 10 are compared in
more detail in figure 11, where cuts are shown in the
r — y symmetry plane. It can be seen that close to
the primary shock segment the secondary shock is of
intermediate MHD shock type in both computations,
because the magnetic field lines switch back at the
shock (see figure 8(b)). It is a remarkable result of the
new RD schemes that the secondary shock seems to be
of intermediate type along its entire extent, and that
it extends all the way along the sphere. In the FV
results obtained earlier, the shock seemed to switch
from intermediate to slow type and seemed to have
a shorter extent (see the left of figure 11 and refer-
ence'®). The shocks are much better resolved in the
RD simulations, and we can attribute this to the true
multidimensional character of the schemes.!? It is
important to characterize the nature of the secondary
shock in detail, and this remains an important topic
for further investigation. In figure 12 we compare the
flow in a plane perpendicular to the x — y symmetry
plane for the two simulation schemes.

Fig. 9 (a) Sketch of a regular single-front bow
shock topology. (b) The complex double-front
topology that is obtained in our simulations with
strong upstream magnetic field.

The shock fronts arising in figure 11 can be classi-
fied by using the labels on the diagram in figure 9(b).
Regular bow shocks in the pressure-dominated regime
have the classical single-front topology of figure 9(a),
while the magnetically dominated bow shock flows dis-
cussed in the present paper have the topology of figure
9(b). The substantial difference between pressure-
dominated and magnetically dominated MHD bow
shock topologies can be explained in terms of the ge-
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ometrical properties of MHD shocks.’” Shock fronts
AB and DE are 1-2 fast, and BD is 1-3 intermediate.
The sccondary shock segment DG is 2—4 intermediate,
evolving into 34 slow along the front.'”

Thus, part of the leading and secondary shock fronts
are of intermediate MHD shock type. Intermedi-
ate MHD shocks are so-called overcompressive, non-
Laxian shocks, in which more than one families of
characteristics converge.!” Intermediate shocks were
believed to be inherently unstable until recently, but
the simulations of figure 10 proved that they can exist
and have to occur in real 3D MHD flows, confirming
recent theoretical results on their stability when dissi-
pation is finite (see Ref.!” and references therein).

Conclusions

Multidimensional upwind RD schemes have been
extended to the solution of the ideal MHD equations
in three spatial dimensions on unstructured grids.
The schemes have been implemented into the multi-
purpose parallel implicit THOR solver.

The results demonstrate that our new RD N scheme
is capable of capturing complex MHD shock interac-
tion phenomena that involve different types of MHD
shocks. At the same time, they confirm with an en-
tirely different FV numerical technique,” that this new
effect of secondary MHD shocks in bow shock flows is
a true physical MHD effect. The results of the RD
scheme indicate, that the secondary shock segment is
of intermediate type along its entire length, unlike it
was suggested by earlier computations.'® " The possi-
ble influence of the secondary shock and the associated
switching back of the magnetic field lines on the recon-
nection process at the terrestrial magnetopause may
be important for the physical processes that determine
magnetic storms.'®

The present RD results were obtained with the rel-
atively dissipative system N scheme without the use
of the solution adaptive algorithms of THOR. Simu-
lation with the more accurate RD B scheme on finer
adapted grids may lead to an increased understanding
of the complex topology of these magnetically domi-
nated bow shock flows.
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Fig. 10 Bow shock flow over a sphere computed by a second order MUSCL HLLEL FV scheme (left)
and the first order RD N scheme (right). Density contours are superimposed by the magnetic field lines.

>0

Fig. 11 Solution of the 3D bow shock flow in the z — y symmetry plane computed by the FV (left)
and the RD (right) schemes. Density contours are superimposed by the magnetic field lines. The new
computation using the RD method indicates, that the secondary shock is of intermediate MHD shock
type along its full length, because the magnetic field lines switch back after crossing the shock.
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Fig. 12 Solution of the 3D bow shock flow in the plane y = 0.02 parallel to the r — z symmetry plane
computed by the FV (left) and the RD (right) schemes. Density contours are superimposed by the
magnetic field lines.
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