Improving Coarsening and Interpolation for Algebraic Multigrid

Jeff Butler
Hans De Sterck
Department of Applied Mathematics

(In Collaboration with Ulrike Meier Yang, LLNL)

Outline

- Introduction: Algebraic Multigrid (AMG)
- Modification 1: PMIS Greedy vs. PMIS
- Modification 2: PMIS restricted to finer grid levels
- Modification 3: FF and FF1 Interpolation

Introduction

- Solve: Au = f
- A, f from PDE discretization
 - → sparse
- Parallel
 - → large problems: 10⁹ degrees of freedom
- Unstructured grid problems

AMG Structure

Setup Phase

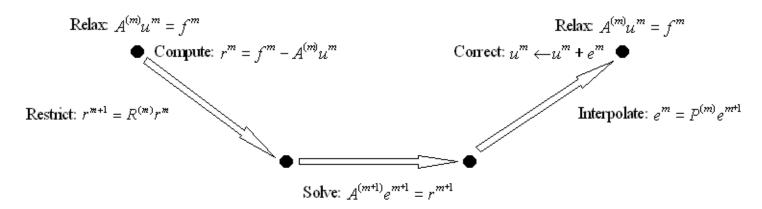
On each level (m): -Select coarse grid points (coarsen)

-Define interpolation operator, P^(m)

-Define restriction and coarse-grid operators

$$R^{(m)} = P^{(m)} T$$
 $A^{(m+1)} = P^{(m)} T A^{(m)} P^{(m)}$

Solve Phase

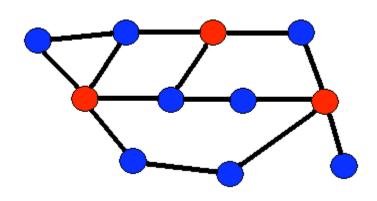


AMG Complexity & Scalability

- Goal: Scalable Algorithm
 - O(n) operations per V-cycle
 - ρ_{AMG} independent of n
- Operator Complexity: $C_{op} = \frac{\sum_{i} nonzeros(A_i)}{nonzeros(A_i)}$
- Measure of memory use, work in solve phase, and work required in coarsening and interpolation process
- E.g. 3D geometric multigrid:

$$C_{op} = 1 + \frac{1}{8} + \frac{1}{64} + \dots < \frac{8}{7}$$

Classical AMG Coarsening (Ruge, Stueben)

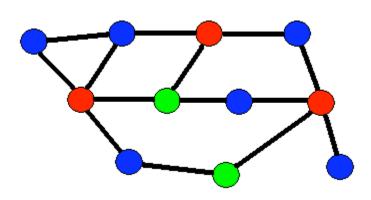


 (H1) All F-F connections require connection to a common C-point (good nearest neighbor interpolation)

(H2) Maximal Independent Set:
 Independent: no two C-points are connected

Maximal: If one more C-point is added, independence is lost

Classical AMG Coarsening (Ruge, Stueben)



- (H1) All F-F connections require connection to a common C-point (good nearest neighbor interpolation)
- (H2) Maximal Independent Set:
 Independent: no two C-points are connected

Maximal: If one more C-point is added, independence is lost

- → Enforce H1 rigorously with H2 as a guide (change F-points to C-points)
- → More C-points = higher complexity

AMG Coarsenings

1. Ruge-Stueben (RS)

- two passes: second pass to ensure that F-F have a common C
- disadvantage: highly sequential

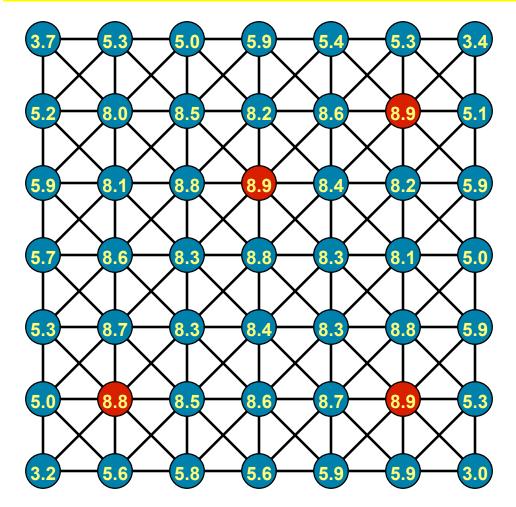
2. CLJP

- based on parallel independent set algorithms developed by Luby and later by Jones & Plassman
- ensures that F-F have a common C

3. PMIS (De Sterck, Yang)

- Parallel Modified Independent Set (PMIS) (Luby)
- do not enforce heuristic H1 (F-F without a common C)

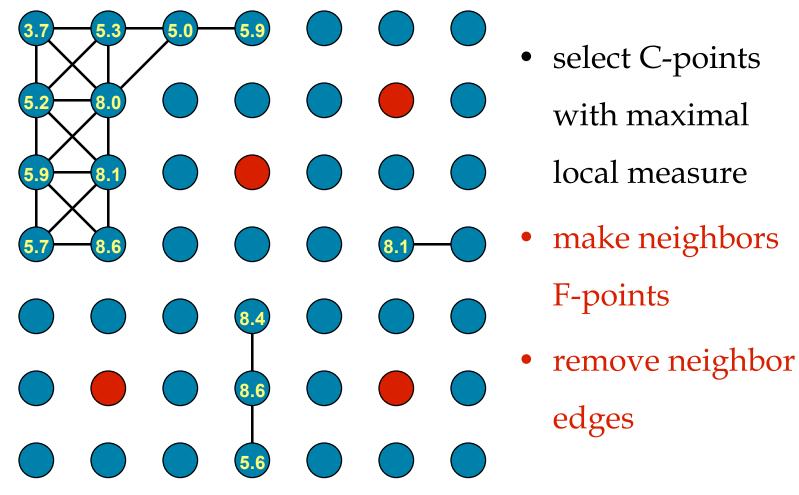
PMIS Selection Step 1



- select C-pointswith maximallocal measure
- make neighborsF-points
- remove neighbor edges

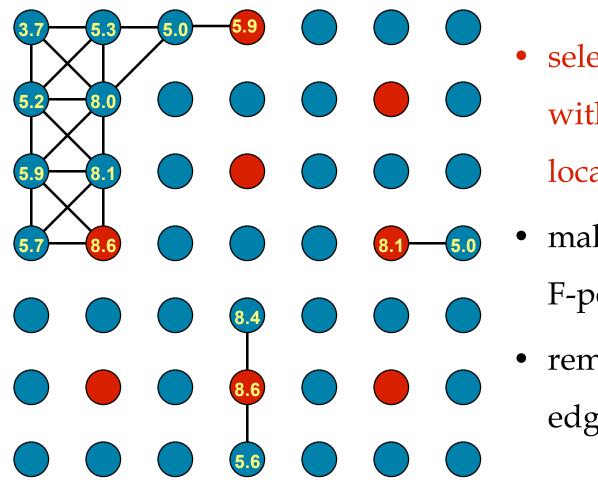
^{*} This grid animation courtesy of Ulrike Yang, LLNL

PMIS Remove and Update Step 1



^{*} This grid animation courtesy of Ulrike Yang, LLNL

PMIS Selection Step 2

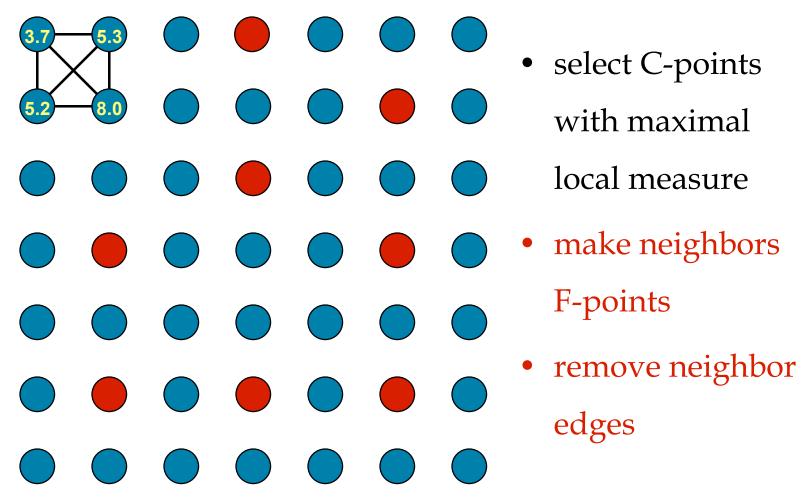


select C-pointswith maximallocal measure

- make neighborsF-points
- remove neighbor edges

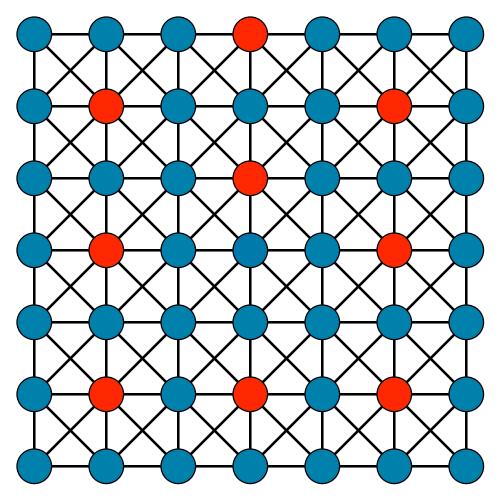
^{*} This grid animation courtesy of Ulrike Yang, LLNL

PMIS Remove and Update Step 2



^{*} This grid animation courtesy of Ulrike Yang, LLNL

PMIS Final Coarsening



- select C-points with maximal local measure
- make neighborsF-points
- remove neighbor edges

^{*} This grid animation courtesy of Ulrike Yang, LLNL

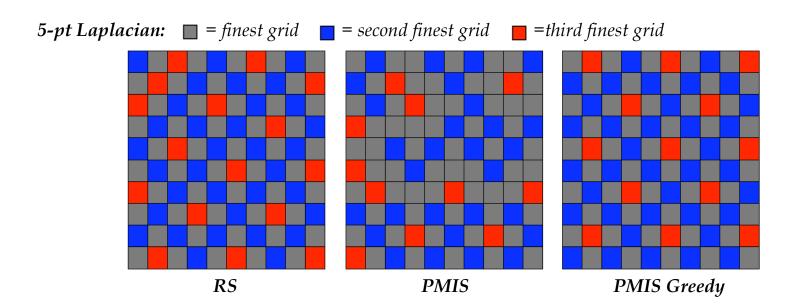
PMIS Summary (De Sterck, Yang & Heys: 2006)

- PMIS coarsening worked well for many problems (with GMRES)
- for some problems, convergence degraded compared to RS
 - decreased accuracy in interpolation due to an inadequate amount of C-points
- One solution: add C-points (RS, CLJP)
- Other possibilities:
 - modify PMIS to (hopefully) improve convergence (PMIS Greedy)
 - combine PMIS coarsening with RS/CLJP coarsening
 - use distance-two C-points as long-range interpolation for F-F connections without a common C-point (F-F interpolation)

Modification 1: PMIS Greedy vs. PMIS

PMIS Greedy

- same procedure as in PMIS
- increase the measure of an unassigned point if it is strongly connected to a newly assigned F-point in each pass
- helps to remove some randomness in the grid structure
- interpolation has a chance to be more accurate



Results for an "Easy" Problem

- 27-pt laplacian, 1 processor, 128³ dof
- AMG

	C_{op}	# iterations	$t_{\text{setup}}\left(s\right)$	$t_{solve}(s)$	t _{total} (s)
RS	2.67	9	209.88	25.24	235.12
PMIS	1.10	47	33.67	65.08	98.75
PMIS Greedy	1.12	38	36.37	54.01	90.38

AMG-GMRES(5)

	Cop	# iterations	$t_{\text{setup}}\left(s\right)$	$t_{\text{solve}}(s)$	t _{total} (s)
RS	2.67	6	208.94	74.72	283.66
PMIS	1.10	17	33.72	42.09	75.81
PMIS Greedy	1.12	15	36.39	36.99	73.38

Results for a More Difficult Problem

• 3D elliptic PDE with jumps in the coefficient *a*

$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

- 1 processor, 80³ dof
- AMG-GMRES(5)

	Cop	# iterations	$t_{\text{setup}}\left(s\right)$	$t_{\text{solve}}(s)$	t _{total} (s)
RS	21.54		Ran out	of Memory	
PMIS	2.46	188	4.06	77.34	81.40
PMIS Greedy	2.54	144	4.19	59.90	64.09

PMIS vs. PMIS Greedy Summary

- better convergence and timing for some problems
- improvement not major
- for other problems, PMIS Greedy not much better (and sometimes even worse) than PMIS with respect to convergence and timing
- slightly higher operator complexities for PMIS Greedy
- PMIS Greedy will require more communication in parallel than PMIS

Modification 2: Restrict PMIS to Finer Grid Levels

- Perform PMIS on first g grid levels and RS on all remaining levels
- Recall:

3D geometric multigrid:
$$C_{op} = 1 + \frac{1}{8} + \frac{1}{64} + \dots < \frac{8}{7}$$

- Advantage:
 - PMIS reduces operator complexity (compared to RS) where it makes the biggest difference (finer levels)
 - RS produces more "structured" grids leading to better interpolation on coarser levels where impact on operator complexity is reduced

Results: 27-pt Laplacian Problem

• 1 processor, 128³ dof

• AMG

	Cop	# iterations	t _{setup} (s)	t _{solve} (s)	t _{total} (s)
PMIS (all levels)	1.10	47	33.67	65.08	98.75
PMIS (first 2 levels)	1.12	27	34.55	38.05	72.60

• AMG-GMRES(5)

	Cop	# iterations	t _{setup} (s)	t _{solve} (s)	t _{total} (s)
PMIS (all levels)	1.10	17	33.72	42.09	75.81
PMIS (first 2 levels)	1.12	12	34.58	30.55	65.13

Results: 3D elliptic PDE with jumps in *a*

• $(au_x)_x + (au_y)_y + (au_z)_z = 1$

• AMG, 1 processor, 120³ dof

	Cop	# iterations	t _{setup} (s)	$t_{\text{solve}}(s)$	t _{total} (s)
PMIS (all levels)	2.44	>> 200	Slow to	converge	
PMIS (first level only)	7.2131	23	47.93	44.32	92.25
PMIS (first 2 levels)	3.49	168	20.58	190.16	210.74

• AMG-GMRES(5), 1 processor, 80³ dof

	Cop	# iterations	t _{setup} (s)	$t_{\text{solve}}(s)$	t _{total} (s)
PMIS (all levels)	2.46	188	4.06	77.34	81.40
PMIS (first level only)	6.97	11	12.76	8.38	21.14
PMIS (first 3 levels)	2.56	105	4.24	44.20	48.44

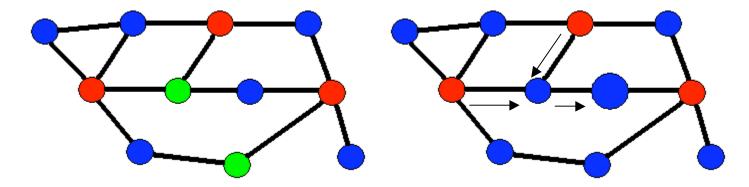
^{*} $C_{op}(RS) = 21.54$

PMIS on Higher Levels Only: Summary

- Improvement in convergence properties for a variety of problems (although some only small)
- How many levels PMIS?
 - problem dependent
- Trade-off between memory (increased operator complexity) and speed of convergence/execution
- Similar approach for parallel case is possible
 - CLJP has similar performance characteristics as RS

Modification 3: Modified FF Interpolation

• FF Interpolation* (De Sterck, Yang: Copper 2005):

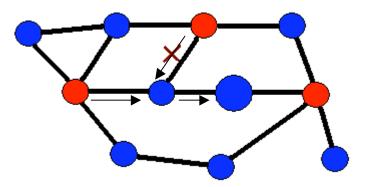


- When a strong F-F connection is encountered, do not add a C-point, but extend interpolation to distance-two Cpoints
- No C-points added, but get larger interpolation stencils (and therefore somewhat increased operator complexity)

^{*}Closely related to Stueben's Standard Interpolation

FF1 Interpolation

Modified FF Interpolation (FF1)



- To reduce operator complexity, only include one distance-two C-point when a strong FF connection is encountered
- Setup time, complexity are reduced

Results: 7-pt Laplacian Problem

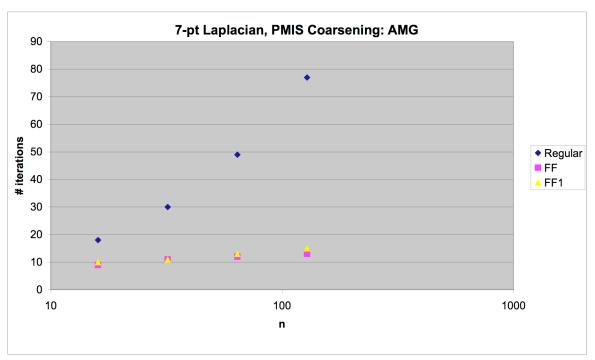
• PMIS coarsening, 1 processor, 128³ dof

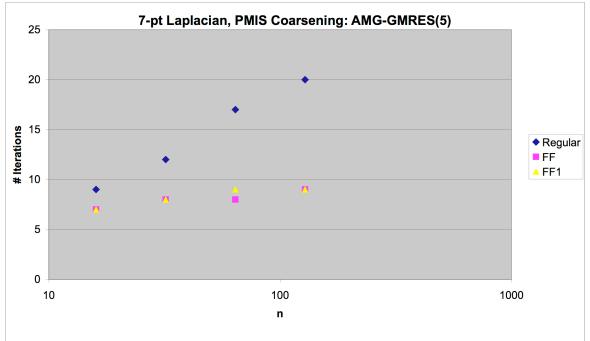
AMG

	Cop	# iterations	t _{setup} (s)	$t_{solve}(s)$	t _{total} (s)
Regular	2.36	77	16.63	85.93	102.56
FF	4.80	13	83.81	22.86	106.67
FF1	3.68	15	44.22	22.07	66.29

• AMG-GMRES(5)

	Cop	# iterations	t _{setup} (s)	$t_{\rm solve}\left({ m s} \right)$	t _{total} (s)
Regular	2.36	20	16.67	35.26	51.93
FF	4.80	9	83.87	22.97	106.84
FF1	3.68	9	43.85	19.85	63.70





Results: 3D elliptic PDE with jumps in *a*

- $(au_x)_x + (au_y)_y + (au_z)_z = 1$
- AMG, 1 processor, 120³ dof

	Cop	# iterations	t _{setup} (s)	$t_{\text{solve}}(s)$	t _{total} (s)
Regular	2.44	>> 200	Slow to	converge	
FF	4.94	14	62.95	20.54	83.49
FF1	3.84	18	35.36	22.47	57.83

• AMG-GMRES(5), 1 processor, 80³ dof

	Cop	# iterations	t _{setup} (s)	$t_{\text{solve}}(s)$	t _{total} (s)
Regular	2.46	188	4.06	77.34	81.40
FF	4.90	9	16.46	5.34	21.80
FF1	3.85	10	9.67	4.99	14.66

Modified FF Interpolation (FF1) Summary

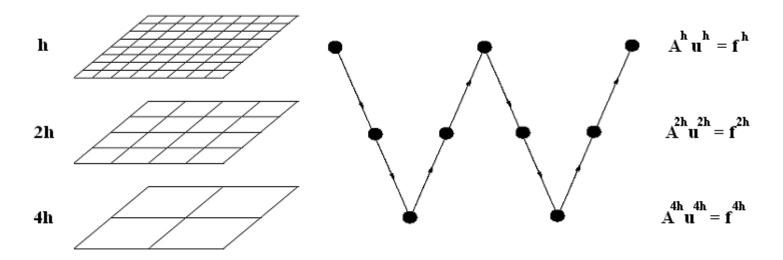
- PMIS with FF or FF1 is scalable! (comparable to RS with classical interpolation, but lower complexity; no need for GMRES)
- FF1 reduces setup time compared to FF
- FF1 iteration number kept low as with FF
- FF1 operator complexity reduced compared to FF
- PMIS with FF1 seems a good parallel alternative for RS with a second pass and classical interpolation

Thanks...

Ulrike Meier Yang and the Center for Applied Scientific
 Computing, Lawrence Livermore National Laboratory

• travel support University of Waterloo Graduate Studies

Algebraic Multigrid (AMG)



- Multiple levels (coarsen to some minimum)
- Iterative
- AMG suitable for unstructured grids

PMIS Coarsening

- weighted independent set algorithm:
 - points, i, that influence many equations (λ_i large) are good candidates for C-points
- add random number between 0 and 1 to λ_i to break ties
- pick C-points with maximal measures (like in CLJP),
 then make all their neighbors fine points (like in RS)
- proceed until all points have been assigned as fine or coarse

Conclusions

- PMIS vs. PMIS Greedy coarsening
 - PMIS Greedy does not provide a considerable advantage
 - any advantage will be degraded in a parallel implementation
- Restricting PMIS to finer grid levels
 - considerable improvement over uniform RS and PMIS coarsening possible
 - scalability possible
 - trade-off between memory use and convergence speed
- FF1 Interpolation (with PMIS coarsening)
 - comparable performance to FF (both better than regular interpolation)
 - scalability possible
 - better suited to parallel implementation than FF