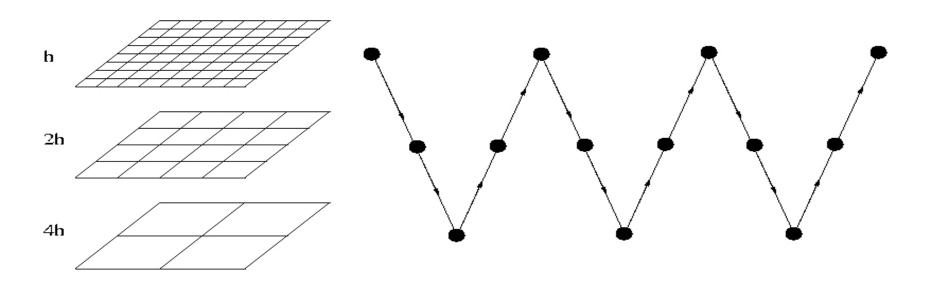
Scalable Algebraic Multigrid on Blue Gene/L

Hans De Sterck, Jeff Butler Department of Applied Mathematics University of Waterloo Ulrike Meier Yang

Center for Applied Scientific Computing Lawrence Livermore National Lab, USA

CAIMS Annual Meeting, Toronto, 19 June 2006


Outline

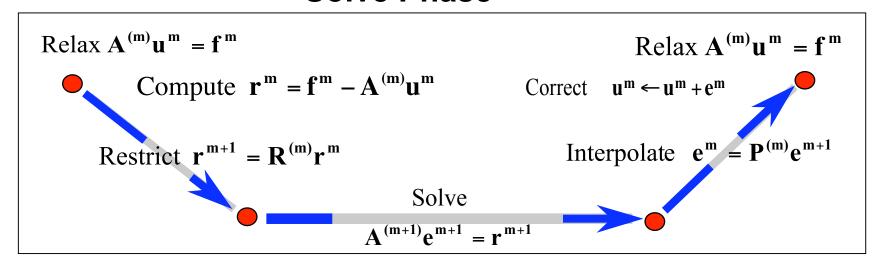
- 1. introduction: algebraic multigrid (AMG)
- 2. classical coarsening may lead to complexity growth
- 3. Parallel Modified Independent Set (PMIS) coarsening
- 4. improving interpolation
- 5. scaling results on Blue Gene/L

(1) introduction: algebraic multigrid (AMG)

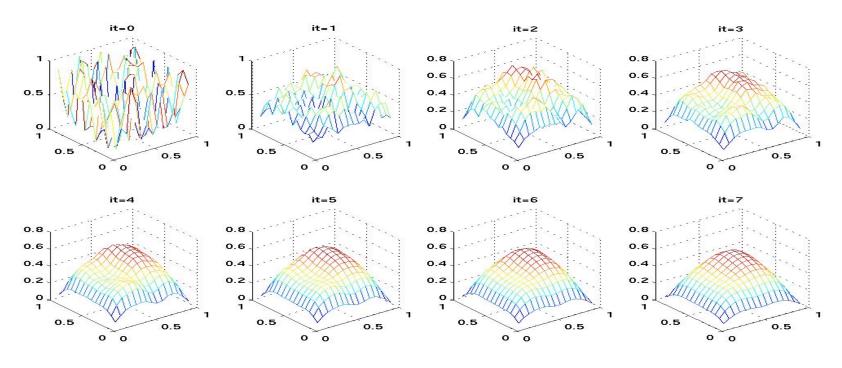
- solve $\mathbf{A}\mathbf{u} = \mathbf{f}$
- A from 3D PDE sparse!
- large problems (10⁹ dof) parallel
- unstructured grid problems

algebraic multigrid (AMG)

- multi-level
- iterative
- algebraic: suitable for unstructured grids!


AMG building blocks

Setup Phase:


- Select coarse "grids"
- Define interpolation, $P^{(m)}$, m = 1,2,...
- Define restriction and coarse-grid operators

$$\mathbf{R}^{(m)} = \mathbf{P}^{(m)T}$$
 $\mathbf{A}^{(m+1)} = \mathbf{P}^{(m)T} \mathbf{A}^{(m)} \mathbf{P}^{(m)}$

Solve Phase

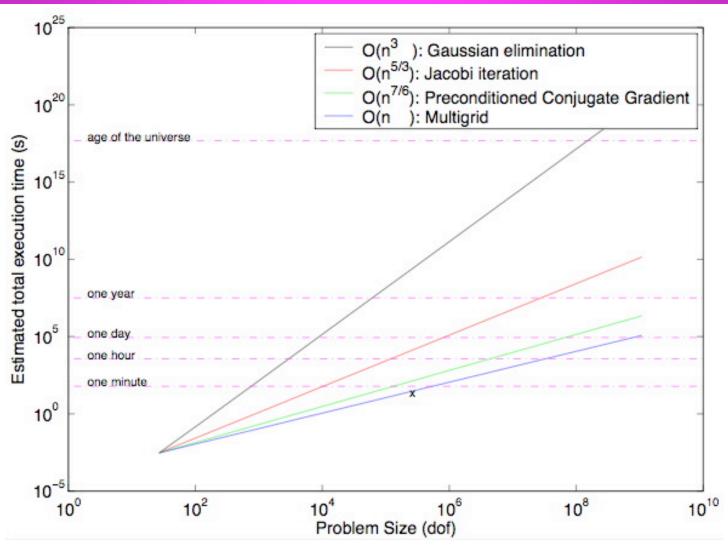
2D model problem: $-u_{xx} - u_{yy} = f(x, y)$

- high-frequency error is removed by relaxation
- low-frequency error needs to be removed by coarse-grid correction
- low-frequency error on fine grid becomes higher frequency error on coarse grid

AMG complexity - scalability

• Operator complexity $C_{op} = \frac{\sum_{i} \text{nonzeros}(A_i)}{\text{nonzeros}(A_0)}$

e.g., 3D, ideally:
$$C_{op} = 1 + 1/8 + 1/64 + ... < 8/7$$


measure of memory use, and work in solve phase

scalable algorithm:

O(n) operations per V-cycle (C_{op} bounded) AND

number of V-cycles independent of n $(\rho_{AMG} \text{ independent of } n)$

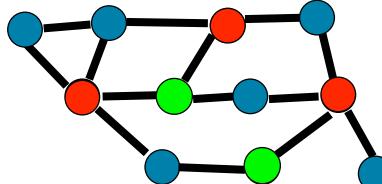
O(n) scalability

AMG coarsening and interpolation

- large a_{ii}, 'strong connections' are important
- define strength matrix S:

- consider the undirected graph of S
- apply parallel maximal independent set algorithm to graph(S) [Luby, 1986]

classical AMG coarsening (CLJP)



Independent: no two C-points are connected

- (C2) All F-F connections require connections to a common Cpoint (for good interpolation)
- F-points have to be changed into C-points, to ensure (C2); (C1) is violated

more C-points, higher complexity

classical coarsening: scalability results

 example: finite difference Laplacian, parallel CLJP coarsening algorithm

• 2D (5-point): near-optimal scalability (250² dof/proc)

Procs	C _{op}	t _{tot}	lter	
16	4.48	2.89	9	
64	4.50	3.85	9	
256	4.50	5.01	9	

(2) classical coarsening may lead to complexity problems

• 3D (7-point): complexity growth

dof	C _{op}
32 ³	16.17
64 ³	22.51

(3) Parallel Modified Independent Set (PMIS) coarsening

our approach to reduce complexity:

 do not add C points for strong F-F connections that do not have a common C point

 less C points, reduced complexity, but worse convergence factors expected

compensate by GMRES acceleration

parallel PMIS results: 7-point finite difference Laplacian in 3D, 40³ dof per proc

CLJP and PMIS-GMRES(10)

proc C _{op}		lter	t _{total}	
1	14.39	6	3.35	
512	17.02	10	35.83	
1331	17.19	10	46.25	
1	2.32	13	1.28	
512	2.37	25	12.77	
1331	2.37	28	17.99	

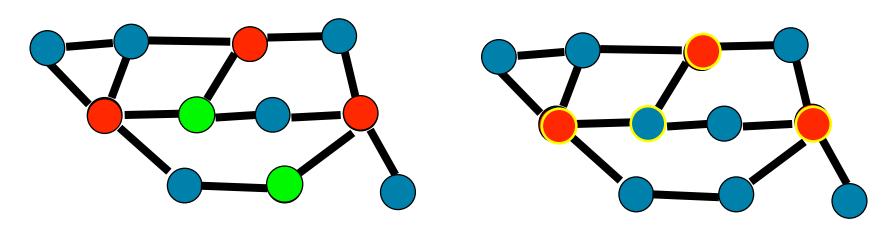
CAIMS 2006

convergence problems on PMIScoarsened grids

- PMIS coarsening works well for many problems, but requires GMRES acceleration
- for some problems, too many iterations are necessary because interpolation is not accurate enough ("not enough C-points")
- one solution: add C-points (CLJP...)
- other solution: use distance-two C-points for interpolation = long-range interpolation
 - → F-F interpolation

convergence problems

• 3D elliptic PDE with jumps in coefficient a


$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

• 1000 processors, 40³ dof/proc

	t _{tot}	C _{op}	Iter
CLJP	52.48	17.00	17
PMIS	211.79	2.40	686

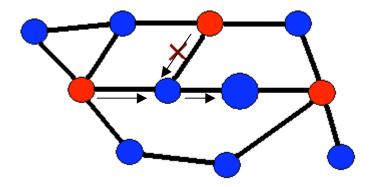
remedy: improve interpolation used with PMIS

(4) improving interpolation: F-F interpolation

- when strong F-F connection without a common C-point is detected, do not add C-point, but extend interpolation stencil to distance-two Cpoints
- no C-points added, but larger interpolation stencils

results using long-range F-F interpolation

3D elliptic PDE with jumps in coefficient a


$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

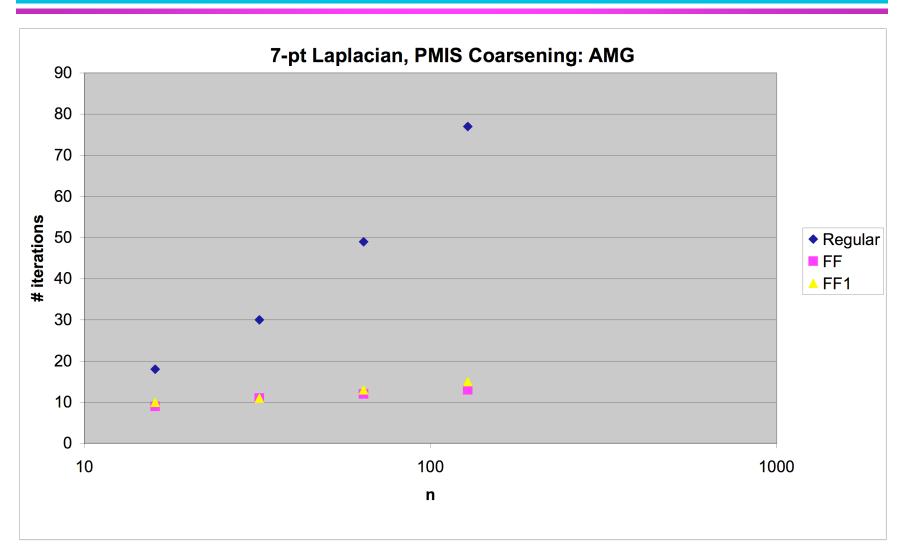
• 1 processor, AMG+GMRES, 80³ dof

	t _{tot}	C _{op}	Iter
CLJP	48.0	21.54	7
PMIS	94.6	2.46	188
PMIS + F-F	21.4	4.90	9

reduce complexity: FF1 Interpolation

Modified FF Interpolation (FF1)

- To reduce operator complexity, only include one distance-two C-point when a strong FF connection is encountered
- Setup time, complexity are reduced


results: 7-pt Laplacian Problem

• PMIS coarsening, 1 processor, 128³ dof

AMG

	Cop	#	t _{setup} (s)	t _{solve} (s)	t _{total} (s)
		iterations			
Regular	2.36	77	16.63	85.93	102.56
FF	4.80	13	83.81	22.86	106.67
FF1	3.68	15	44.22	22.07	66.29

scalability of PMIS-FF1

results: 3D elliptic PDE with jumps

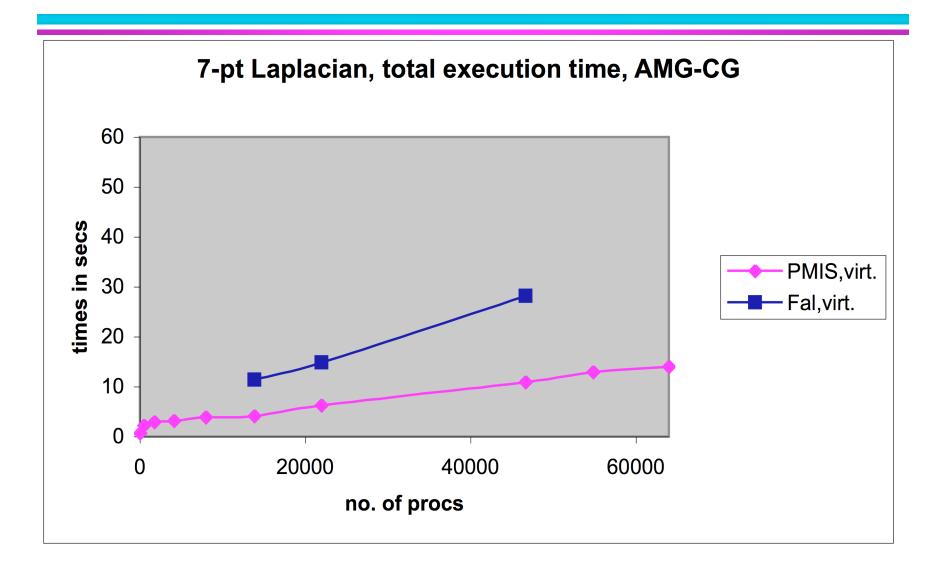
$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

AMG, 1 processor, 120³ dof

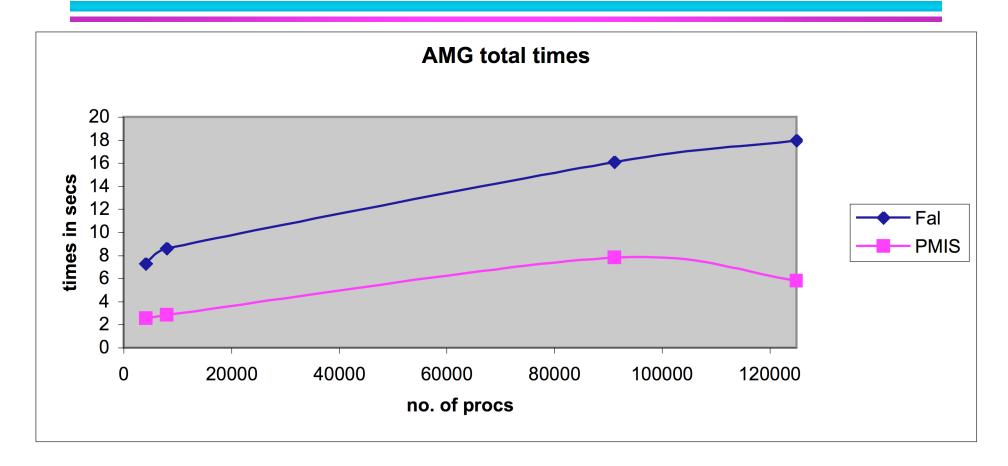
	Сор	# iterations	t _{setup} (s)	t _{solve} (s)	t _{total} (s)
Regular	2.44	>> 200	Slow to	converg e	
FF	4.94	14	62.95	20.54	83.49
FF1	3.84	18	35.36	22.47	57.83

(5) scaling results on Blue Gene/L

Top 500 Supercomputer list (November 2005)

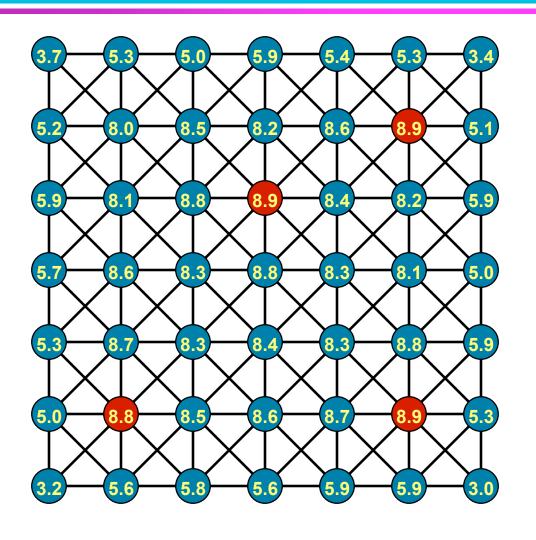

Rank	Site	System	Processors	Rmax (Gflop)
1	Livermore Lab, US	IBM Blue Gene/L	131,072	280,600
2	Thomas J. Watson, US	IBM Blue Gene	40,960	91,290
3	Livermore Lab, US	IBM pSeries	10,240	63,390
4	NASA/Ames, US	SGI Altix	10,160	51,870
5	Sandia Lab, US	Dell PowerEdge	8,000	38,270
6	Sandia Lab, US	Cray XT3	10,880	36,190
7	Earth Simulator Center, Japan	Earth Simulator NEC	5,120	35,860
8	Barcelona Supercomputer Center, Spain	IBM JS20 Cluster	4,800	27,910
9	University Groningen, Netherlands	IBM Blue Gene	12,288	27,450
10	Oak Ridge Lab, US	Cray XT3	5,200	20,527

LLNL Blue Gene/L

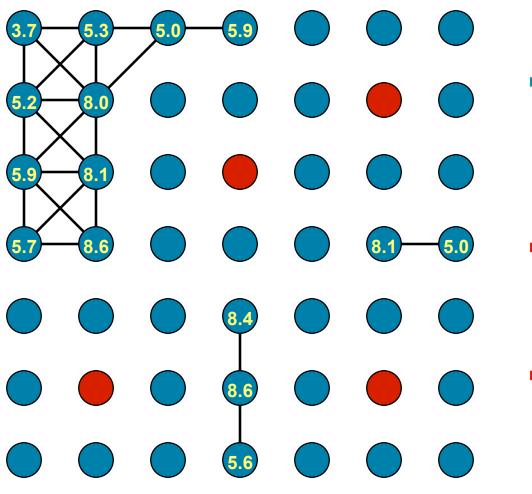


- dual-processor nodes optimized for data access
- each node: one processor for simulation, one for communication; only 256MB ram per processor
- lightweight, single-process linux kernel

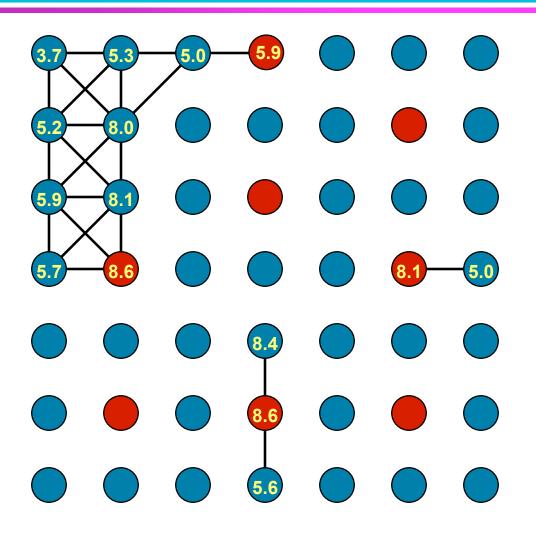
LLNL Blue Gene/L results



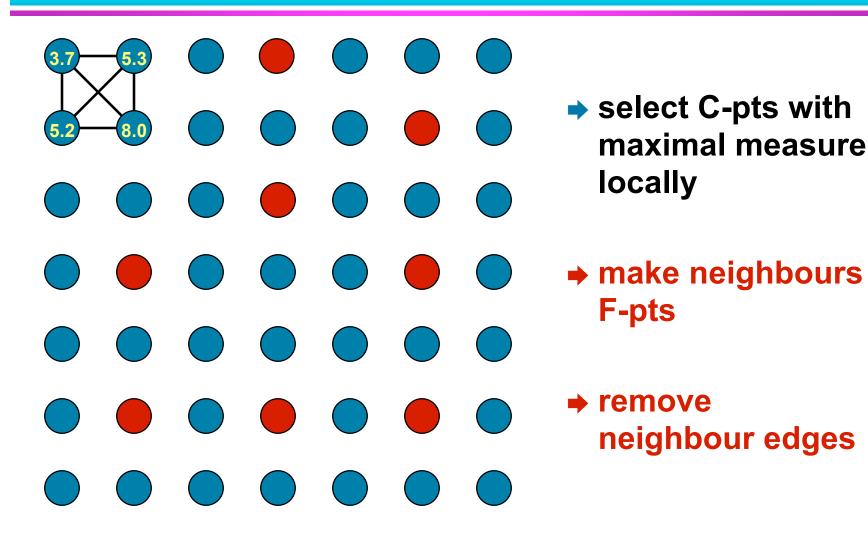
LLNL Blue Gene/L results on full machine


7-pt Laplacian, total execution time, AMG-CG, total problem size ~2 billion

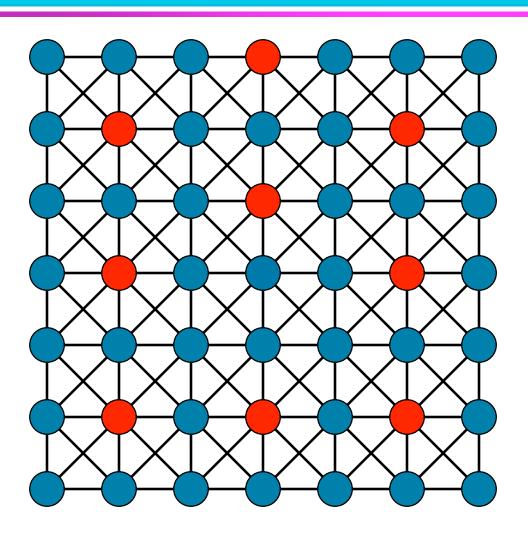
PMIS: select 1


- ⇒ select C-pts with maximal measure locally
- make neighbour F-pts
- remove neighbour edges

PMIS: remove and update 1

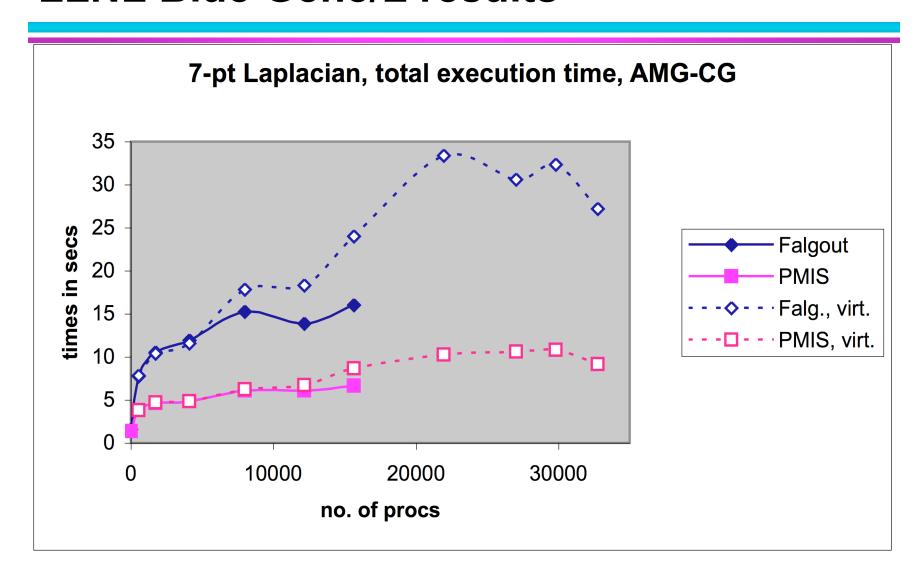

- select C-pts with maximal measure locally
- make neighboursF-pts
- remove neighbour edges

PMIS: select 2



- → select C-pts with maximal measure locally
- make neighboursF-pts
- remove neighbour edges

PMIS: remove and update 2



PMIS: final grid

- select C-pts with maximal measure locally
- make neighbour F-pts
- remove neighbour edges
- parallel algorithm

LLNL Blue Gene/L results

