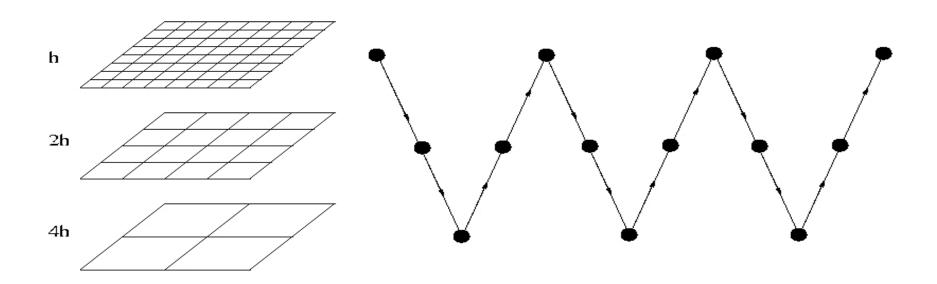
Optimal Order Parallel Algebraic Multigrid Preconditioners

Hans De Sterck

Department of Applied Mathematics
University of Waterloo
Ulrike Meier Yang

Center for Applied Scientific Computing Lawrence Livermore National Laboratory


Outline

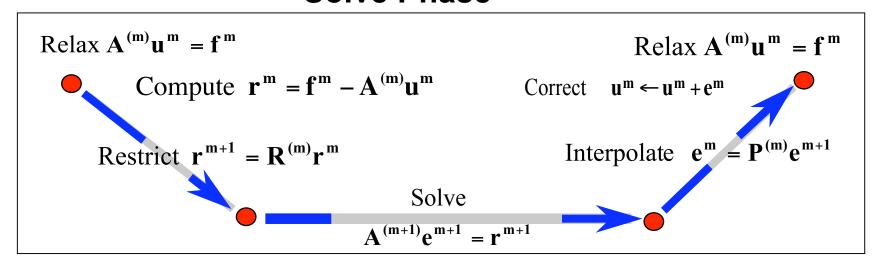
- introduction: AMG
- complexity growth when using classical coarsenings
- Parallel Modified Independent Set (PMIS) coarsening
- scaling results
- improving interpolation
- conclusions and future work

Introduction

- solve $\mathbf{A}\mathbf{u} = \mathbf{f}$
- A from 3D PDE sparse!
- large problems (10⁹ dof) parallel
- unstructured grid problems

Algebraic Multigrid (AMG)

- multi-level
- iterative
- algebraic: suitable for unstructured!


AMG building blocks

Setup Phase:

- Select coarse "grids"
- Define interpolation, $P^{(m)}$, m = 1,2,...
- Define restriction and coarse-grid operators

$$\mathbf{R}^{(m)} = \mathbf{P}^{(m)T}$$
 $\mathbf{A}^{(m+1)} = \mathbf{P}^{(m)T} \mathbf{A}^{(m)} \mathbf{P}^{(m)}$

Solve Phase

AMG complexity - scalability

• Operator complexity $C_{op} = \frac{\sum_{i} \text{nonzeros}(A_i)}{\text{nonzeros}(A_0)}$

e.g., 3D, ideally:
$$C_{op} = 1 + 1/8 + 1/64 + ... < 8/7$$

measure of memory use, and work in solve phase

scalable algorithm:

O(n) operations per V-cycle (C_{op} bounded) AND

number of V-cycles independent of n $(\rho_{AMG} \text{ independent of } n)$

AMG coarsening and interpolation

- large a_{ii}, 'strong connections' are important
- define strength matrix S:

- consider the undirected graph of S
- apply parallel maximal independent set algorithm to graph(S) [Luby, 1986]

classical AMG coarsening (CLJP)

Independent: no two C-points are connected

- (C2) All F-F connections require connections to a common Cpoint (for good interpolation)
- F-points have to be changed into C-points, to ensure (C2);
 (C1) is violated

more C-points, higher complexity

Classical coarsening: scalability results

 example: finite difference Laplacian, parallel CLJP coarsening algorithm

2D (5-point): near-optimal scalability (250² dof/proc)

Procs	C _{op}	t _{tot}	Iter
16	4.48	2.89	9
64	4.50	3.85	9
256	4.50	5.01	9

Classical coarsening: complexity growth in some cases

• 3D (7-point): complexity growth

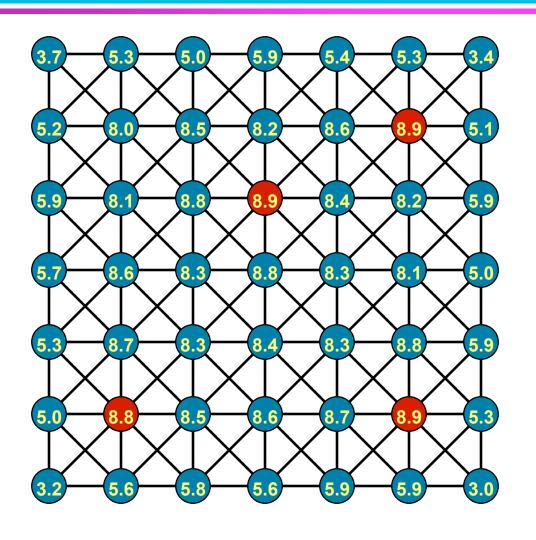
dof	C _{op}	
32 ³	16.17	
64 ³	22.51	

Classical coarsening: complexity growth in some cases

4D (9-point), 5D (11-point): complexity growth!!

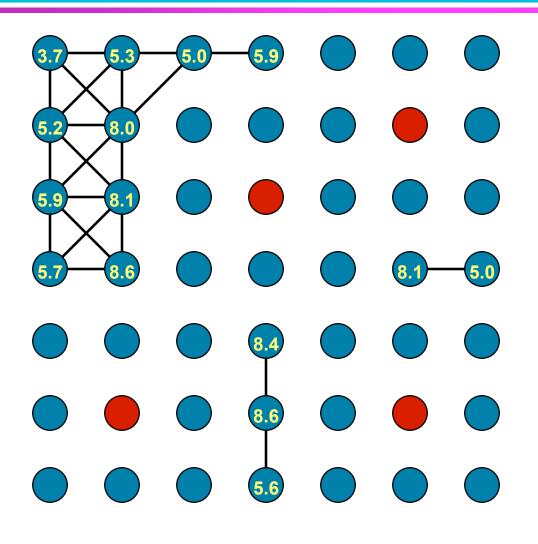
	dof	C _{op}
4D	204	127.5
5D	95	256.9

excessive memory use

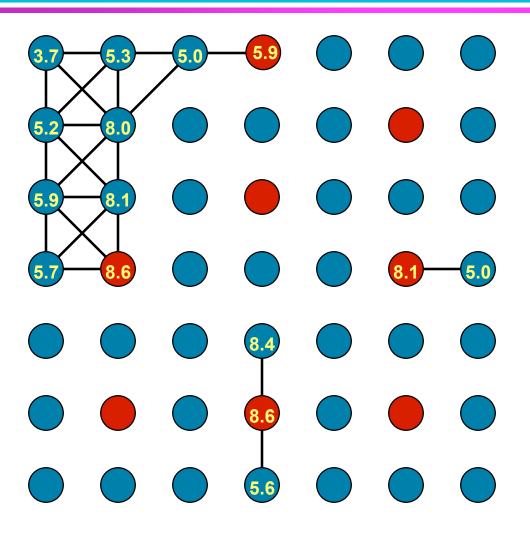

(results obtained by Jeff Butler)

our approach to reduce complexity

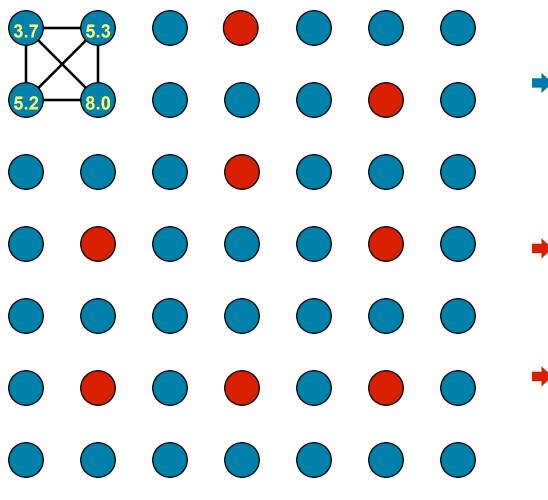
do not add C points for strong F-F connections
 that do not have a common C point


- less C points, reduced complexity, but worse convergence factors expected
- compensate by GMRES acceleration

PMIS: select 1

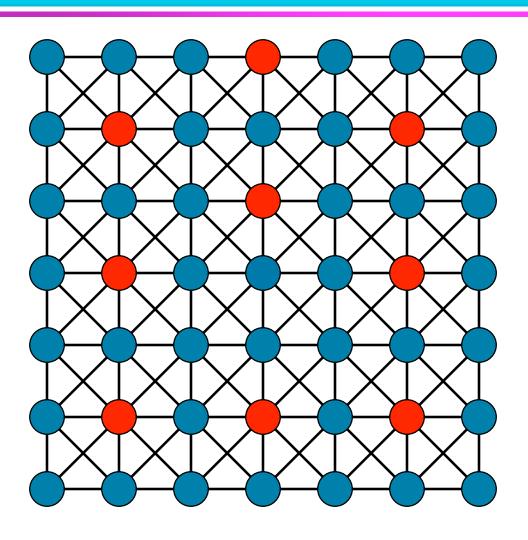

- ⇒ select C-pts with maximal measure locally
- make neighbour F-pts
- remove neighbour edges

PMIS: remove and update 1


- select C-pts with maximal measure locally
- make neighboursF-pts
- remove neighbour edges

PMIS: select 2

- → select C-pts with maximal measure locally
- make neighboursF-pts
- remove neighbour edges


PMIS: remove and update 2

select C-pts with maximal measure locally

- make neighboursF-pts
- remove neighbour edges

PMIS: final grid

- select C-pts with maximal measure locally
- make neighbour F-pts
- remove neighbour edges
- parallel algorithm

PMIS coarsening: reduce complexity

• finite difference Laplacian (CLJP-PMIS+GMRES)

	dof	C _{op}	t _{tot}
2D	120 ²	4.16	0.22
	120 ²	1.90	0.24
3D	100 ³	25.94	129.42
	100 ³	2.36	27.68
4D	204	127.5	88.39
	20 ⁴	2.95	4.31
5D	95	256.9	73.92
	85	3.14	0.91

Parallel PMIS results: 7-point finite difference Laplacian in 3D, 40³ dof per proc

CLJP and PMIS-GMRES(10)

proc	C _{op}	lter	t _{total}	
1	14.39	6	3.35	
512	17.02	10	35.83	
1331	17.19	10	46.25	
1	2.32	13	1.28	
512	2.37	25	12.77	
1331	2.37	28	17.99	

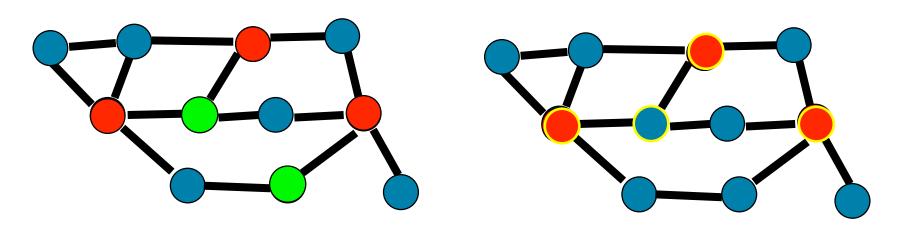
FoCM 2005

Convergence problems on PMIS-coarsened grids

- PMIS coarsening works well for many problems
- for some problems, too many iterations are necessary because interpolation is not accurate enough ("not enough C-points")
- one solution: add C-points (CLJP...)
- other solution: use distance-two C-points for interpolation = long-range interpolation
 - F-F interpolation

Convergence problems

3D elliptic PDE with jumps in coefficient a


$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

• 1000 processors, 40³ dof/proc

	t _{tot}	C _{op}	lter
CLJP	52.48	17.00	17
PMIS	211.79	2.40	686

remedy: improve interpolation used with PMIS

F-F interpolation

- when strong F-F connection without a common C-point is detected, do not add C-point, but extend interpolation stencil to distance-two Cpoints
- no C-points added, but larger interpolation stencils

results using long-range interpolation

• 3D elliptic PDE with jumps in coefficient a

$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

• 1 processor, AMG+GMRES, 80³ dof

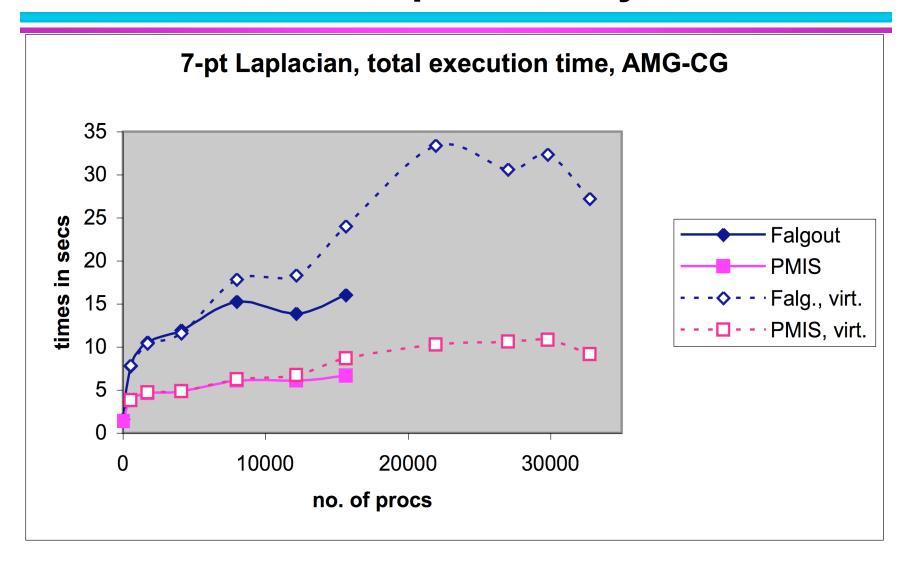
	t _{tot}	C _{op}	lter
CLJP	48.0	21.54	7
PMIS	94.6	2.46	188
PMIS + F-F	21.4	4.90	9

Conclusions and future work

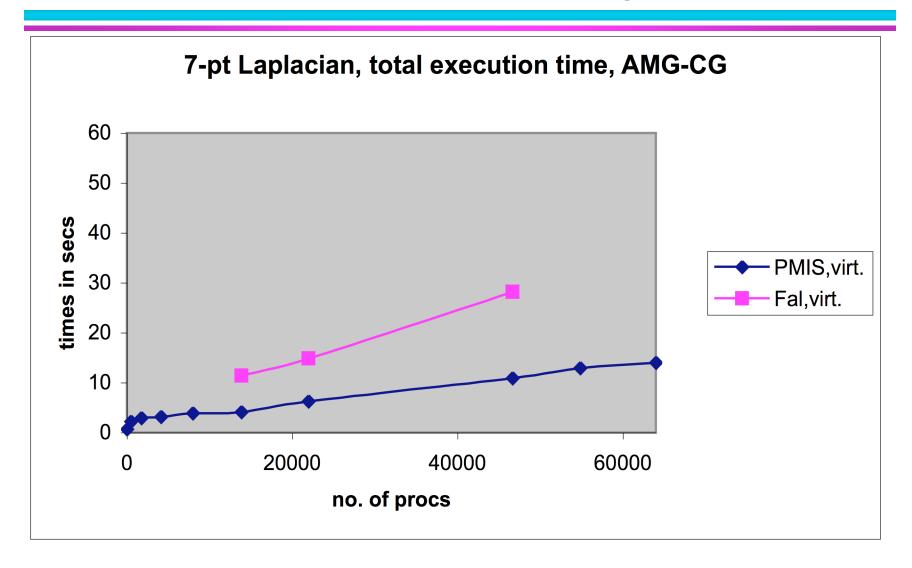
- PMIS leads to reduced, scalable complexities for large multi-D problems on parallel computers
- for difficult problems, nearest-neighbour interpolation is not sufficient on PMIS grids
- long-range interpolation improves convergence
- F-F interpolations was studied, need to reduce complexity further
- scalability on very large machines

Top 500 Supercomputer list (November 2004)

Rank	Site	Computer	Country	TeraFlops	Processors
1	Lawrence Livermore National Laboratory	IBM BlueGene/L	US	135	65,536
2	NASA/Ames Research Center/NAS	SGI Altix	US	51	10,160
3	The Earth Simulator Center	NEC Earth-Simulator	Japan	35	5,120
4	Barcelona Supercomputer Center	IBM eServer	Spain	20	3,564
5	Lawrence Livermore National Laboratory	Intel Itanium2	US	19	4,096
6	Los Alamos National Laboratory	ASCI Q - HP AlphaServer	US	13	8,192
7	Virginia Tech	1100 Dual 2.3 GHz Apple XServe	US	12	2,200
8	IBM - Rochester	IBM BlueGene/L	US	11	8,192
9	Naval Oceanographic Office	IBM eServer	US	10	2,944
10	NCSA	Dell P4 Xeon	US	10	2,500
11	ECMWF	IBM eServer	UK	10	2,176
12	ECMWF	IBM eServer	UK	10	2,176
			.		2 = 42
17	Shanghai Supercomputer Center	Dawning 4000A, Opteron	China	8	2,560
18	Los Alamos National Laboratory	LNX Opteron	US	8	2,816
19	Lawrence Livermore National Laboratory	MCR Linux Cluster Xeon	US	8	2,304
20	Lawrence Livermore National Laboratory	ASCI White, IBM SP Power3	US	7	8,192


- scalable results were presented for MCR (#19), 2,000 procs
- next target: Blue Gene/L (#1), 65,000 procs (will be 130,000 soon)

LLNL Blue Gene/L



- dual-processor nodes optimized for data access
- each node: one processor for simulation, one for communication; only 256MB ram per processor
- lightweight, single-process linux kernel
- Blue Gene/L will be fully operational later in 2005, with 130,000 procs

LLNL Blue Gene/L preliminary results

LLNL Blue Gene/L preliminary results

