Coarsening and Interpolation in Algebraic Multigrid: a Balancing Act

Hans De Sterck

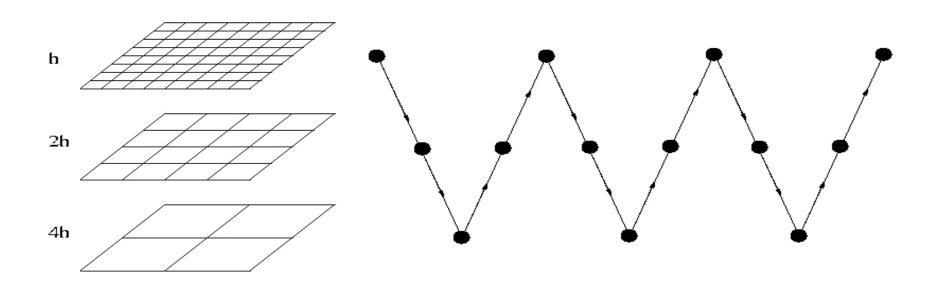
Department of Applied Mathematics University of Waterloo, Ontario, Canada

Ulrike Meier Yang

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

University of California, USA

Waterloo


Outline

- introduction: AMG
- AMG coarsening: classical versus more aggressive
- convergence problems with more aggressively coarsened grids
- improved, long-range interpolation methods
- results
- conclusions and future work

Introduction

- solve $\mathbf{A}\mathbf{u} = \mathbf{f}$
- A from 3D PDE sparse!
- large problems (10⁹ dof) parallel
- unstructured grid problems

Algebraic Multigrid (AMG)

- multi-level
- iterative
- algebraic: suitable for unstructured!

AMG complexity - scalability

scalable algorithm:

$$O(n)$$
 operations per V-cycle (C_{op} bounded)
AND

number of V-cycles independent of n

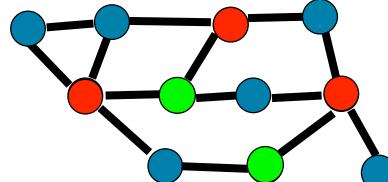
$$(\rho_{AMG} \text{ independent of } n)$$

• Operator complexity $C_{op} = \frac{\sum nonzeros(A_i)}{nonzeros(A_0)}$

e.g.,
$$3D$$
: $C_{op} = 1 + 1/8 + 1/64 + ... < 8/7$

measure of memory use, and work in solve phase

Classical AMG coarsening



Independent: no two C-points are connected

- (C2) All F-F connections require connections to a common Cpoint (for good nearestneighbor interpolation)
- F-points have to be changed into C-points, to ensure (C2);
 (C1) is violated

more C-points, higher complexity

Classical coarsening: scalability results

 example: finite difference Laplacian, parallel CLJP coarsening algorithm

2D (5-point): near-optimal scalability (250² dof/proc)

Procs	C _{op}	t _{tot}	Iter
16	4.48	2.89	9
64	4.50	3.85	9
256	4.50	5.01	9

Classical coarsening: complexity growth in some cases

• 3D (7-point): complexity growth

dof	C _{op}	lter
32 ³	16.17	8
64 ³	22.51	11

 increased memory use, long solution times, long setup times, loss of scalability

Copper 2005

Classical coarsening: complexity growth in some cases

4D (9-point), 5D (11-point): complexity growth!!

	dof	C _{op}	Iter	
4D	204	127.5	8	
5D	95	256.9	5	

excessive memory use

our approach to reduce complexity: PMIS (parallel modified independent set)

 do not add C points for strong F-F connections that do not have a common C point

 less C points, reduced complexity, but worse convergence factors expected

combine with GMRES acceleration

in many cases (3D...), large gains

PMIS coarsening: reduce complexity

• finite difference Laplacian (CLJP-PMIS+GMRES)

	dof	C _{op}	lter	t _{tot}
2D	120 ²	4.16	12	0.22
	120 ²	1.90	24	0.24
3D	100 ³	25.94	12	129.42
	100 ³	2.36	20	27.68
4D	204	127.5	8	88.39
	204	2.95	11	4.31
5D	95	256.9	5	73.92
	85	3.14	8	0.91
	20 ⁵	4.02	12	181.93

Copper 2005 11

Convergence problems on PMIS-coarsened grids

- PMIS coarsening works well for many problems
- for some problems, too many iterations are necessary because interpolation is not accurate enough ("not enough C-points")
- one solution: add C-points (CLJP...)
- other solution: use distance-two C-points for interpolation = long-range interpolation
 - Stuebe's multipass interpolation
 - F-F interpolation

Convergence problems

• 3D elliptic PDE with jumps in coefficient a

$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

• 1000 processors, 40³ dof/proc

	t _{tot}	C _{op}	lter	
CLJP	52.48	17.00	17	
PMIS	211.79	2.40	686	

remedy: improve interpolation used with PMIS

classical AMG Interpolation

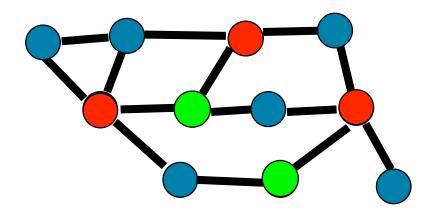
• after relaxation:

- heuristic: error after interpolation should also satisfy this relation approximately
- derive interpolation from:

$$a_{ii}e_i + \sum_{j \in C} a_{ij}e_j + \sum_{j \in F} a_{ij}e_j = 0$$
 $\forall i \in F$

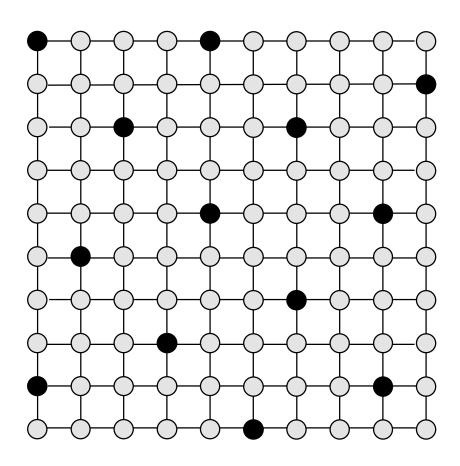
classical AMG interpolation

$$a_{ii}e_i + \sum_{j \in C} a_{ij}e_j + \sum_{j \in F} a_{ij}e_j = 0$$
 $\forall i \in F$

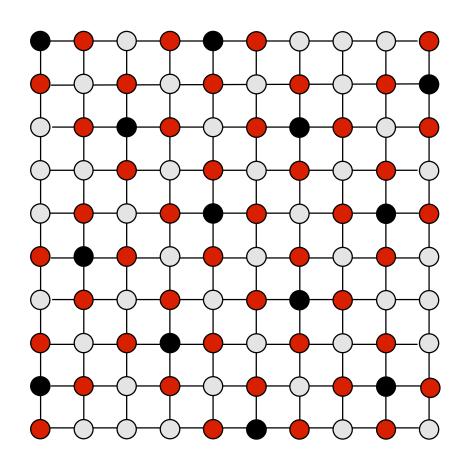

- "large" a_{ij} should be taken into account accurately
- "strong connections": i strongly depends on j (and j strongly influences i) if

$$-a_{ij} \ge \theta \max_{k \ne i} \left\{ -a_{ik} \right\}, \quad 0 < \theta \le 1$$

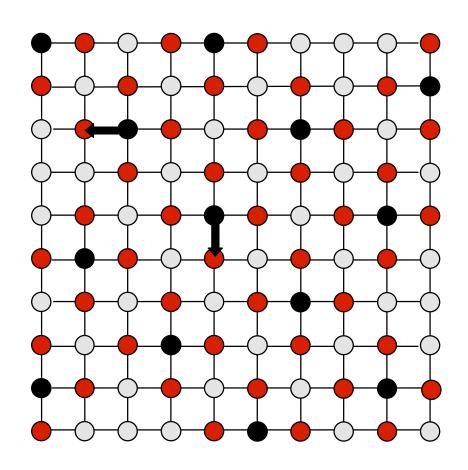
with strong threshold θ


classical AMG interpolation

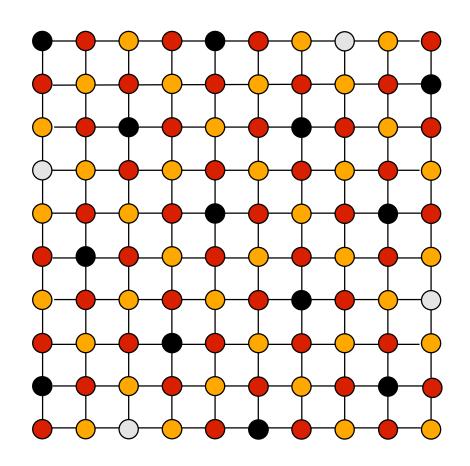
- strong F-F connections interpolated from common C-point
- interpolation only from nearest-neighbor C-points


Copper 2005 16

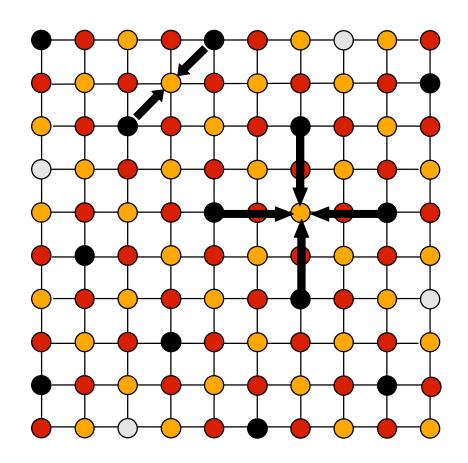
(1) Stueben's multipass interpolation


1st pass:

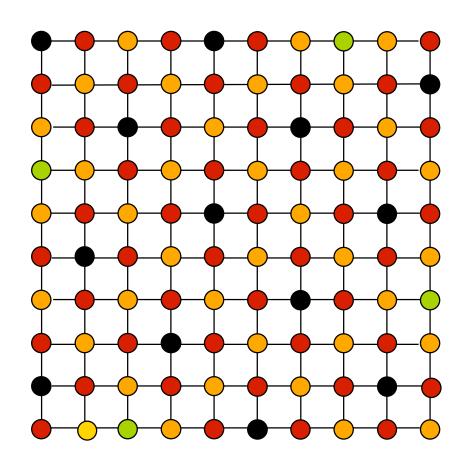
Coarse points


2nd pass:

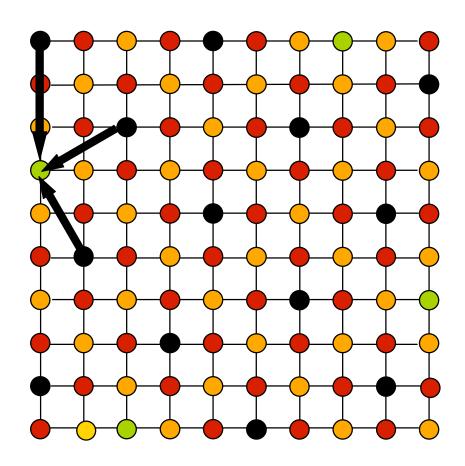
direct interpolation from coarse C-neighbor


2nd pass:

direct interpolation from coarse C-neighbor

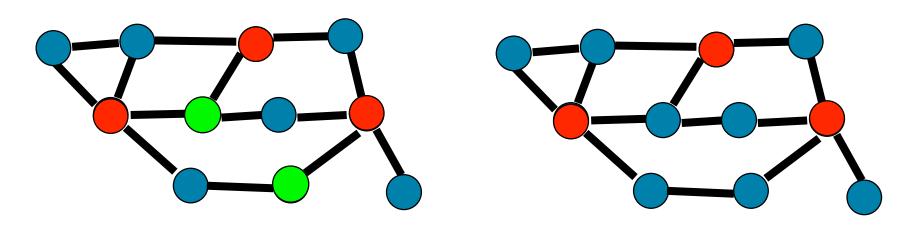

3rd pass:

direct interpolation from coarse Fneighbor (indirectly from distance-2 C-point)


3rd pass:

direct interpolation from coarse Fneighbor (indirectly from distance-2 C-point)

Final pass


Copper 2005 22

Final pass

Copper 2005 23

(2) F-F interpolation

- when strong F-F connection without a common C-point is detected, do not add C-point, but extend interpolation stencil to distance-two Cpoints
- no C-points added, but larger interpolation stencils

results using long-range interpolation

• 3D elliptic PDE with jumps in coefficient a

$$(au_x)_x + (au_y)_y + (au_z)_z = 1$$

• 1 processor, AMG+GMRES, 80³ dof

	t _{tot}	C _{op}	s _{avg} (level)	lter
CLJP	48.0	21.54	1007 (9)	7
PMIS	94.6	2.46	54 (3)	188
PMIS + mp	13.7	2.47	56 (3)	21
PMIS + F-F	21.4	4.90	204 (3)	9

results using long-range interpolation

- 3D elliptic PDE with jumps in coefficient a
- 1 processor, AMG+GMRES

	dof	C _{op}	Savg	Iter	t setup	t _{solve}	t _{tot}
PMIS + mp	40	2.53	44	17	0.33	0.98	1.31
	80	2.47	56	21	3.11	10.55	13.66
	120	2.44	59	26	10.98	46.84	57.82
PMIS + F-F	40	4.64	114	9	1.31	0.70	2.01
	80	4.90	204	9	15.06	6.38	21.44
	120	4.94	248	9	55.47	22.94	78.41

mp uses less memory, is faster than F-F

Conclusions

- PMIS leads to reduced, scalable complexities for large problems on parallel computers
- for difficult problems, nearest-neighbor interpolation is not sufficient on PMIS grids
- long-range interpolation improves convergence
- multipass appears superior to F-F

Future work

parallel implementation of multipass interpolation

 investigate scalability of parallel AMG algorithms on Blue Gene/L-class machines

Copper 2005 28