Least-Squares Finite Element Methods for Nonlinear Hyperbolic Conservation Laws

3 April 2003

Hans De Sterck

Luke Olson, Tom Manteuffel, Steve McCormick

Department of Applied Mathematics
University of Colorado at Boulder

Nonlinear Hyperbolic Conservation Laws

$$\left(egin{aligned}
abla_{t,x} \cdot (u,f(u)) &= 0 & in & \Omega \\
u &= g & on & \Gamma_{in}
abla_{in}
abla_{$$

$$\nabla = (\partial_t, \partial_x)$$
 $\nabla^{\perp} = (-\partial_x, \partial_t)$

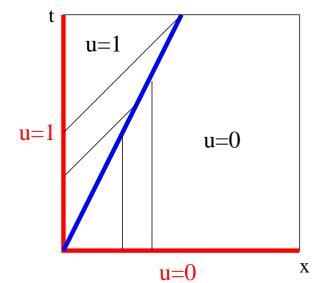
inviscid Burgers equation:

$$f(u) = u^2/2$$

Rankine-Hugoniot relation:

$$[(u, f(u))] \cdot \vec{n} = 0$$

$$\Rightarrow (u, f(u)) \in H(div)$$



$$H(div) = \{(u, v) \in (L_2)^2 \mid ||\nabla \cdot (u, v)||_0^2 < \infty\}$$

Outline

- Least-squares finite element method (LSFEM)
- (1) LSFEM for the Burgers equation
- (2) H(div)-conforming LSFEM
- (3) Dual H(div)-conforming LSFEM
- FEM convergence theory
- Numerical conservation
- Adaptivity
- Conclusions

Least-Squares Finite Element Method

- \bullet Lu = f
- define the functional

$$\mathcal{F}(u;f) = ||Lu - f||_0^2 = \langle Lu - f, Lu - f \rangle$$

⇒ minimization:

$$u_*^h = \underset{u^h \in \mathcal{U}^h}{arg \, min} \|Lu^h - f\|_0^2 = \underset{u^h \in \mathcal{U}^h}{arg \, min} \, \mathcal{F}(u^h; f)$$

condition for stationary point:

$$\frac{\partial \mathcal{F}(u_*^h + \alpha v^h; f)}{\partial \alpha} \mid_{\alpha = 0} = 0 \quad \forall \ v^h \in \mathcal{U}^h$$

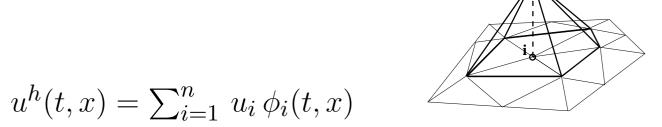
if
$$L$$
 is linear: $\mathcal{F}(u_*^h + \alpha v^h; f) = \langle Lu_*^h - f, Lu_*^h - f \rangle + 2 \alpha \langle Lu_*^h - f, Lv_*^h \rangle + \alpha^2 \langle v_*^h, v_*^h \rangle$

⇒ weak form:

find
$$u^h_* \in \mathcal{U}^h$$
, s.t. $\langle Lu^h_*, Lv^h \rangle = \langle f, Lv^h \rangle \quad \forall v^h \in \mathcal{U}^h$

Finite Element Discretization

• approximate $u \in \mathcal{U}$ by $u^h \in \mathcal{U}^h$



algebraic system from weak form:

$$\langle Lu^h, L\phi_j \rangle = \langle f, L\phi_j \rangle \qquad \forall \phi_j$$

equation
$$j$$
:
$$\sum_{i=1}^{n} u_i \langle L\phi_i, L\phi_j \rangle = \langle f, L\phi_j \rangle$$
 (n equations in n unknowns)

(1) LSFEM for the Burgers Equation

- Gauss-Newton: first linearize the equation, then put the linearized equation into the LS functional, then minimize the LS functional
- Linearization:

$$F(u) := \nabla \cdot (u, u^2/2) = 0$$

Newton:
$$F(u) = 0 \implies F(u_0) + dF|_{u_0}(u - u_0) = 0$$

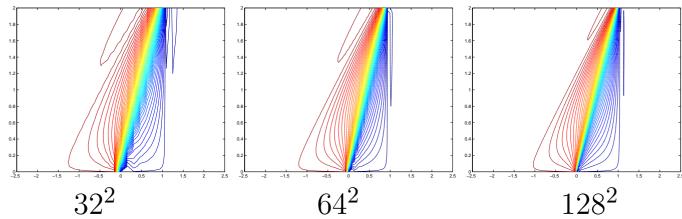
The Fréchet derivative $dF|_{u_0}(v)$ at u_0 in a direction v is

$$dF|_{u_0}(v) = \lim_{\varepsilon \to 0} \frac{F(u_0 + \varepsilon v) - F(u_0)}{\varepsilon}$$
$$dF|_{u_0}(v) = \nabla \cdot ((1, u_0) \ v)$$
$$\Rightarrow \nabla \cdot (u_0, u_0^2/2) + \nabla \cdot ((1, u_0) \ (u - u_0)) = 0$$

Numerical Results

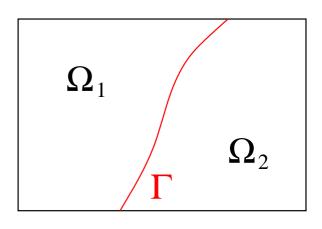
$$u_*^h = \underset{u^h \in \mathcal{U}^h}{\operatorname{arg\,min}} \|\nabla \cdot (u, u^2/2)\|^2$$

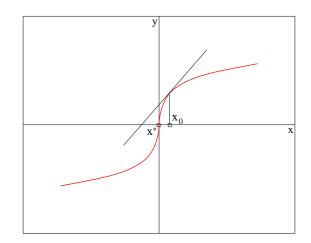
 $u^h \in \mathcal{U}^h \subset H^1$, bilinear elements on quadrilaterals



- right shock speed, no oscillations
- on each grid, newton process converges
- BUT: for decreasing h, functional does not go to zero
- this means: for decreasing h, convergence to an incorrect solution!!! (L^*L has a spurious stationary point)
- WHY NO CONVERGENCE??

Unbounded Fréchet Derivative





$$\nabla \cdot \vec{w} = \nabla \cdot \vec{w}_{1,2}^{(p)} + [\vec{w}]_1^2 \cdot \vec{n} \, \delta_{\Gamma}$$

$$dF|_{u_0}(v) = \nabla \cdot ((1, u_0) \ v) = \nabla \cdot ((1, u_0) \ v)_{1,2}^{(p)} + [\ (1, u_0) \ v\]_1^2 \cdot \vec{n} \ \delta_{\Gamma}$$

- when u_0 is discontinuous (e.g. u_0 is the exact solution), for almost all functions v the Fréchet derivative is unbounded!! (recall: $[(u_0, u_0^2/2)]_1^2 \cdot \vec{n} = 0$)
- Newton with $f'(x_*) = \infty$ may have empty basin of attraction (e.g. $f(x) = |x|^{1/3} \Rightarrow x_1 = -2x_0$)
- ⇒ this may explain why LSFEM fails to converge (convergence to a spurious stationary point)

(2) H(div)-conforming Reformulation

$$\nabla \cdot (u, u^2/2) = 0 \quad \Omega$$

$$u = g \quad \Gamma_{in}$$

$$\nabla \cdot (u, u^2/2) = 0 \quad \Omega$$

$$u = g \quad \Gamma_{in}$$

$$\vec{w} - (u, u^2/2) = 0$$

$$\vec{n} \cdot (\vec{w} - (g, g^2/2)) = 0 \quad \Gamma_{in}$$

$$\vec{F}(\vec{w}, u) = 0 \implies \vec{F}(\vec{w}_0, u_0) + \vec{F}'|_{\vec{w}_0, u_0}(\vec{w} - \vec{w}_0, u - u_0) = 0$$

$$\vec{F}'|_{\vec{w}_0,u_0}(\vec{w}-\vec{w}_0,u-u_0) = \begin{bmatrix} \nabla \cdot & 0 \\ I & -1 \\ -u_0 \end{bmatrix} \cdot \begin{bmatrix} \vec{w}-\vec{w}_0 \\ u-u_0 \end{bmatrix}$$

⇒ Fréchet derivative is bounded! (we choose $\vec{w} \in H(div)$)

(3) Dual H(div)-conforming Reformulation

$$\nabla \cdot (u, u^2/2) = 0 \quad \Omega$$

$$u = g \quad \Gamma_{in}$$

$$\Rightarrow \qquad \overrightarrow{n} \cdot (\nabla^{\perp} p - (u, u^2/2) = 0 \quad \Omega$$

$$\overrightarrow{n} \cdot (\nabla^{\perp} p - (g, g^2/2)) = 0 \quad \Gamma_{in}$$

$$\vec{F}(p,u) = 0 \implies \vec{F}(p_0, u_0) + \vec{F}'|_{p_0, u_0}(p - p_0, u - u_0) = 0$$

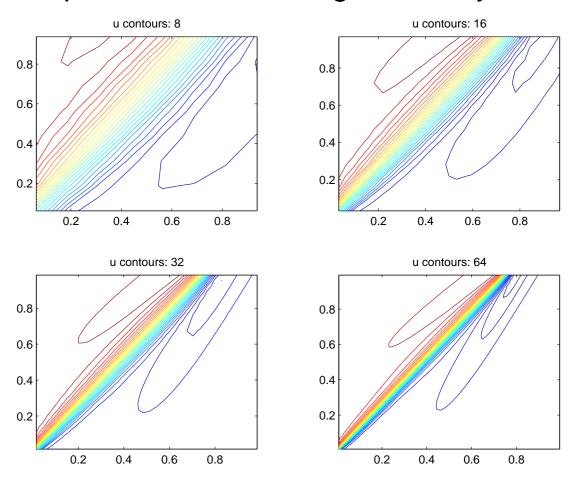
$$\vec{F}'|_{p_0, u_0}(p - p_0, u - u_0) = \begin{bmatrix} \nabla^{\perp} & -1 \\ -u_0 \end{bmatrix} \cdot \begin{bmatrix} p - p_0 \\ u - u_0 \end{bmatrix}$$

- \Rightarrow Fréchet derivative is bounded! (we choose $p \in H(curl)$)
- p is De Rham-dual of \vec{w}
 - move up one space to the left in De Rham-diagram of differential forms
 - similar to potential formulations

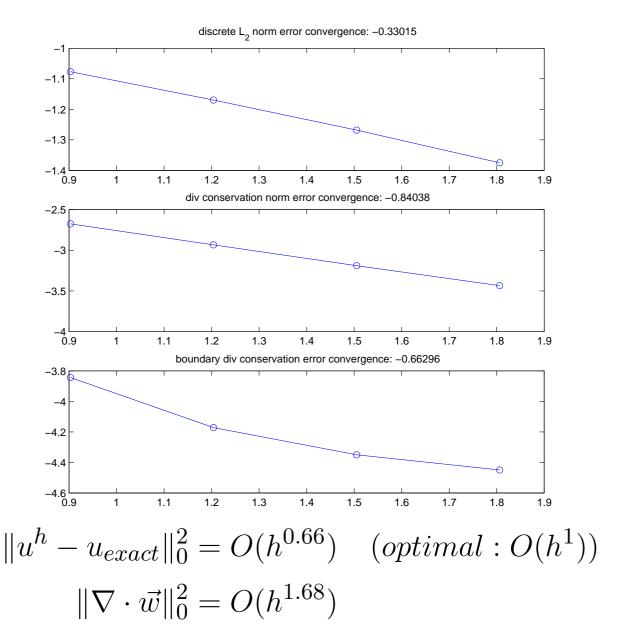
Results for H(div)-conforming LSFEM

$$(\vec{w}_*^h, u_*^h) = \underset{\vec{w}^h \in \mathcal{W}_g^h, u^h \in \mathcal{U}^h}{\arg \min} \|\nabla \cdot \vec{w}\|^2 + \|\vec{w} - (u, u^2/2)\|^2$$

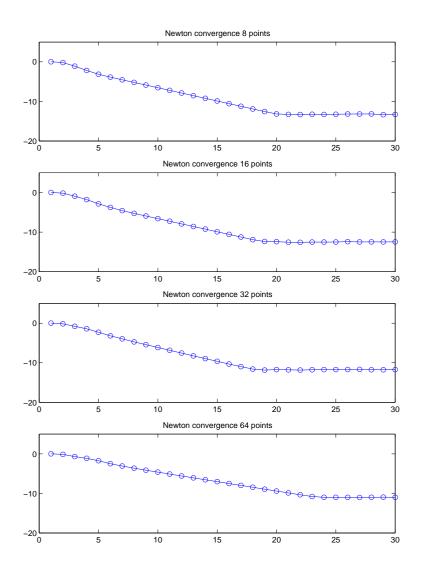
 \vec{w}^h Raviart-Thomas elements $\subset H(div)$, u^h bilinear elements on quadrilaterals, strong boundary conditions

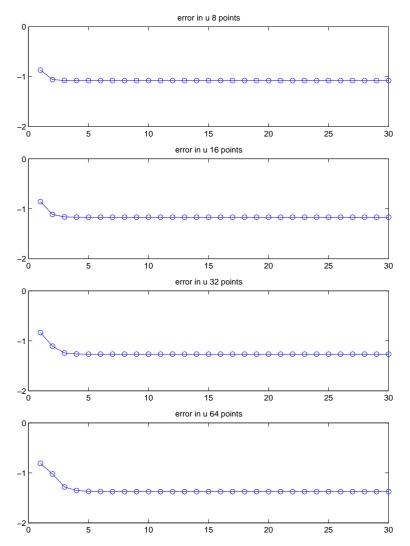


L2 convergence rate to exact solution



Gauss-Newton Convergence

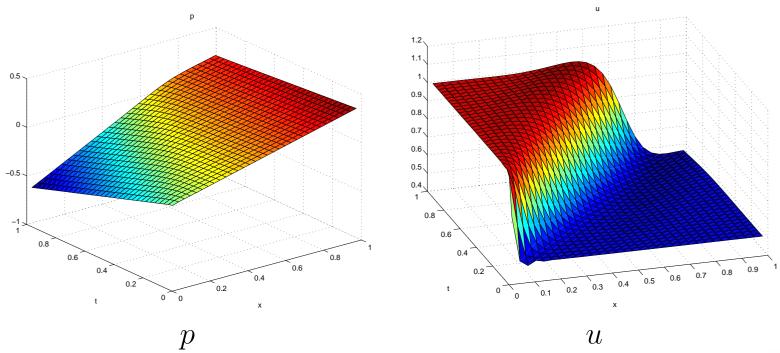




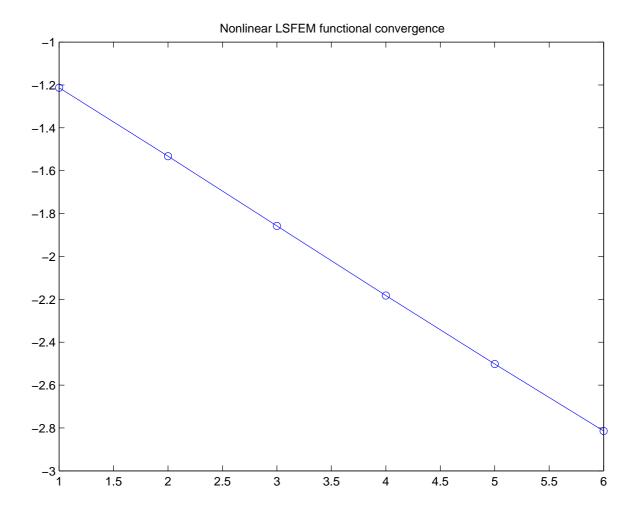
Results for dual H(div)-conforming LSFEM

$$(p_*^h, u_*^h) = \underset{p^h \in \mathcal{P}^h, u^h \in \mathcal{U}^h}{\operatorname{arg\,min}} \|\nabla^{\perp} p - (u, u^2/2)\|^2 + \|\vec{n} \cdot (\nabla^{\perp} p - (g, g^2/2))\|_B^2$$

 p^h, u^h bilinear elements onquadrilaterals, weak boundary conditions



Nonlinear functional convergence



$$\|\nabla^{\perp} p - (u, f(u))\|^2 + \|\vec{n} \cdot (\nabla^{\perp} p - (g, f(g)))\|_B^2 = O(h^{1.1})$$

Convergence of H(div)-conforming LSFEM

is the LS functional uniformly coercive?

$$\exists \ c \ \text{s.t.} \ \|\nabla^{\perp} p - (u, f(u))\|^2 \geq c \ (\|\nabla^{\perp} p\|^2 + \|u\|^2)$$

NO: there are high-frequency error modes for which $c = O((1/n)^2)$

• compatible spaces: if we choose both p^h and u^h bilinear, we find (1D heuristics and numerical evidence) that c = O(h) (only for the low-frequency modes, high-frequency error is filtered out)

remark: if we choose u^h piecewise constant, high-frequency error contaminates solution

Convergence of H(div)-conforming LSFEM

- we observe that $\|\nabla^\perp p^h (u^h, f(u^h))\|^2$ converges faster than $\|\nabla^\perp p^h\|^2 + \|u^h\|^2$
- ⇒ conjecture:

$$\|\nabla^{\perp} p^h - (u^h, f(u^h))\|^2 \ge c \ h \ (\|\nabla^{\perp} p^h\|^2 + \|u^h\|^2)$$

with

$$\|\nabla^{\perp} p^h - (u^h, f(u^h))\|^2 = O(h^{1+\beta})$$
$$\|\nabla^{\perp} p^h\|^2 + \|u^h\|^2 = O(h^{\alpha})$$

• to be investigated further

Numerical Conservation

THEOREM. Lax-Wendroff (1960).

'conservative' fi nite difference formula:

$$\frac{u_i^{h,n+1} - u_i^{h,n}}{\Delta t} + \frac{\bar{f}_{i+1/2}^{h,n} - \bar{f}_{i-1/2}^{h,n}}{\Delta x} = 0,$$

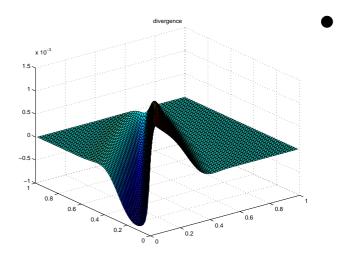
scheme converges \Longrightarrow convergence to weak solution

- \Rightarrow exact discrete conservation ($\nabla \cdot (u, f(u))_d \equiv 0$) is a sufficient condition for convergence to a weak solution, but is often erroneously considered as necessary
- popular FEM for hyperbolic conservation laws (e.g. Discontinuous Galerkin) are discretely conservative in the Lax-Wendroff sense

Numerical Conservation

THEOREM. Conservation theorem for H(div)-conforming LSFEM. H(div)-conforming LSFEM converges \Longrightarrow convergence to weak solution

THEOREM. Conservation theorem for dual H(div)-conforming LSFEM. dual H(div)-conforming LSFEM converges \Longrightarrow convergence to weak solution



H(div)-conforming LSFEM does not impose strict discrete numerical conservation, but converges to weak solution! \Rightarrow discrete numerical conservation is not necessary

• dual H(div)-conforming LSFEM has stronger, pointwise discrete conservation property: $\nabla \cdot (\nabla^{\perp} p^h) \equiv 0$

Error Estimator and Adaptive Refinement

$$\mathcal{F}(u^h; f) = ||Lu^h - f||_0^2$$

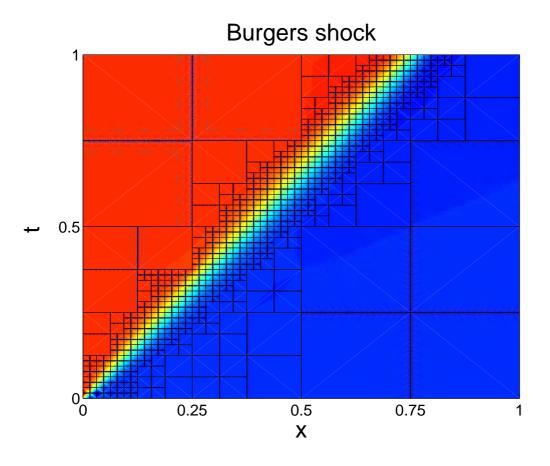
$$= ||Lu^h - Lu_{exact}||_0^2$$

$$= ||L(u^h - u_{exact})||_0^2$$

$$= ||Le^h||_0^2$$

- functional value gives sharp local a posteriori error estimator
- use error estimator for adaptive refinement in space-time

Error Estimator and Adaptive Refinement



- sharp fronts at shocks
- with optimal O(n) solver, work per grid point is bounded
- promises to be competitive with other methods (also explicit timemarching)

Conclusions

we have developed two classes of H(div)-conforming LSFEM for hyperbolic conservation laws

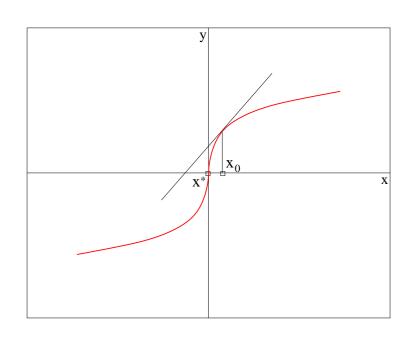
- disadvantages
 - extra variables are introduced (\vec{w} or p)
 - high diffusion of LSFEM at shocks
- advantages of LSFEM
 - optimal solution within finite element space
 - SPD linear systems (iterative methods, AMG)
 - error estimator (efficient adaptive refinement)
 - conservation (either weaker or stronger than Lax-Wendroff discrete conservation)
 - no spurious oscillations at discontinuities (without need to add numerical diffusion)
 - *linear* higher order schemes

Conclusions

- advantages of H(div)-conforming reformulation
 - linear differential operator
 - bounded Fréchet derivative ⇒ Newton converges
 - nullspace of operator can be represented exactly
 - differential boundary conditions help AMG (dual)
 - regularity of the solution ($\vec{w} \in H(div)$) is made explicit, also at the discrete level using Raviart-Thomas elements
- FE convergence theory remains to be worked out further
- promising initial AMG results, to be developed further
- methods can be extended to multiple spatial dimensions, and to systems of equations

Newton with Unbounded Derivative

$$f(x) = 0 \implies f(x_0) + f'(x_0)(x - x_0) = 0 \implies x = x_0 - \frac{f(x_0)}{f'(x_0)}$$



$$f(x) = x^{\alpha} \qquad x > 0$$

$$= -|x|^{\alpha} \qquad x \le 0$$

$$\alpha \in (0, 1)$$

$$f'(x) = \alpha x^{\alpha - 1} \qquad x > 0$$

$$f'(0) = \infty$$

$$x = x_0 - \frac{x_0^{\alpha}}{\alpha x_0^{\alpha - 1}}$$

$$x = (1 - 1/\alpha) x_0$$

divergence $\forall \alpha < 1/2$, e.g. for $\alpha = 1/3$, $x = -2 x_0$

 \Rightarrow if $f'(x^*) = \infty$, basin of attraction can be empty!

Algebraic Multigrid

- ullet use approach investigated for linear problems for H(div)-conforming LSFEM
- e.g., dual LSFEM: $L = \nabla^{\perp} p \vec{b} u$

$$\langle \nabla^{\perp} p^h, \nabla^{\perp} q^h \rangle + \langle -\vec{b} u^h, \nabla^{\perp} q^h \rangle = 0 \qquad \forall \quad q^h \in \mathcal{P}^h$$
$$\langle \nabla^{\perp} p^h, -\vec{b} s^h \rangle + \langle -\vec{b} u^h, -\vec{b} s^h \rangle = 0 \qquad \forall \quad s^h \in \mathcal{U}^h$$

$$A = \left[\begin{array}{cc} A_{pp} & A_{pu} \\ A_{up} & A_{uu} \end{array} \right]$$

- A is symmetric positive definite
- ullet standard AMG efficient for A_{pp}
- A_{uu} mass matrix, but A_{up} strong off-diagonal coupling
- some promising initial results, but work in progress

Numerical Conservation

$$\partial_t (u_i^h S_i) + \sum_{j \in \partial \Omega_i} \bar{f}_j^h \cdot \vec{n}_j l_j = 0.$$

$$\partial_t \left(\sum_{i \in \Omega_s} u_i^h S_i \right) + \sum_{j \in \partial \Omega_s} \bar{f}_j^h \cdot \vec{n}_j \ l_j = 0.$$

