Multi-Dimensional Upwind Constrained Transport (MUCT) of Divergence-Free Fields on Unstructured Grids

Hans De Sterck

desterck@colorado.edu

Department of Applied Mathematics, University of Colorado at Boulder, USA

Conservative form ideal MHD equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \rho e \\ \vec{B} \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho e + p + \frac{B^2}{2} \vec{I} - \vec{B} \vec{B} \\ \rho e + p + \frac{B^2}{2} \vec{v} - (\vec{v} \cdot \vec{B}) \vec{B} \end{bmatrix} = 0$$

- nonlinear system of hyperbolic conservation laws describing magnetized fluid
 - 8 waves (2 \times fast, 2 \times Alfvén, 2 \times slow, entropy, spurious/divergence)
 - 3 types of shocks (fast, intermediate, slow)
 - non-classical, overcompressive, non-evolutionary shocks have conditionally stable viscous profiles, exist (Myong's talk)
 - constraint: $\nabla \cdot \vec{B} = 0$ (my talk, Kroener's talk, Toth's talk)

Topic of my talk:)

 numerical schemes for the advection of divergence-free fields on unstructured grids

- \Rightarrow divergence-free: $\nabla \cdot \vec{B} = 0$
 - \vec{B} magnetic field (plasma . . .)
 - no magnetic monopoles
 - also numerically, avoid magnetic monopoles at the discrete level:

Constrained Transport (CT) approach

(known on structured grids, Evans & Hawley 1988, earlier for EM)

(~ 'mimetic' schemes, Hyman & Shashkov 1997)

- \Rightarrow advection = hyperbolic (example: Magnetohydrodynamics (MHD))
- ⇒ unstructured grids: Multi-Dimensional Upwind (MU) schemes

Overview

- (1) Constrained Transport on unstructured grids
- (2) Multi-Dimensional Upwind Schemes
- (3) Multi-Dimensional Upwind Constrained Transport (MUCT) Schemes for Faraday's equation
- (4) MUCT Schemes for the 'Shallow Water'

 Magnetohydrodynamics Equations

Faraday's induction equation

(with constant \vec{v}):

$$ullet$$
 Faraday: $\dfrac{\partial \vec{B}}{\partial t} + \nabla imes \vec{E} = 0$

(ideal) MHD approximation: $\vec{E} = -\vec{v} \times \vec{B}$

$$\Rightarrow \frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B})$$

•
$$\nabla \cdot \vec{B} = 0$$
 or $\oint \vec{B} \cdot \vec{n} dS = 0$

$$\Rightarrow \frac{\partial \nabla \cdot \vec{B}}{\partial t} = 0$$

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B})$$

(1)
$$\frac{\partial \vec{B}}{\partial t} = -\nabla \cdot (\vec{v}\vec{B} - \vec{B}\vec{v})$$

- = conservation law form, use schemes for hyperbolic systems
- ⇒ problems with numerical stability, ..., can be cured
- using source term, 8-wave formulation (Powell 1995)

but wrong jumps at shocks may persist (Toth 2000)

- using *projection* (Poisson solve)
- using *elliptic-hyperbolic-parabolic divergence cleaning* (Dedner, Muenz, Kroener et. al. 2001)
 - using divergence dissipation (Linde & Malagoli)

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B})$$

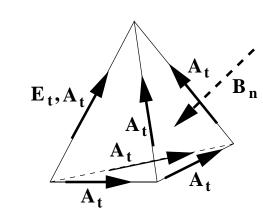
(2)
$$\frac{\partial \int \vec{B} \cdot \vec{n} dS}{\partial t} = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$$
$$\int \vec{B} \cdot \vec{n} dS = \bar{B}_n \Delta S \quad \Rightarrow \quad \frac{\partial \bar{B}_n}{\partial t} = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l} / \Delta S$$

- = time evolution of flux through surface
- = time evolution of average normal component \bar{B}_n of \vec{B}

$$\Rightarrow \oint \vec{B} \cdot \vec{n} dS = 0 \text{ on discrete level!!}$$

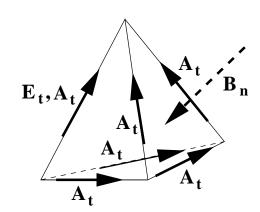
because boundary of boundary vanishes (or contributions cancel)

= CT (Evans & Hawley 1988)



$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B})$$

(3)
$$\frac{\partial \vec{A}}{\partial t} = \vec{v} \times (\nabla \times \vec{A})$$
 with $\vec{B} = \nabla \times \vec{A}$ and \vec{A} = vector potential



= system Hamilton-Jacobi equation for vector potential (Londrillo & Del Zanna 2000)

(remark: only \vec{v} determines upwind direction)

$$\Rightarrow \bar{B}_n \text{ from } \int \vec{B} \cdot \vec{n} dS = \bar{B}_n \Delta S = \oint \vec{A} \cdot d\vec{l}$$

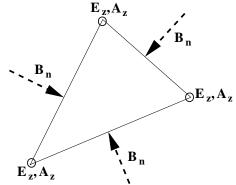
$$\Rightarrow \oint \vec{B} \cdot \vec{n} dS = 0$$
 on discrete level!!

because boundary of boundary vanishes (or contributions cancel)

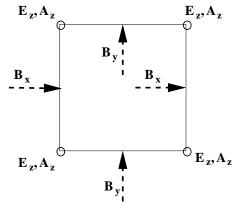
= CT (Evans & Hawley 1988)

in 2D:

$$\frac{\partial \int_{1}^{2} \vec{B} \cdot \vec{n} dl}{\partial t} = \frac{\partial \vec{B}_{n}}{\partial t} \Delta l = (\vec{v} \times \vec{B})_{2} - (\vec{v} \times \vec{B})_{1} \qquad \text{or} \qquad \frac{\partial A_{z}}{\partial t} = -\vec{v} \cdot \nabla A_{z}$$



triangle = difficult: how to get \vec{B} in nodes from \bar{B}_n ?

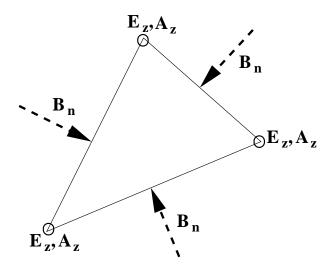


cartesian quadrilateral = easy:

 B_x and B_y reconstruct \vec{B} in nodes = CT (Evans & Hawley 1988)

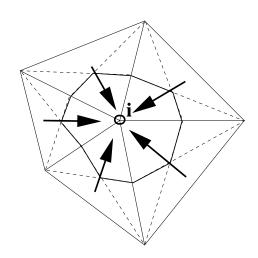
Need vector basis functions: $ec{P_j}$

(\sim face elements, from EM, e.g. Jin 93; Robinson & Bochev 2001 for MHD)



(1) reconstruct \vec{B} in cell from \bar{B}_n as

$$\vec{B}_{cell} = \sum_{j=1}^{3} \vec{P}_{j} B_{n,j}$$



(2) average \vec{B}_{cell} to nodal \vec{B}_i in upwind way

e.g. \vec{P}_1 : normal component $\vec{P}_{1,n}$ constant on edge 1, vanishing on other edges

Vector basis functions $ec{P_i}$

$$\vec{P}_1 = l_1 (L_3 \nabla \times L_2 - L_2 \nabla \times L_3) = \frac{l_1}{2\Delta} (L_3 l_2 \vec{t}_2 - L_2 l_3 \vec{t}_3)$$

$$\vec{P}_2 = l_2 (L_1 \nabla \times L_3 - L_3 \nabla \times L_1) = \frac{l_2}{2\Delta} (L_1 l_3 \vec{t}_3 - L_3 l_1 \vec{t}_1)$$

$$\vec{P}_3 = l_3 (L_2 \nabla \times L_1 - L_1 \nabla \times L_2) = \frac{l_3}{2\Delta} (L_2 l_1 \vec{t}_1 - L_1 l_2 \vec{t}_2)$$

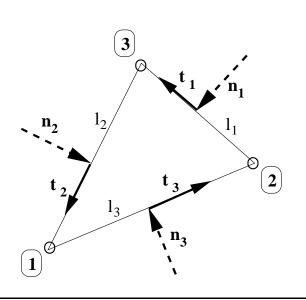
(\sim face elements; Raviart-Thomas or Nedelec)

e.g. \vec{P}_1 : normal component $\vec{P}_{1,n}$ constant on edge 1, vanishing on other edges

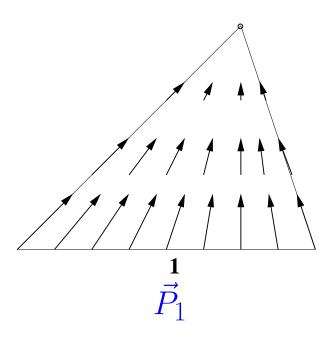
$$\nabla \cdot \vec{P}_j = \text{constant}$$

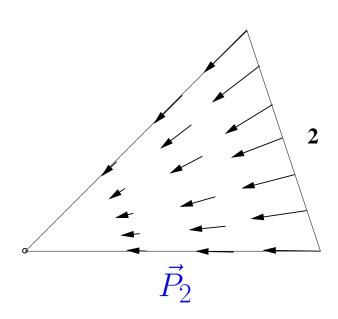
$$\nabla \times \vec{P}_j = 0$$
 (on triangle)

⇒ diverging, non-sheared vector basis functions



$$\vec{B}_{cell} = \sum_{j=1}^{3} \vec{P}_{j} B_{n,j}$$





e.g. \vec{P}_1 : normal component $\vec{P}_{1,n}$ constant on edge 1, vanishing on other edges

(also higher order, quads, . . .: general concept)

$$\vec{B}_{cell} = \sum_{j=1}^{3} \vec{P}_{j} B_{n,j}$$

- ullet $B_{n,j}$ such that $abla \cdot \vec{B} = {
 m constant} \equiv 0$ everywhere inside element
- ullet B_n is continuous at element interfaces, so there also $abla \cdot \vec{B} = 0$
- \Rightarrow finite-element reconstructed solution satisfies $\nabla \cdot \vec{B} = 0$ everywhere!

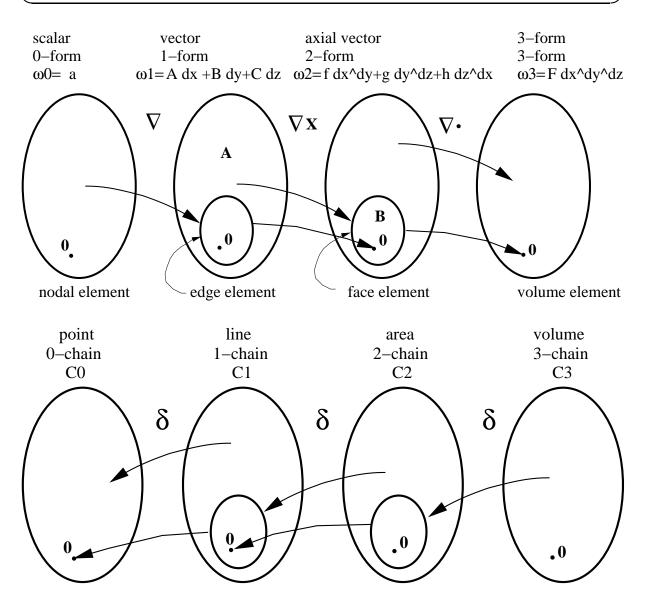
in triangle, for lowest order element:

 \vec{B} constant in space, B_n continuous

(on quad, or for higher order vector basis function:

 \vec{B} not constant in space, B_n continuous)

Interpretation: differential geometry



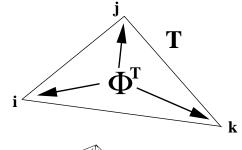
- physics = geometry
- numerics = geometry
- \Rightarrow in a consistent way!

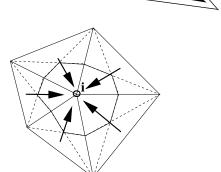
(2) Multi-Dimensional Upwind Schemes

(Roe, Deconinck, Barth, Abgrall, Sidilkover, ..., 1990–2001)

$$\frac{\partial u}{\partial t} + \nabla \cdot f(u) = 0$$

define residual
$$\Phi^T = \int\limits_T \nabla \cdot f(u^h) \, d\Omega$$





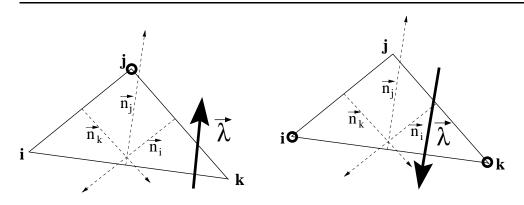
The cell residual Φ^T is distributed to the nodes u_i of the cell:

$$\Phi_i^T = \beta_i^T \Phi^T$$

The contributions to node i are assembled from all surrounding triangles: compact scheme

$$\frac{\partial u_i}{\partial t} = -\frac{1}{S_i} \sum_{T: i \in T} \beta_i^T \Phi^T,$$

(2) Multi-Dimensional Upwind Schemes



One-target (top) and two-target (bottom) situations for an upwind scheme. Define the upwind parameters k_i as $k_i = \vec{\lambda}^T \cdot \vec{n}_i/2$.

- Galerkin or central scheme: $\beta_i = 1/3$ (unstable for advection)
- \bullet N scheme: $\beta_i = k_i^+ \frac{\sum_j k_j^- (u_i u_j)}{(\sum_j k_j^-) \, \Phi^T}.$

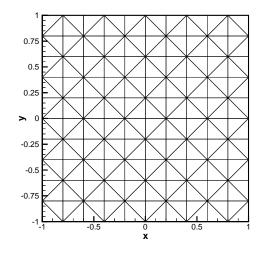
(only first order accurate, but positive, and upwind)

remark: need nodal values

- Lax-Wendroff scheme, LDA scheme: second order for steady flow, not positive
- Blended scheme (N+LDA): (almost) second order for steady flow, positive

(3) MUCT Schemes for Faraday's equation

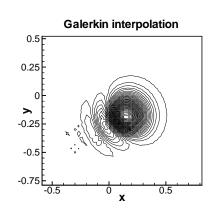
Interpolation MUCT schemes

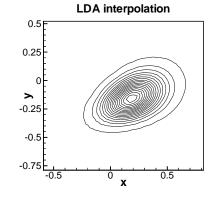


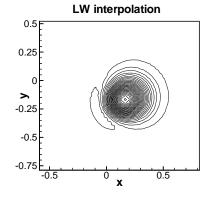
$$\frac{\partial \int_{1}^{2} \vec{B} \cdot \vec{n} dl}{\partial t} = \frac{\partial \bar{B}_{n}}{\partial t} \Delta l = (\vec{v} \times \vec{B})_{2} - (\vec{v} \times \vec{B})_{1}$$

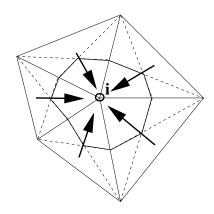
$$\vec{B}_{cell} = \sum_{j=1}^{3} \vec{P}_{j} B_{n,j}$$

$$\vec{B}_{i} \left(\sum_{cellsj} \beta_{j} S_{T,j} \right) = \sum_{cellsj} \vec{B}_{cell,j} \beta_{j} S_{T,j}$$



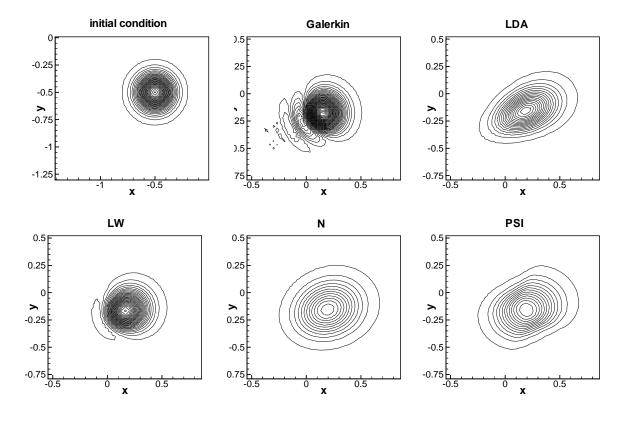


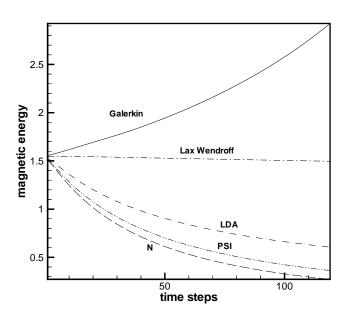




Vector potential MUCT schemes

$$\frac{\partial A_z}{\partial t} = -\vec{v} \cdot \nabla A_z$$





3D MUCT schemes

interpolation MUCT schemes: need residual distribution to the edges

 $ec{t_i}$ are the six vectors connecting the middles of the six edges of the tetrahedron to the centroid of the tetrahedron

$$\Rightarrow \sum_{i=1}^{6} \vec{t_i} = 0$$

 \Rightarrow define the upwind parameters k_i as $k_i = \vec{\lambda}^T \cdot \vec{t_i}$, with $i = 1 \dots 6$ (not positive because no N scheme)

vector potential MUCT schemes

need a positive system N scheme for the system HJ equation (distribution to the nodes or to the edges)

$$\frac{\partial \vec{A}}{\partial t} = \vec{v} \times (\nabla \times \vec{A})$$

(4) MUCT Schemes for 'Shallow Water' MHD

'Shallow Water' MHD

(Gilman 2000, De Sterck 2001)

$$\frac{\partial h}{\partial t} + \nabla \cdot (h \vec{v}) = 0$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} - (\vec{B} \cdot \nabla)\vec{B} + g \nabla h = 0$$

$$\frac{\partial \vec{B}}{\partial t} + (\vec{v} \cdot \nabla)\vec{B} - (\vec{B} \cdot \nabla)\vec{v} = 0$$

$$\nabla \cdot (h \vec{B}) = 0$$

- from MHD: incompressible, 2D variation, magnetohydrostatic equilibrium
- 4 wave modes: 2 magneto-gravity waves (nonlinear), 2 Alfvén waves (linear)
- one spurious 'div(B)'-wave (MHD!)

$$\frac{\partial}{\partial t} \begin{bmatrix} h \\ h \vec{v} \\ h \vec{B} \end{bmatrix} + \nabla \cdot \begin{bmatrix} h \vec{v} \\ h \vec{v} \vec{v} - h \vec{B} \vec{B} + I (gh^2 / 2) \\ h \vec{v} \vec{B} - h \vec{B} \vec{v} \end{bmatrix} = 0$$

 $h\vec{B}$: store normal components B_n on edges

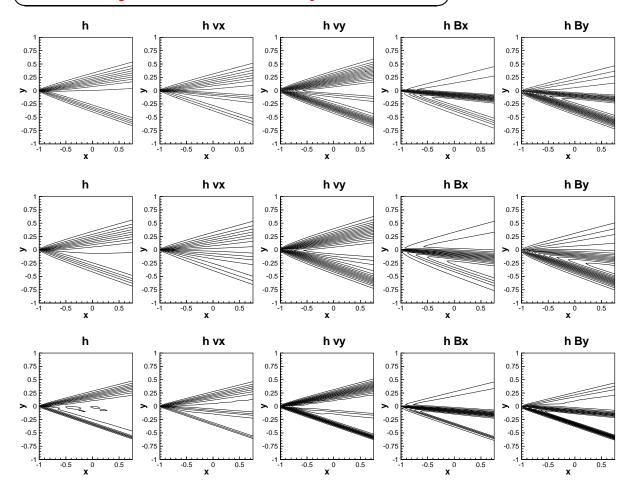
- MUCT (upwind interpolation or upwind scheme for vector potential)
- Hamilton-Jacobi equation discretized fully upwind, positive
- only need to use \vec{v} for upwinding!! (use \vec{v}_{cell} averaged from nodes)

 $h, h\vec{v}$: store *nodally*

- regular system N scheme
- fully upwind using all 5 SMHD wave modes, positive
- need nodal values, also for $h ec{B}$ (Galerkin interpolated from $ec{B}_{cell}$)

 \Rightarrow system N MUCT scheme

Steady Riemann problem

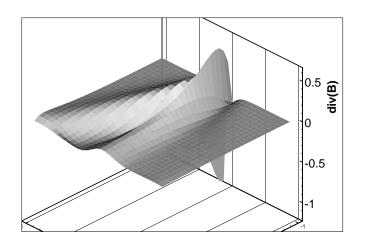


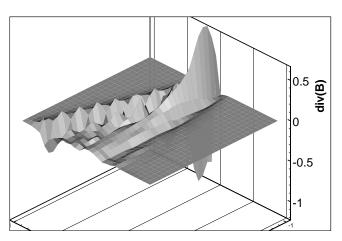
System N MUCT solution of the steady Riemann problem on a grid of 91×91 nodes. (No oscillations!)

First order Lax-Friedrichs finite volume solution of the steady Riemann problem on a grid of 90×90 finite volumes.

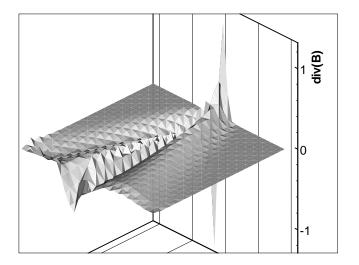
Second order Lax-Friedrichs finite volume solution of the steady Riemann problem on a grid of 90×90 finite volumes.

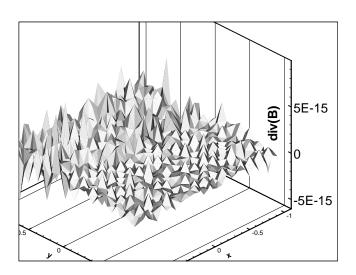
(4) MUCT Schemes for 'Shallow Water' MHD





 $\nabla \cdot \vec{B}$ for the first order (left) and second order (right) Lax-Friedrichs simulation of the steady Riemann problem on a grid of 30×30 finite volumes.

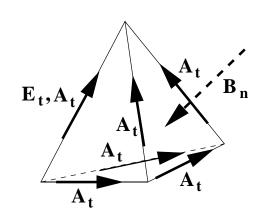




 $\nabla \cdot \vec{B}$ for the full system N (left) and system N MUCT (right) simulation of the steady Riemann problem on a grid of 31×31 nodes.

Conclusions

• represent \vec{B} by \vec{B}_n : normal component on surfaces or represent \vec{A} by \vec{A}_t : tangential component along edges



- ullet on unstructured grids, \vec{B} and \vec{A} can be reconstructed everywhere in the domain using vector basis functions (face elements for \vec{B} and edge elements for \vec{A})
- ullet update B_n or A_t using MU schemes (via MU interpolation of the reconstructed fields)
- ullet this conserves the $abla \cdot \vec{B} = 0$ constraint at the discrete level up to machine accuracy
- this has been tested for Faraday, Shallow Water MHD (system MUCT scheme)
- easy extensions: 2nd order (blended scheme), MHD, 3D, ...
 - = generalization of CT to multi-dimensional methods on unstructured grids

(De Sterck, AIAA paper 2001-2623) (http://amath.colorado.edu/faculty/desterck)